
Improving the Performance of Trace-based
Systems by False Loop Filtering

Hiroshige Hayashizaki
IBM Research - Tokyo

1623-14 Shimotsuruma, Yamato,
Kanagawa, Japan 242-8502

hayashiz@jp.ibm.com

Peng Wu
IBM Research - Watson Research Center

P.O. Box 218, Yorktown Heights,
NY, USA 10598

pengwu@us.ibm.com

Hiroshi Inoue
IBM Research - Tokyo

1623-14 Shimotsuruma, Yamato,
Kanagawa, Japan 242-8502

inouehrs@jp.ibm.com

Mauricio J. Serrano
IBM Research - Watson Research Center

P.O. Box 218, Yorktown Heights,
NY, USA 10598

mserrano@us.ibm.com

Toshio Nakatani
IBM Research - Tokyo

1623-14 Shimotsuruma, Yamato,
Kanagawa, Japan 242-8502

nakatani@jp.ibm.com

Abstract
Trace-based compilation is a promising technique for language
compilers and binary translators. It offers the potential to ex-
pand the compilation scopes that have traditionally been limited
by method boundaries.

Detecting repeating cyclic execution paths and capturing the de-
tected repetitions into traces is a key requirement for trace selec-
tion algorithms to achieve good optimization and performance with
small amounts of code. One important class of repetition detection
is cyclic-path-based repetition detection, where a cyclic execution
path (a path that starts and ends at the same instruction address) is
detected as a repeating cyclic execution path.

However, we found many cyclic paths that are not repeating
cyclic execution paths, which we call false loops. A common class
of false loops occurs when a method is invoked from multiple call-
sites. A cycle is formed between two invocations of the method
from different call-sites, but which does not represent loops or re-
cursion. False loops can result in shorter traces and smaller compi-
lation scopes, and degrade the performance.

We propose false loop filtering, an approach to reject false loops
in the repetition detection step of trace selection, and a technique
called false loop filtering by call-stack-comparison, which rejects a
cyclic path as a false loop if the call stacks at the beginning and the
end of the cycle are different.

We applied false loop filtering to our trace-based JavaTMJIT
compiler that is based on IBM’s J9 JVM. We found that false
loop filtering achieved an average improvement of 16% and 10%
for the DaCapo benchmark when applied to two baseline trace
selection algorithms, respectively, with up to 37% improvement
for individual benchmarks. In the end, with false loop filtering, our
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trace-based JIT achieves a performance comparable to that of the
method-based J9 JVM/JIT using the corresponding optimization
level.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers

General Terms Algorithms, Performance

Keywords Trace-based Compilation, Trace Selection, Repetition
Detection

1. Introduction
Trace-based compilation has been explored in binary translation
systems [1, 7, 8], lightweight JIT for embedded JVMs [12, 20],
and more recently in compilers for dynamically typed languages
such as JavaScript [4, 13], Lua [17], and Python [6]. In a trace-
based compiler, a trace, typically defined as a single-entry multiple-
exit region formed from executed instructions, is the basic unit for
compilation. This is the most distinctive aspect of a trace-based
compiler. In this paper, we start with trace selection, the process
that forms traces out of hot execution paths, and focus on improving
the steady-state performance of trace-based compilation systems by
improving the trace selection algorithms.

All trace selection algorithms aim to detect repeating cyclic
execution paths (or repetitions) from runtime execution informa-
tion (repetition detection), and capture the detected repetitions into
traces, typically by terminating traces when a repetition is detected.
By doing so, a trace can capture a large amount of computation in
a compact form, which leads to good space efficiency and good
optimization.

Repetition detection algorithms used in existing trace selection
algorithms fall into the following three categories:

• Stop-at-backward-branch repetition detectors [1] consider ev-
ery backward branch as an indicator of a repeating cyclic exe-
cution path, and terminate a trace at every backward branch.

• Cyclic-path-based repetition detectors [6, 15, 18] consider an
execution sequence as a repeating cyclic execution path when
the sequence is cyclic, that is, the sequence starts and ends at
the same program counter (PC).



1: void f(){
2: for(A){
3: g();
4: B;
5: g();
6: C;
7: }
8: }
9: void g(){

10: P;
11: }

(a) Program 1 (b) CFG of
Program 1

(c) Trace 1A
(without false
loop filtering)

(d) Trace 1B
(with false

loop filtering)

Figure 1. False loop and false loop filtering

• Trace selection algorithms with static-scope-based repetition
detectors [4, 11–13, 17] leverage the information about the
program structures such as loops and methods, and construct
a trace starting from a loop header and spanning the loop body
to capture repeating cyclic execution paths.

