
1

Efficient Optimization of Diameter and 
Average Shortest Path Length of a Graph 

using Path Count Index

Hiroshi Inoue
IBM Research – Tokyo



My results in GraphGolf

2

2015

2016



Overview

• Problem to solve
– Optimization problem of finding a graph with 

smaller diameter and ASPL (average shortest 
path length) for given order (number of nodes) 
n and degree d

• My Approach
– Local search with light-weight estimation of 

objective functions; naively calculation of 
objective functions is too costly for large 
graphs 

3



Optimization process overview

4

start from a 
random graph

apply random 
modification

calculate objective 
functions

improved?

revert

no yes



Optimization process overview

5

start from a 
random graph

apply random 
modification

calculate objective 
functions

improved?

revert

e.g. 2-opt method

A B

C D

A B

C D

no yes



Optimization process overview

6

start from a 
random graph

apply random 
modification

calculate objective 
functions

improved?

revert

no yes

1. calculate shortest path 
for all node pairs
(e.g. using Floyd–

Warshall algorithm)

2. obtain degree and 
ASPL from 1.



Problem with large graphs

7

start from a 
random graph

apply random 
modification

calculate objective 
functions

improved?

revert

no yes

1. calculate shortest path 
for all node pairs
(e.g. using Floyd–

Warshall algorithm)
O(n3) è too costly for 

large graphs
2. obtain degree and 

ASPL from 1.

n: number of nodes



estimation-based
optimization loop

Our approach

8

start from a 
random graph

apply random 
modification

fully calculate 
objective functions

improved?

revert

no yes



estimation-based
optimization loop

Our approach

9

start from a 
random graph

apply random 
modification

fully calculate 
objective functions

improved?

revert

no yes

apply random 
modification

calculate 
light-weight 
estimation of 

objective functions

improved?

revert

no

yes

updated t
times?

yes

no

do full check occasionally
e.g. once per 1,000 updates



How to estimate?

• what we actually need is:
– not the current value of the objective functions 

(i.e. the diameter and ASPL) 
L need to process the entire graph 
è prohibitively costly for large graphs

– but only the changes in the objective functions 
due to a small modification made in the graph
J can be calculated from the local 
information around the modified edges

10



Index to calculate changes
• To calculate the changes in all pairs shortest path 

when adding or removing an edge, we introduce 
a new index structure called Path Count Index

• Path Count Index is a lookup table that holds
{node1, node2, path length} 

è number of paths
– 1 ≤ path length ≤	Lmax

– if Lmax = 1, Path Count Index is the adjacency matrix
– excluding paths includes a cycle

11



Example of path count index
• { A, B, 1 } = 1 (A-B)
• { A, B, 2 } = 0
• { A, B, 3 } = 1 (A-C-D-B)

– A-B-D-B and A-C-A-B 
are not counted

• { A, D, 1 } = 0
• { A, D, 2 } = 2 (A-B-D, A-C-D)
• { A, D, 3 } = 1 (A-C-E-D)

12

A B

C D

F

E



Example of path count index
• { A, B, 1 } = 1 (A-B)
• { A, B, 2 } = 0
• { A, B, 3 } = 1 (A-C-D-B)

– A-B-D-B and A-C-A-B 
are not counted

• { A, D, 1 } = 0
• { A, D, 2 } = 2 (A-B-D, A-C-D)
• { A, D, 3 } = 1 (A-C-E-D)

13

A B

C D

F

E

first non-zero entry = 
shortest path length 



Removing an edge (BàD)
• { B, D, 1 } = 1 à 0
• { A, D, 2 } = 2 à 1
• { B, C, 2 } = 2 à 1
• { B, E, 2 } = 1 à 0
• { A, C, 3 } = 1 à 0 
• { B, E, 3 } = 2 à 1 
• …
èWe calculate the changes in shortest path 
lengths while maintaining the path count index

