Efficient Optimization of Diameter and Average Shortest Path Length of a Graph using Path Count Index

Hiroshi Inoue IBM Research – Tokyo

My results in GraphGolf

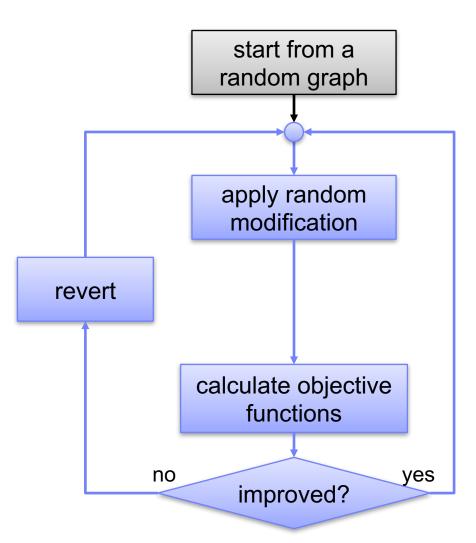
	Rank	Author	Number of best solutions
Ŧ	1	Nobushimi & Ryo Ashida & Ryuhei Mori	12
	2	H. Inoue	10
	3	yawara & amami	3

	Rank	Author	Number of best solutions		
Ŧ	1	Takayuki Matsuzaki & Teruaki Kitasuka & Masahiro lida	10		
	2	H. Inoue	6		
	3	Ryuhei Mori	5		

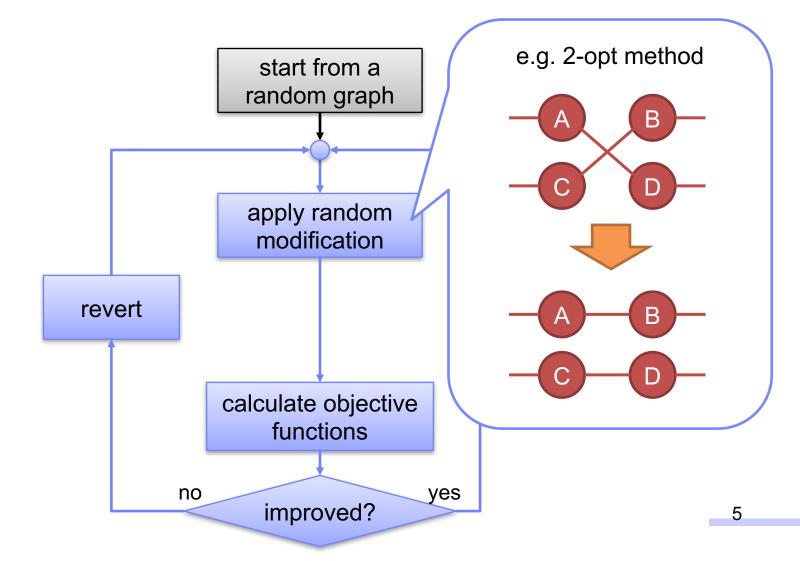
Overview

- Problem to solve
 - Optimization problem of finding a graph with smaller diameter and ASPL (average shortest path length) for given order (number of nodes)
 n and degree *d*
- My Approach
 - Local search with light-weight estimation of objective functions; naively calculation of objective functions is too costly for large graphs