While static-scope-based repetition detectors have worked well
in recent trace compilers, in this paper, we focus on cyclic-path-
based repetition detectors, because they can achieve high perfor-
mance and are applicable to a wide variety of trace-based systems
including binary tracing that static-scope-based repetition detectors
may not be suitable for.

The False Loop Problem
While cyclic-path-based repetition detectors detect cyclic execu-
tion paths and capture such paths into traces, they do not always
detect repeating cyclic execution paths. Consider the example in
Figure 1. Suppose a trace starts from instruction P of method g that
is called by method f at Line 3. The execution goes as follows:

1. execute P

2. return to method f

3. execute B

4. invoke method g (at Line 5)

5. execute P

At Step 5, a cyclic execution path P-B-P (from Step 1 to Step 5)
is detected, and P-B-P is formed into a cyclic trace Trace 1A as
shown in Figure 1 (c). The cyclic execution path P-B-P, however,
does not capture a real repetitive execution pattern in this example.
Consider mapping the execution sequence P-B-P-C-A-P into
trace P-B-P. The cycle in the trace is exercised exactly once and
the trace is exited when C is executed.

A better trace formation starting from P (Trace 1B) is shown
in Figure 1 (d). Trace 1B spans one iteration of a natural loop
starting from A, where the instruction sequence P-B-P-C-A-P

can be repeated many times in consecutive executions. Not only is
Trace 1B a much better target for optimization, it also incurs much
lower overhead because trace exit occurs only when the execution
finishes iterating the loop.

Intuitively, P-B-P does not represent a real repetitive execution
pattern because the cyclic path does not come from a natural loop
or a recursion, but rather is the effect of multiple invocations of the
same method on one execution path. The rest of the paper refers
to a cyclic execution path that does not represent a real repetitive
execution pattern as a false loop.

Another problem with false loops is that they might prematurely
terminate a trace that could have otherwise captured real repetitive
execution patterns. This occurs, for example, when a trace selection
algorithm terminates a trace when it finds a cyclic path in the mid-
dle of a trace, as in the Rejoined case discussed in [18]. Consider
again the example in Figure 1, and suppose the trace is recorded
from A instead. The trace A-P-B-P might be created, because the
sequence P-B-P inside the path A-P-B-P is identified as a cyclic
path, whereas A-P-B-P-C-A is a better structure.

False Loop Filtering
In this paper, we propose false loop filtering to reject false loops in
repetition detectors and to improve the quality of the traces.

Various heuristics can be used to detect false loops. We propose
a false loop filtering algorithm, named call-stack-comparison. For
a cyclic execution path, it rejects the cyclic path as a false loop
if the call stacks at the beginning and the end of the cyclic path
are different. This rejects the trace shown in Figure 1 (c), which
is a major class of false loops. This is one of the best performing
algorithms among those being tested, and the most direct and exact
solution to the false loop problem.

Using call stacks to detect false loops is based on the follow-
ing insights. Although there is only one instruction address for P in
Figure 1, there are two instances of P on the trace: P called from
Line 3 (shown in a black box) and P called from Line 5 (shown in a
slashed box). When the call stacks of two dynamic instructions are
different, the execution paths following the two dynamic instruc-
tions would diverge after some method returns (that lead to the dif-
fering callers on the call stacks). Therefore it is a strong indicator
that forming a trace out of such a cycle is unlikely to capture a long
repetitive execution sequence. Distinguishing the two instances of
P from different calling contexts results in the superior trace shown
in Figure 1 (d).

We also show an approximation algorithm that achieves almost
the same performance (at risk of a small number of false loops), and
algorithms that can be applied to systems where less information on
executed instructions is available such as binary tracing systems.

We evaluated false loop filtering on a trace-based just-in-time
compiler for Java (trace JIT) that is built on top of IBM’s J9
JVM [14]. The trace JIT supports the basic functions of the original
J9 JVM including GC, threading, exceptions, monitor events, and
JNI, as well as basic optimizations from the original method-based
JIT in J9. Details of the trace JIT are described in [16].

On the DaCapo benchmark [5, 9], we demonstrated that false
loop filtering achieved an average speedup factor of 1.16x and
1.10x, respectively, when applied to our two linear trace selection
algorithms, with a reasonable increase of code size and compila-
tion time. With our best performing trace selection configuration
with false loop filtering, the trace JIT achieved a performance com-
parable to the method JIT at the corresponding optimization levels.

Contribution and Organization
The paper makes the following contributions:

1. We describe the false loop problem in existing trace selection
algorithms and propose the concept of false loop filtering. To



the best of our knowledge, this paper is the first one that explic-
itly addresses the false loop problem in trace selection.

