Efficient Optimization of Diameter and
Average Shortest Path Length of a Graph
using Path Count Index

Hiroshi Inoue
IBM Research — Tokyo

My results in GraphGolf

2015

Rank Author Number of best solutions
L 4 1 Nobushimi & Ryo Ashida & Ryuhei Mori 12

2 H. Inoue 10

3 yawara & amami 3

Rank Author Number of best solutions
4 1 Takayuki Matsuzaki & Teruaki Kitasuka & Masahiro lida 10
2 H. Inoue 6

3 Ryuhei Mori 5

Overview

* Problem to solve
— Optimization problem of finding a graph with
smaller diameter and ASPL (average shortest

path length) for given order (number of nodes)
n and degree d

* My Approach

— Local search with light-weight estimation of
objective functions; naively calculation of
objective functions is too costly for large
graphs

Optimization process overview

start from a
random graph

:%:
apply. ranQom

OGO

‘ revert \

calculate objective
functions

improved?

Optimization process overview

start from a
random graph

s

‘ revert \

no

+

/

apply random ﬁ

calculate objective
functions

improved?

-

e.g. 2-opt method \

Optimization process overview

start from a
random graph

RS

revert

no

¥

apply random
modification

/

calculate objective
functions

improved?

€S

1. calculate shortest path\

for all node pairs
(e.g. using Floyd—
Warshall algorithm)

2. obtain degree and
ASPL from 1.

/

Problem with large graphs

start from a
random graph

RS

revert

no

+

apply random
modification

/

calculate objective
functions

improved?

€S

1. calculate shortest path\
for all node pairs
(e.g. using Floyd—
Warshall algorithm)
O(n3) = too costly for
large graphs
2. obtain degree and

ASPL from 1. /

n: number of nodes

Our approach

start from a
random graph

RS

>

apply random {/\
modification

}
e estimation-based
optimization loop

fully calculate
objective functions

no _ es
improved?

Our approach

start from a
random graph

;/LA
<

revert

apply random {f\

modification

}
estimation-based
optimization loop

l

fully calculate
objective functions

improved?

S

apply random
modification

\ 4

revert

calculate
light-weight

estimation of
objective functions

no

es

[

do full check occasionally
e.g. once per 1,000 updates

How to estimate?

- what we actually need is:

— not the current value of the objective functions
(i.e. the diameter and ASPL)

@ need to process the entire graph
=» prohibitively costly for large graphs

— but only the c
due to a smal

© can be ca

nanges in the objective functions
modification made in the graph

culated from the local

information around the modified edges

10

Index to calculate changes

* To calculate the changes in all pairs shortest path
when adding or removing an edge, we introduce
a new index structure called Path Count Index

- Path Count Index is a lookup table that holds
{node1, nodeZ2, path length}

= number of paths
— 1 < path length <L,
—if L., = 1, Path Count Index is the adjacency matrix
— excluding paths includes a cycle

11

Example of path count index

- {A B,1}=1(A-B)

- {A/B,2}=0

- {A B,3}=1(A-C-D-B)

— A-B-D-B and A-C-A-B
are not counted

- {A,D,1}=0
.- {A,D,2}=2(A-B-D, A-C-D)
- {A,D,3}=1(A-C-E-D)

12

Example of path count index

- {A, B} =1 (A-B)

« {A,/B,2}=0

- {A B,3}=1(A-C-D-B)

— A-B-D-B and A-C-A-B
are not counted

first non-zero entry =
« {A,D,1}=0 shortest path length
- {A, D{2)} = 2 (A-B-D, A-C-D)

- {A,D,3}=1(A-C-E-D)

13

Removing an edge (B>D)

{B,D,1}=1-0
(A,D,2}=2>1
{B,C,2}=2>1
{B,E,2}=1>0
{A,C,3}=1-0
{B,E,3}=2>1

=>\We calculate the changes in shortest path
lengths while maintaining the path count index

14

Removing an edge (B>D)

node B and E
- {B,E,1}=0

* {B,E,2}=1>0

- {B,E,3}=2->)

shortest path length is
node A and D increased by 1 (2->3)

- {A,D,1}=0

* {A,D,2}=2>D

- {A,D,3}=1 shortest path length is
not increased 1a

Adding an edge (B2>E)