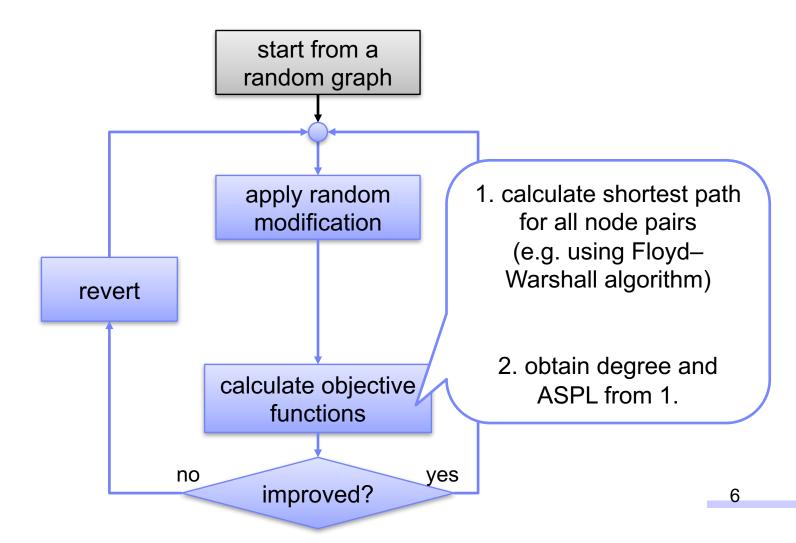
Optimization process overview



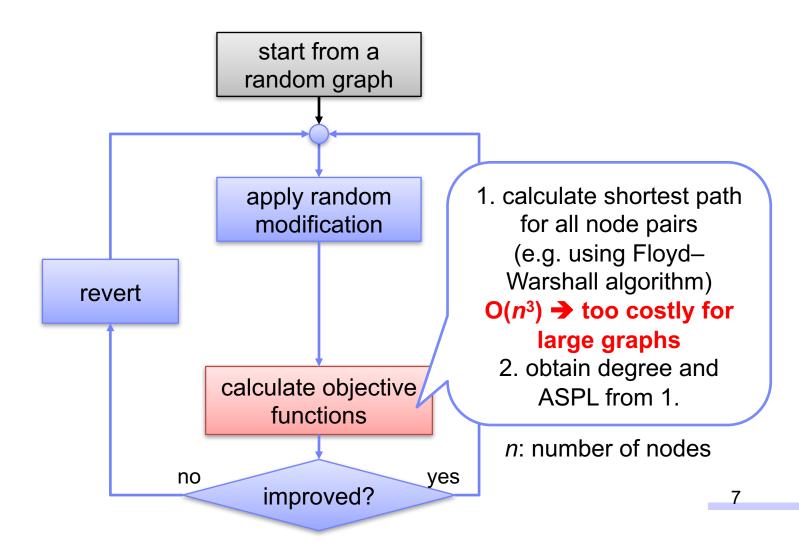
Optimization process overview



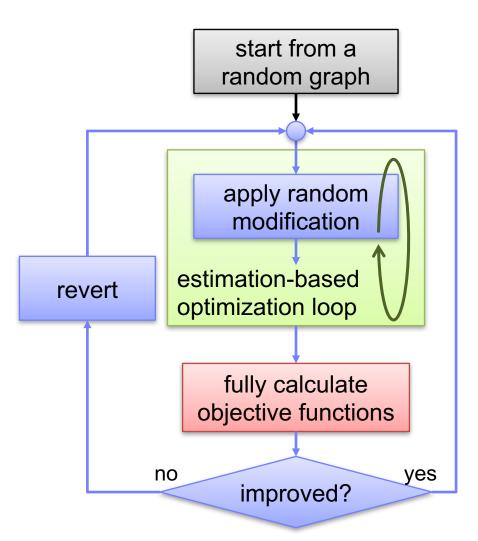
Optimization process overview



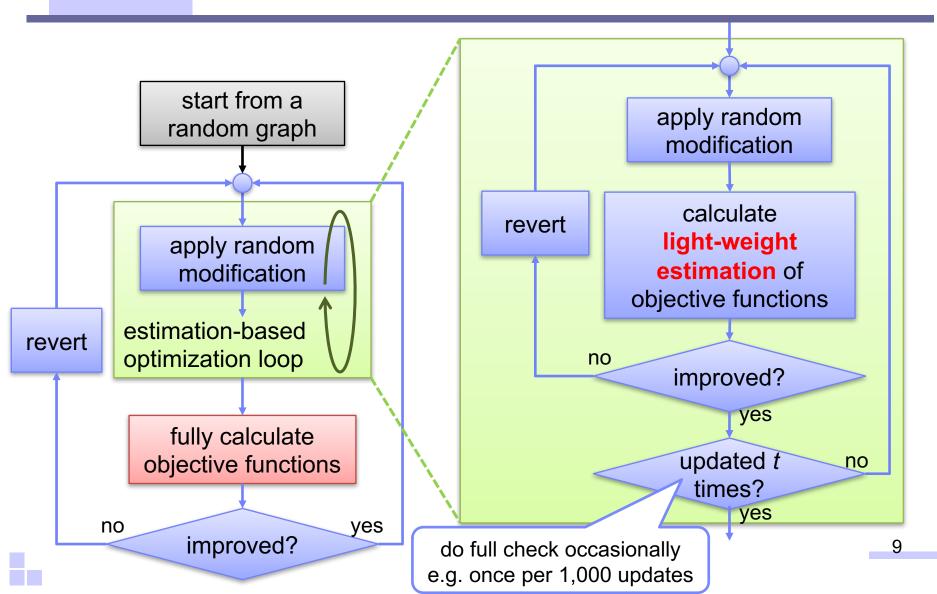
Problem with large graphs



Our approach



Our approach



How to estimate?

- what we actually need is:
 - not the current value of the objective functions (i.e. the diameter and ASPL)
 - 8 need to process the entire graph
 - ➔ prohibitively costly for large graphs
 - but only the changes in the objective functions due to a small modification made in the graph

Constant of the calculated from the local information around the modified edges

Index to calculate changes

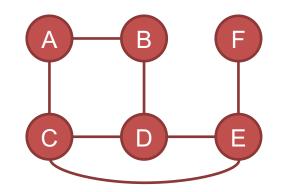
- To calculate the changes in all pairs shortest path when adding or removing an edge, we introduce a new index structure called <u>Path Count Index</u>