14

A B

C D

F

E



Removing an edge (BàD)
node B and E
• { B, E, 1 } = 0
• { B, E, 2 } = 1 à 0
• { B, E, 3 } = 2 à 1

node A and D
• { A, D, 1 } = 0
• { A, D, 2 } = 2 à 1
• { A, D, 3 } = 1

15

A B

C D

F

E

shortest path length is 
increased by 1 (2à3)

shortest path length is 
not increased 



Adding an edge (BàE)
• { B, E, 1 } = 0 à 1
• { A, E, 2 } = 1 à 2
• { D, E, 2 } = 1 à 2
• { B, C, 2 } = 2 à 3
• { B, D, 2 } = 0 à 1
• { B, F, 2 } = 0 à 1 
• { A, F, 3 } = 1 à 2 
• …

16

A B

C D

F

E



Adding an edge (BàE)
node B and F
• { B, F, 1 } = 0
• { B, F, 2 } = 0 à 1
• { B, F, 3 } = 1

node A and F
• { A, F, 1 } = 0
• { A, F, 2 } = 0
• { A, F, 3 } = 1 à 2

17

A B

C D

F

E

shortest path length is 
decreased by 1 (3à2)

shortest path length is 
not decreased



2-opt and path count index
• One 2-opt step removes two edges 

and then adding two edges 
è we can calculate changes in 

shortest path lengths (and hence 
ASPL and degree) as total of 
changes by four operations

• We can complete these operations 
only using local information without 
touching the entire graph

è efficient even for large graphs 18

A B

C D

A B

C D

A B

C D



Why it gives only estimation?
• Because we have limitation in path length 

counted in path count index

node B and F (with Lmax= 3)
• { B, F, 1 } = 0
• { B, F, 2 } = 0
• { B, F, 3 } = 1 à 0

19

A B

C D

F

E

no non-zero entry for B-F à we assume Lmax+1 is 
the shortest path length (this may incorrect!)



How to decide Lmax?
• Lmax is a parameter to control tradeoff between accuracy 

and performance
– larger Lmax increases accuracy 
– smaller Lmax reduces overhead in memory size and 

computation cost
• Lmax equal to or slightly less than the diameter of the 

graph is a good choice for many cases

20

(n, d) current
diameter

lower bound 
diameter Lmax

100k, 20 5 4 4
100k, 11 6 5 4
100k, 7 8 7 7
10k, 3 15 12 14



estimation-based
optimization loop

Our approach

21

start from a 
random graph

apply random 
modification

improved?

revert

no yes

apply random 
modification

calculate 
light-weight 
estimation of 

objective functions

improved?

revert

no

yes

updated t
times?

yes

no

do full check occasionally
e.g. once per 1,000 updates

fully calculate 
objective functions



metaheuristics
• based on (not-sophisticated) simulated 

annealing
– if a better solution is not found after T trials (T: a pre-

defined threshold), we accept a new solution that 
(slightly) worsen the objective functions

22



Optimization in edge selection for 2-opt

• In graph, each edge has different relative 
importance on ASPL and degree (e.g. edge 
betweenness centrality)

• Randomly selecting two edges to remove in a 2-
opt trial may remove an important edge 
à such 2-opt trial will not be successfully

23



Sort-based edge selection for 2-opt

1. select M edges randomly
2. for each edge, calculate the change (increase) 

in the objective function when removing the 
edge using path count index 

3. sort M edges by the changes
4. try 2-opt only for pairs selected from m (m < M) 

edges having relatively low importance
– e.g. m = M / 4 à the number of pairs becomes only 

1/16 (1/42)

24



Implementation
• Implemented in C++
• full computation of node-to-node distances 

employs pruned landmark labeling [1] library with 
minor modifications (https://github.com/iwiwi/pruned-
landmark-labeling)
– this library is not originally designed for all pairs 

distances computation
• (mostly) not parallelized!

– only rarely-executed full computation of node-to-node 
distances is parallelized using OpenMP

25[1] Takuya Akiba et al., Fast exact shortest-path distance queries on 
large networks by pruned landmark labeling, SIGMOD '13



Performance
• For large graphs (e.g. 100k-node configurations 

of GraphGolf 2016), the performance 
improvements are quite large since my algorithm 
reduces the computational complexity
– naively computing all node-to-node distances of one 

graph (n=100k, d=20) takes more than 2 hours with 8 
threads

– one 2-opt trial with path count index takes about 0.1 
sec (since we do not need to access the entire graph) 
è speed up in order of 105