- {B,E,1}=0> 1
- [AE,2}=1>2
+ {D,E,2}=1>>2
- {B,C,2}=2>3
- {B,D,2}=0->1
- {B,F,2}=0>1
- [AF,3}=1>2

L ¥ 3

16

node B and F

- {B,F,1}=0

- {B,F,2}=0->

+ {B,F,3}=1D K

Adding an edge (B2>E)

shortest path length is
node A and F decreased by 1 (322)

" {A
* {A
" {A

11=0
21=0

, 3} ﬂe@ﬁ shortest path length is]
17

not decreased

2-opt and path count index

One 2-opt step removes two edges
and then adding two edges

=» we can calculate changes in

shortest path lengths (and hence
ASPL and degree) as total of
changes by four operations

00

* We can complete these operations
only using local information without
touching the entire graph

=» efficient even for large graphs -

o

Why it gives only estimation?

- Because we have limitation in path length
counted in path count index

node B and F (with L,.,= 3)

* {B,
* {B,
* {B,

= 1}=0
= 21=0
=3}1=1->0

[no non-zero entry for B-F - we assume L, _ +1is]
19

the shortest path length (this may incorrect!)

How to decide L., ?

L,... IS @ parameter to control tradeoff between accuracy
and performance

— larger L, increases accuracy

— smaller L., reduces overhead in memory size and
computation cost

L., equal to or slightly less than the diameter of the
graph is a good choice for many cases

(n, d) current lower bound
diameter diameter L max

100k, 20
100k, 11 6 5 4
100k, 7 8 7 7

10k, 3 15 12 14 20

Our approach

start from a
random graph

;/LA
<

revert

apply random {f\

modification

}
estimation-based
optimization loop

l

fully calculate
objective functions

improved?

S

apply random
modification

\ 4

revert

calculate
light-weight

estimation of
objective functions

no

es

[

do full check occasionally
e.g. once per 1,000 updates

21

metaheuristics

* based on (not-sophisticated) simulated
annealing

— if a better solution is not found after T trials (T: a pre-
defined threshold), we accept a new solution that
(slightly) worsen the objective functions

22

Optimization in edge selection for 2-opt

* |In graph, each edge has different relative
importance on ASPL and degree (e.g. edge
betweenness centrality)

- Randomly selecting two edges to remove in a 2-
opt trial may remove an important edge

—> such 2-opt trial will not be successfully

23

Sort-based edge selection for 2-opt

. select M edges randomly

. for each edge, calculate the change (increase)
In the objective function when removing the
edge using path count index

. sort M edges by the changes

. try 2-opt only for pairs selected from m (m < M)
edges having relatively low importance

— e.g.m=M/4 - the number of pairs becomes only
1/16 (1/42)

24

Implementation

Implemented in C++

full computation of node-to-node distances
employs pruned landmark labeling [1] library with

minor modifications (https://qgithub.com/iwiwi/pruned-
landmark-labeling)

— this library is not originally designed for all pairs
distances computation
* (mostly) not parallelized!

— only rarely-executed full computation of node-to-node
distances is parallelized using OpenMP

[1] Takuya Akiba et al., Fast exact shortest-path distance queries on 25
large networks by pruned landmark labeling, SIGMOD '13

Performance

» For large graphs (e.g. 100k-node configurations
of GraphGolf 2016), the performance
Improvements are quite large since my algorithm
reduces the computational complexity

— naively computing all node-to-node distances of one
graph (n=100k, d=20) takes more than 2 hours with 8

threads

— one 2-opt trial with path count index takes about 0.1
sec (since we do not need to access the entire graph)
=» speed up in order of 10°

26

Performance

* From submission history of GraphGolf 2015 (n=10k, d=64)

0.05

0.045

S 0.04
o
(@)}

e 0.035
@]
©

g 0.03
S

£ 0.025
-

& 0.02
<
C

P 0.015
[

2 0.01
)
>

2 0.005
Q.
E

0

naive local search + path count index + sorting-based + other tuning winner
(Oth week) (1st week) selection (4th week) (20th week) (20th week)
o Y J/

my submissions 21

Memory consumption
for path count index

* The number of paths of length L between two nodes is

up to
1 for L=1
dx(d — 1)t?2 for L>1

* For example, the entry of path count index for one node
pair with d =3 and L,,,, = 3 can fit in one byte
— L=1 (up to 1 path): 1 bit
— L=2 (up to 3 paths): 2 bits
— L=3 (up to 6 paths): 3 bits
=» the total size of the path count index is
nxn