- Path Count Index is a lookup table that holds {node1, node2, path length}
 - → number of paths

- $-1 \le path \ length \le L_{max}$
- if L_{max} = 1, Path Count Index is the adjacency matrix
- excluding paths includes a cycle

Example of path count index

- { A, B, 1 } = 1 (A-B)
- { A, B, 2 } = 0
- { A, B, 3 } = 1 (A-C-D-B)

A-B-D-B and A-C-A-B are not counted



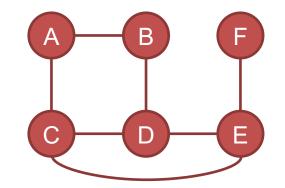
- { A, D, 1 } = 0
- { A, D, 2 } = 2 (A-B-D, A-C-D)
- { A, D, 3 } = 1 (A-C-E-D)

Example of path count index

- { A, B,1} = 1 (A-B)
- { A, B, 2 } = 0

• { A, D, 1 } = 0

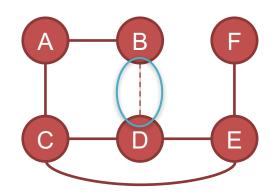
- { A, B, 3 } = 1 (A-C-D-B)
 - A-B-D-B and A-C-A-B are not counted



- first non-zero entry = shortest path length
- { A, D,2} = 2 (A-B-D, A-C-D)
- { A, D, 3 } = 1 (A-C-E-D)