26



Performance
• From submission history of GraphGolf 2015 (n=10k, d=64)

27

be
tte

r

my submissions

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

naive local search 
(0th week)

+ path count index 
(1st week)

+ sorting-based 
selection (4th week)

+ other tuning 
(20th week)

winner 
(20th week)

im
pr

ov
em

en
ts

 in
 A

S
P

L 
fro

m
 ra

nd
om

 g
ra

ph



Memory consumption 
for path count index

• The number of paths of length L between two nodes is
up to

1 for L=1
𝑑× 𝑑 − 1 '() for L>1

• For example, the entry of path count index for one node 
pair with d = 3 and Lmax = 3 can fit in one byte
– L=1 (up to 1 path): 1 bit
– L=2 (up to 3 paths): 2 bits
– L=3 (up to 6 paths): 3 bits

èthe total size of the path count index is
𝑛	×	𝑛
2 ×𝑒𝑛𝑡𝑟𝑦_𝑠𝑖𝑧𝑒

28



Memory size optimization
• Problem: 

entry size may become too big for large d and Lmax

• e.g. for d = 64
– L=1 (up to 1 path): 1 bit
– L=2 (up to 64 paths): 6 bits 
– L=3 (up to 4032 paths): 12 bits
– L=4 (up to 254k paths): 18 bits

29



Memory size optimization
• Problem: 

entry size may become too big for large d and Lmax

• e.g. for d = 64
– L=1 (up to 1 path): 1 bit
– L=2 (up to 64 paths): 6 bits à 4 bits
– L=3 (up to 4032 paths): 12 bits à 4 bits
– L=4 (up to 254k paths): 18 bits à 4 bits

30

we limit 
up to 4 bits per L

èhaving the multiple paths of the same length is 
redundant and should not happen to achieve 
smaller ASPL

èin random graphs, large path counts in the path 
count index were rarely observed



Total size of path count index
for graph golf 

• Note that, in the current implementation, we use 2x larger memory 
compared to the above size; we store the same data for (i, j) and 
(j, i) to avoid conditional branch overheads

31

(n, d) Lmax entry size total size
100k, 20 4 16 bit 10 GB
100k, 11 4 16 bit 10 GB
100k, 7 7 32 bit 20 GB
10k, 64 2 8 bit 50 MB
10k, 3 14 64 bit 400 MB

2016

2015



Reducing diameter
• In three categories, we won by a smaller diameter (not 

by a smaller ASPL)
– n=1800/d=7 (2016), n=100k/d=11 (2016), n=4096/d=3 (2015)

è To reduce the diameter, we employ another objective 
function in the optimization

32



Objective function for reducing diameter

• We focus on “number of node pairs whose distance is 
equal to the diameter” (p)
– p becomes 0 è diameter is reduced by 1

• We can use p as the objective function of the 
optimization instead of ASPL
– base objective function: 100000k + l

(k: diameter, l : ASPL)
– objective function for diameter: 100000k + p

• We can efficiently calculate p from the path count index 
if Lmax≥ k 33



Entire optimization process
• Optimizing p typically worsen ASPL while optimizing 

ASPL (gradually) reduces p
• The entire optimization process using two objective 

functions are as follow:
1. We start optimization for ASPL
2. If p becomes relatively small (depends on graph 

sizem but typically less than 100~1,000), we 
manually switch the objective function for diameter 
based on p

3. We go back to the normal objective function after 
getting a smaller diameter (i.e. p becomes 0)

34



Diameter and ASPL
èin some categories, I submitted two final solutions: 
one with best diameter and one with best ASPL

35



Summary
• We introduced Path Count Index, which maintains the 

number of paths for all node pairs and path lengths
• We use Path Count Index for:

– light-weight estimation of changes in shortest path 
length

– efficient selection of target edges for 2-opt method
– counting the number of node pairs having the 

distance equal to the diameter
• Since Path Count Index is a simple and flexible data 

structure, it will be potentially valuable for other 
operations with a dynamic graph

36



Backup

37



minor optimizations
• Try both of two ways of adding new edges in 

one 2-opt step
– we need to pay the cost of edge removal only 

once for two trials

38

A B

C D

A B

C D

A B

C D


