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Abstract. In this talk, we present an efficient method to find an undirected and 
unweighted graph having a smaller diameter and a shorter average shortest path 
length (ASPL) with given order and degree. For this problem, local search is one 
of the most common techniques to find a better solution. However, due to the 
high computation cost of the objective functions (diameter and ASPL of a graph), 
the naive local search is not practical for large graphs. Our proposed technique 
reduces the computation cost drastically by using alternative objective functions 
that estimate the real objective functions. The key for the higher performance is 
that what we actually need for the local search is not the diameter and ASPL of 
the graph, but the changes of them due to a small modification applied for the 
graph; the changes can be calculated using only the local information around the 
modified edges without involving the whole graph. To calculate the changes 
without fully recomputing the node-to-node distances, a new data structure called 
Path Count Index is introduced. Our technique accelerated the local search sig-
nificantly (by order of 105 in maximum). Although the Path Count Index con-
sumed additional memory space, it was possible to execute the local search for 
graphs with up to 10,000 nodes on a commodity PC with 4 GB of system 
memory. 

1 Introduction 
Local search is one of the most common heuristic optimization methods that can be 
applicable for wide range of combinational optimization problems including the or-
der/degree problem of GraphGolf. The basic approach of the local search is quite sim-
ple: 1) make a small modification to the current solution, e.g. with 2-opt method in 
graph problems, 2) compute the objective function for the modified solution, 3) take 
the modified solution as the current best solution if the objective function is improved. 
If the objective function is not improved revert the modification. In the order/degree 
problem, however, the naive local search is not practical for large graphs due to the 
high computation cost of the objective functions (diameter and ASPL of a graph). Cal-
culating these objective functions require all pairs shortest path information whose 
computation cost is O(𝑛#) by Floyd–Warshall algorithm. Here 𝑛 shows the number of 
nodes in the graph. For example, with the largest graph size of GraphGolf this year, 𝑛 
= 100,000, our implementation takes about two hours to compute the all pairs shortest 
path of a graph using eight threads and is too slow to use in the local search. Hence, it 
is critical to reduce the computation cost of the objective functions to efficiently find a 



graph having smaller diameter and ASPL. The proposed technique reduces this com-
putation cost drastically by using lighter-weight alternative functions that give mostly 
accurate estimates for the real objective functions.  

2 Path Count Index 
The proposed optimization method speeds up the local search especially for large 
graphs by reducing the computation cost of the objective function. The key for the 
higher performance is that what we actually need for the local search is not the current 
value of the objective functions (i.e. the diameter and ASPL) for the graph, but the 
changes in the objective functions due to a small modification made in the graph. Since 
the changes can be calculated from the local information around the modified edges 
without involving the entire graph, it is quite efficient for large graphs compared to 
recomputing the objective functions. To compute the changes without fully recompu-
ting the node-to-node distances, a new data structure called Path Count Index is intro-
duced. 

The Path Count Index is a table that holds the number of paths for all combinations 
of {source node, destination node, path length}. We limit the path length in the table 
up to the predefined threshold Lmax and we don’t count paths that include a cycle. Ob-
viously, the shortest path length between two nodes can be easily obtained from the 
Path Count Index by looking up the non-zero entry having the shortest path length. If 
there is no non-zero entry for the given node pair, we assume that the shortest path 
length is Lmax +1. This simple table is used to compute the changes in the diameter and 
the ASPL when an edge is added to or removed from the graph as follow. When adding 
an edge to the graph, we enumerate all paths newly created and update the Path Count 
Index. While updating the Path Count Index for each new path, we check whether this 
new path is the shortest path between the two nodes. If the new path is the shortest path, 
the difference between the previous and the new shortest paths is the reduction in the 
total shortest path length. We execute similar steps while removing an edge from the 
graph; we can easily calculate the increases in the total shortest path length. This infor-
mation is enough to compute the changes by 2-opt; one step of 2-opt just removes two 
edges and adds two edges. This computation is an estimation of the change because we 
limit the maximum path length stored in the Path Count Index to limit the overhead in 
both memory and CPU time for bookkeeping. But we empirically found that this esti-
mation works well in random graphs with Lmax equal to or slightly less than the diameter 
of the graph. If we set Lmax equal to (or larger than) the diameter of the current graph, 
we can detect the changes in the diameter while computing the changes in the total path 
length at the same time.  

3 Implementation and Performance 
We implemented this approach in C++. Each entry of the Path Count Index is limited 
to up to 64-bit and we pack entries for all path lengths by using bit operations. The 
current implementation is not parallelized for all part except for the rarely executed 
exact computation of the node-to-node distances. The talk will cover more detail of the 
implementation including additional optimization techniques and meta heuristics. 
Though the Path Count Index consumed additional memory space, it was possible to 



execute the local search with the Path Count Index for graphs with up to 10,000 nodes 
on a commodity PC with 4-GB memory and up to 100,000 nodes on a machine with 
64-GB memory. The improvements in performance were impressive; for largest graph 
size of this year 𝑛 = 100,000 nodes and degree d = 20, for example, the execution time 
of one 2-opt operation reduced from more than 10 hours to about 0.1 sec (speed up in 
order of 105) using one thread.  

Although we introduce the Path Count Index for the order/degree problem, we ex-
pect that our base idea is potentially useful for wider range of problems on dynamic 
graphs. 