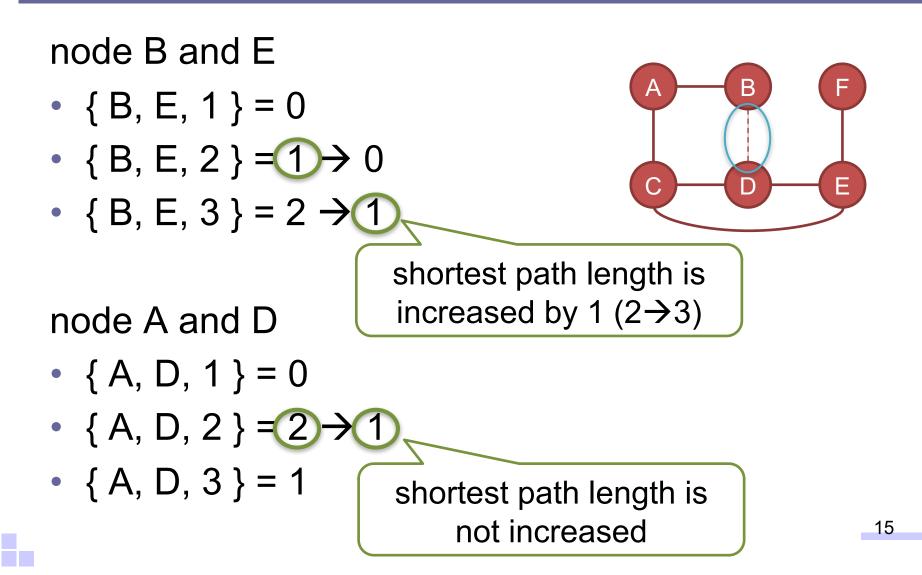
Removing an edge $(B \rightarrow D)$

- $\{ B, D, 1 \} = 1 \rightarrow 0$
- { A, D, 2 } = 2 → 1
- { B, C, 2 } = 2 → 1
- { B, E, 2 } = 1 → 0
- { A, C, 3 } = 1 \rightarrow 0
- { B, E, 3 } = 2 → 1



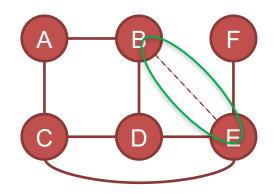
→We calculate the changes in shortest path lengths while maintaining the path count index

Removing an edge $(B \rightarrow D)$

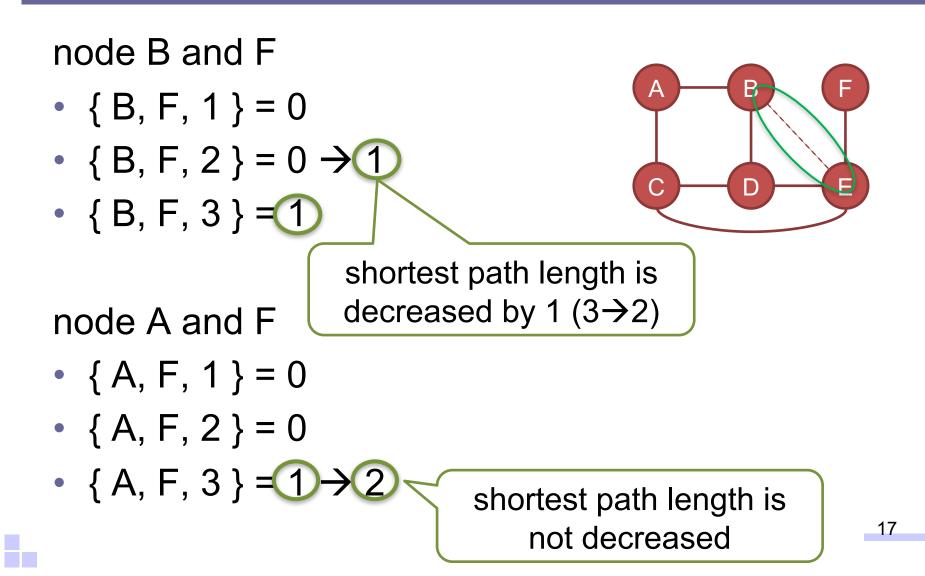


Adding an edge $(B \rightarrow E)$

- { B, E, 1 } = 0 → 1
- { A, E, 2 } = 1 \rightarrow 2
- { D, E, 2 } = 1 \rightarrow 2
- { B, C, 2 } = 2 \rightarrow 3
- { B, D, 2 } = 0 → 1
- { B, F, 2 } = 0 → 1
- { A, F, 3 } = 1 \rightarrow 2