2

Xentry_size

28

Memory size optimization

* Problem:
entry size may become too big for large d and L,,,,

* e.g.ford =64
— L=1 (up to 1 path): 1 bit
— L=2 (up to 64 paths): 6 bits
— L=3 (up to 4032 paths): 12 bits
— L=4 (up to 254k paths): 18 bits

29

Memory size optimization

* Problem:
entry size may become too big for large dand L.,

- e.g.ford =64
— L=1 (up to 1 path): 1 bit

— L=2 (up to 64 paths): 6 bits - 4 bits
— L=3 (up to 4032 paths): 12 bits > 4 bits i
— L=4 (up to 254k paths): 18 bits > 4 bits

we limit
up to 4 bits per L

=» having the multiple paths of the same length is
redundant and should not happen to achieve
smaller ASPL

=»in random graphs, large path counts in the path
count index were rarely observed 20

Total size of path count index
for graph golf

entry size_ | _total size |

100k 20 16 bit 10 GB
100k, 11 4 16 bit 10 GB - 2016
100k, 7 7 32 bit 20 GB)
10k, 64 2 8 bit 50 MB)
>~ 2015
10k, 3 14 64 bit 400 MB

* Note that, in the current implementation, we use 2x larger memory
compared to the above size; we store the same data for (/, j) and
(j, /) to avoid conditional branch overheads

31

Reducing diameter

* In three categories, we won by a smaller diameter (not
by a smaller ASPL)
— n=1800/d=7 (2016), n=100k/d=11 (2016), n=4096/d=3 (2015)

1800 nodes, degree 7

Diam. Diam. ASPL

Rank Author E ASPL | Improve Info. Date (UTC) Week
gap gap
2016-06-26
* 1 H. Inoue 5)4.07751 1 0.27596 0.02680 & 17:09:03 25
2 Nobushimi 6 4.12909 2 032754 001323 2 S e 25

B 04:32:02

=» To reduce the diameter, we employ another objective

function in the optimization
32

Objective function for reducing diameter

« We focus on “number of node pairs whose distance is
equal to the diameter” (p)

— p becomes 0 =» diameter is reduced by 1

* We can use p as the objective function of the
optimization instead of ASPL

— base objective function: 100000k + /
(k: diameter, [: ASPL)

— objective function for diameter: 100000k + p

* We can efficiently calculate p from the path count index
ifL,.., =k 33

Entire optimization process

* Optimizing p typically worsen ASPL while optimizing
ASPL (gradually) reduces p

* The entire optimization process using two objective
functions are as follow:

1. We start optimization for ASPL

2. If p becomes relatively small (depends on graph
sizem but typically less than 100~1,000), we
manually switch the objective function for diameter
based on p

3. We go back to the normal objective function after
getting a smaller diameter (i.e. p becomes 0)

34

Diameter and ASPL

=>»in some categories, | submitted two final solutions:
one with best diameter and one with best ASPL

100000 nodes, degree 11

Diam. iam.
Rank Author kl ASPL | Sl e Improve Info. Date (UTC) Week

gap gap

* 1 H. Inoue O 5.14685 1 028260 000392 @R fg?ﬁﬂz% 25
2 H. Inoue 7 2 027934 000459 OB fg?f{,ofs'% 25

35

Summary

* We introduced Path Count Index, which maintains the
number of paths for all node pairs and path lengths

 We use Path Count Index for:

— light-weight estimation of changes in shortest path
length

— efficient selection of target edges for 2-opt method

— counting the number of node pairs having the
distance equal to the diameter

» Since Path Count Index is a simple and flexible data
structure, it will be potentially valuable for other
operations with a dynamic graph

36

Backup

37

minor optimizations

* Try both of two ways of adding new edges in
one 2-opt step

— we need to pay the cost of edge removal only
once for two trials

e o

38