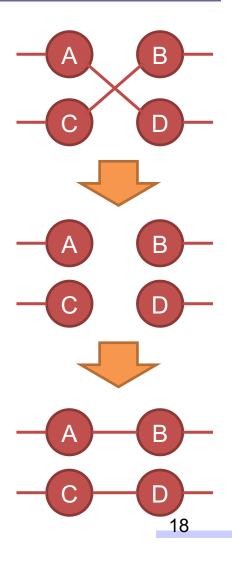


Adding an edge $(B \rightarrow E)$



2-opt and path count index

- One 2-opt step removes two edges and then adding two edges
- we can calculate changes in shortest path lengths (and hence ASPL and degree) as total of changes by four operations
- We can complete these operations only using local information without touching the entire graph
- efficient even for large graphs

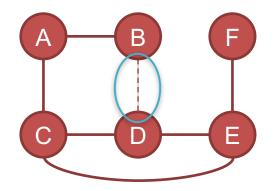


Why it gives only estimation?

 Because we have limitation in path length counted in path count index

node B and F (with L_{max} = 3)

- { B, F, 1 } = 0
- { B, F, 2 } = 0
- { B, F, 3 } = 1 $\rightarrow 0$

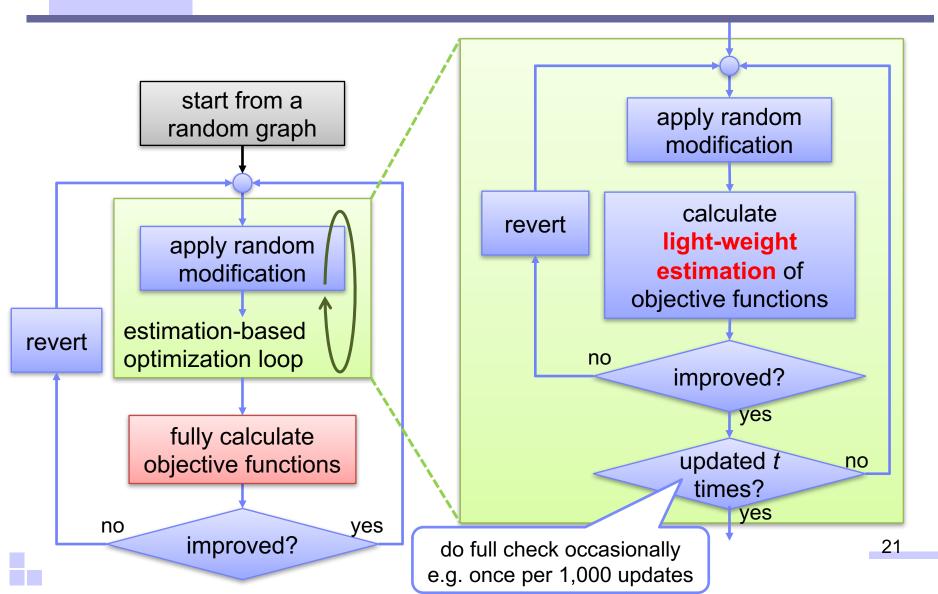


no non-zero entry for B-F \rightarrow we assume L_{max} +1 is the shortest path length (this may incorrect!)

- L_{max} is a parameter to control tradeoff between accuracy and performance
 - larger L_{max} increases accuracy
 - smaller L_{max} reduces overhead in memory size and computation cost
- L_{max} equal to or slightly less than the diameter of the graph is a good choice for many cases

(n, d)	current diameter	lower bound diameter	L _{max}		
100k, 20	5	4	4		
100k, 11	6	5	4		
100k, 7	8	7	7		
10k, 3	15	12	14		

Our approach



metaheuristics

- based on (not-sophisticated) simulated annealing
 - if a better solution is not found after *T* trials (*T*: a predefined threshold), we accept a new solution that (slightly) worsen the objective functions

Optimization in edge selection for 2-opt

- In graph, each edge has different relative importance on ASPL and degree (e.g. edge betweenness centrality)
- Randomly selecting two edges to remove in a 2opt trial may remove an important edge
 - \rightarrow such 2-opt trial will not be successfully

Sort-based edge selection for 2-opt

- 1. select *M* edges randomly
- for each edge, calculate the change (increase) in the objective function when removing the edge using path count index
- 3. sort *M* edges by the changes
- 4. try 2-opt only for pairs selected from m (m < M) edges having relatively low importance
 - e.g. m = M / 4 → the number of pairs becomes only 1/16 (1/4²)

Implementation

- Implemented in C++
- full computation of node-to-node distances employs pruned landmark labeling [1] library with minor modifications (<u>https://github.com/iwiwi/pruned-</u> landmark-labeling)
 - this library is not originally designed for all pairs distances computation
- (mostly) not parallelized!
 - only rarely-executed full computation of node-to-node distances is parallelized using OpenMP

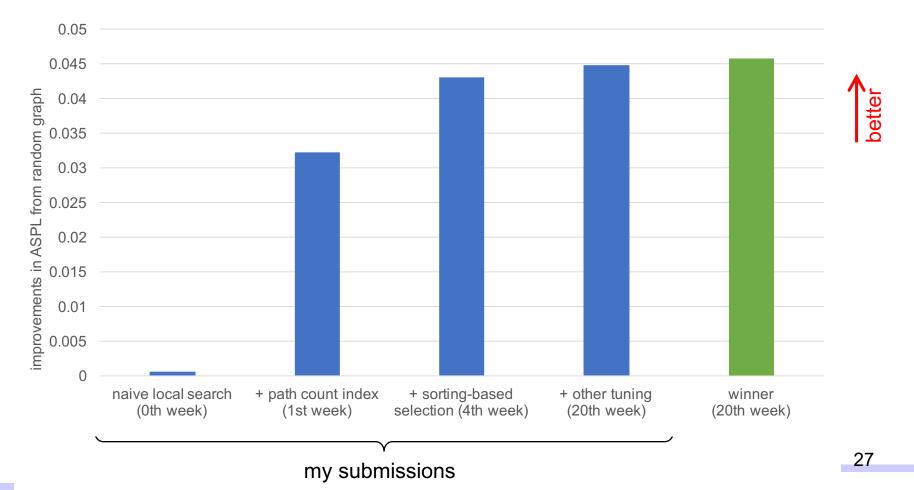
[1] Takuya Akiba et al., Fast exact shortest-path distance queries on large networks by pruned landmark labeling, SIGMOD '13

Performance

- For large graphs (e.g. 100k-node configurations of GraphGolf 2016), the performance improvements are quite large since my algorithm reduces the computational complexity
 - naively computing all node-to-node distances of one graph (*n*=100k, *d*=20) takes more than 2 hours with 8 threads
 - one 2-opt trial with path count index takes about 0.1 sec (since we do not need to access the entire graph)
 → speed up in order of 10⁵

Performance

• From submission history of GraphGolf 2015 (n=10k, d=64)



Memory consumption for path count index

 The number of paths of length L between two nodes is up to

$$\begin{cases} 1 & \text{for } L=1 \\ d \times (d-1)^{L-2} & \text{for } L>1 \end{cases}$$

- For example, the entry of path count index for one node pair with d = 3 and L_{max} = 3 can fit in one byte
 - L=1 (up to 1 path): 1 bit
 - L=2 (up to 3 paths): 2 bits
 - L=3 (up to 6 paths): 3 bits
- → the total size of the path count index is

$$\frac{n \times n}{2} \times entry_size$$

Memory size optimization

• Problem:

entry size may become too big for large d and L_{max}

- e.g. for *d* = 64
 - L=1 (up to 1 path): 1 bit
 - L=2 (up to 64 paths): 6 bits
 - L=3 (up to 4032 paths): 12 bits
 - L=4 (up to 254k paths): 18 bits

Memory size optimization

• Problem:

entry size may become too big for large d and L_{max}

- e.g. for *d* = 64
 - L=1 (up to 1 path): 1 bit

- ➔ having the multiple paths of the same length is redundant and should not happen to achieve smaller ASPL
- ➔ in random graphs, large path counts in the path count index were rarely observed

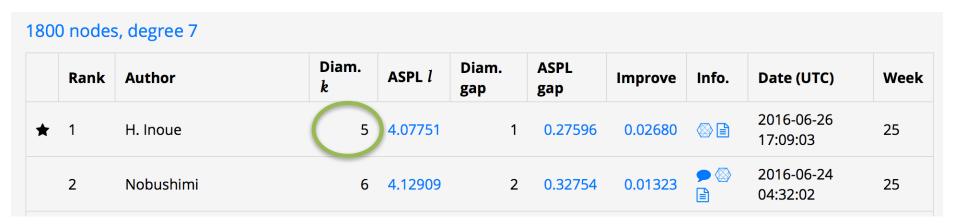
Total size of path count index for graph golf

(<i>n</i> , <i>d</i>)	L _{max}	entry size	total size	
100k, 20	4	16 bit	10 GB	
100k, 11	4	16 bit	10 GB	2016
100k, 7	7	32 bit	20 GB	J
10k, 64	2	8 bit	50 MB	2015
10k, 3	14	64 bit	400 MB	5 2015

Note that, in the current implementation, we use 2x larger memory compared to the above size; we store the same data for (*i*, *j*) and (*j*, *i*) to avoid conditional branch overheads

Reducing diameter

- In three categories, we won by a smaller diameter (not by a smaller ASPL)
 - *n*=1800/*d*=7 (2016), *n*=100k/*d*=11 (2016), *n*=4096/*d*=3 (2015)



➔ To reduce the diameter, we employ another objective function in the optimization

Objective function for reducing diameter

• We focus on "number of node pairs whose distance is equal to the diameter" (*p*)

-p becomes 0 \rightarrow diameter is reduced by 1

- We can use p as the objective function of the optimization instead of ASPL
 - base objective function: 100000k + / (k: diameter, / : ASPL)
 - objective function for diameter: 100000k + p
- We can efficiently calculate *p* from the path count index if *L_{max} ≥ k*

Entire optimization process

- Optimizing *p* typically worsen ASPL while optimizing ASPL (gradually) reduces *p*
- The entire optimization process using two objective functions are as follow:
 - 1. We start optimization for ASPL
 - If p becomes relatively small (depends on graph sizem but typically less than 100~1,000), we manually switch the objective function for diameter based on p
 - 3. We go back to the normal objective function after getting a smaller diameter (i.e. *p* becomes 0)

Diameter and ASPL

➔in some categories, I submitted two final solutions: one with best diameter and one with best ASPL

100000 nodes, degree 11

	Rank	Author	Diam. k	ASPL <i>l</i>	Diam. gap	ASPL gap	Improve	Info.	Date (UTC)	Week
*	1	H. Inoue	6	5.14685	1	0.28260	0.00392		2016-06-26 17:11:18	25
	2	H. Inoue	7	5.14360	2	0.27934	0.00459		2016-06-26 17:11:18	25

Summary

- We introduced Path Count Index, which maintains the number of paths for all node pairs and path lengths
- We use Path Count Index for:
 - light-weight estimation of changes in shortest path length
 - efficient selection of target edges for 2-opt method
 - counting the number of node pairs having the distance equal to the diameter
- Since Path Count Index is a simple and flexible data structure, it will be potentially valuable for other operations with a dynamic graph

minor optimizations

- Try both of two ways of adding new edges in one 2-opt step
 - we need to pay the cost of edge removal only once for two trials