2. We propose a false loop filtering algorithm which we named
call-stack-comparison, and showed the impact of false loops
and false loop filtering in a real trace-based compiler.

The rest of the paper is organized as follows. Section 2 gives an
overview of trace-based systems and repetition detection. We pro-
pose false loop filtering and describe false loop filtering algorithms
in Section 3. Section 4 describes our implementation of the trace-
based system for Java. Evaluations of false loop filtering and the
trace JIT are in Section 5. Section 6 discusses the related work and
we conclude in Section 7.

2. Background
2.1 Trace-based Compilation
In a trace-based system, the basic unit for compilation and execu-
tion is a trace as opposed to the method of traditional method-based
compilers. At the heart of any trace-based system lies trace selec-
tion, the mechanisms that form traces out of executed instructions.

The next-executing-tail (NET) selection used in Dynamo [2]
pioneered many early concepts of trace selection that are still in
use today. Dynamo interprets the instruction stream until a taken
branch is encountered. The execution transfers to compiled code
if the branch target corresponds to the start of a compiled trace.
Otherwise, a counter is maintained for the target of each backward
branch and trace exiting branch, and the counter of the branch target
is incremented every time the branch is executed. When the counter
value of a branch target exceeds a threshold, a trace is recorded
from the branch target until one of these conditions is encountered:
(a) a backward branch is taken, (b) a branch whose target address
is the head of another trace is found, or (c) a maximum trace length
is exceeded.

There have been many advances in trace selection algorithms
since Dynamo. In general, a trace selection algorithm involves
these three steps.

Trace-head selection identifies a set of program counter (PC) ad-
dresses that are the likely starting points of hot regions (poten-
tial trace-heads). A potential trace-head can be the target of a
backward branch or a trace exiting branch (exit-head). The sys-
tem monitors the execution frequency of each potential trace-
head. A potential trace-head becomes a trace-head if its execu-
tion frequency reaches a predefined threshold, and trace record-
ing is started.

Trace recording forms a trace by recording every instruction1 that
follows the execution of a newly selected trace-head until a
trace termination condition is met. The recorded instructions
are stored in the trace recording buffer, and everytime an in-
struction is executed, the instruction is put into the buffer and
trace termination conditions are checked.
Trace termination conditions generally fall into the four cate-
gories:

1. when a repeating cyclic execution sequence is detected in
the trace recording buffer

2. when the recorded trace exceeds the maximum length

3. when there is an unusual or unsupported instruction se-
quence such as exception handling

1 The unit for trace recording and trace selection can be an instruction,
a (taken) branch, or a basic block. In this paper, our description uses an
instruction as the unit, but can be naturally applied to other units.

4. when other heuristics apply, such as a rule terminating a
trace at the head of another trace (stop-at-existing-head)

Trace grouping combines multiple individually recorded traces
into one trace (group) for compilation [4, 11, 12, 17]. Trace
grouping requires multiple recording and sometimes recompila-
tion. Grouped traces often have a complex topology that allows
split paths, such as trees or general graph. Some trace selection
algorithms do not involve trace grouping.

Once a trace or a trace group is formed and compiled, the
generated code is stored in the trace cache. A compiled trace is
dispatched either from the interpreter or at the exit point of another
trace. Trace dispatch often involves looking up a trace based on
the original PC of the next instruction. This overhead is unique
to trace-based systems, but can be reduced by several techniques
such as trace linking [2] for trace exits with very few targets.
When the execution exits from a trace, there is a trace transition.
For example, the execution may return to the interpreter or jump
directly to the next compiled trace.

2.2 Repetition Detection in Trace Selection
Every trace selection algorithm uses heuristics to detect repeating
cyclic execution paths (or repetitions) during trace recording. We
refer to such mechanisms as repetition detection. Repetition detec-
tion is a critical element of trace selection for these reasons.

Time and space efficiency. Since traces are formed from runtime
executions, capturing repeating cyclic execution paths into a
compact form is key to the time and space efficiency of a trace
selection algorithm.

Trace quality. Repeating cyclic execution paths typically repre-
sent a large amount of computation. Capturing such execution
patterns into one trace reduces the runtime overhead due to trace
exits, and improves code quality by exposing a larger compila-
tion scope to the compiler.

There are three approaches to repetition detection in existing trace
selection algorithms: stop-at-backward-branch, cyclic-path-based,
and static-scope-based repetition detection.

2.2.1 Stop-at-backward-branch Repetition Detector
The NET selection [2] uses backward branches as an indicator of
a repeating cyclic execution pattern, where a trace is terminated at
a backward branch (stop-at-backward-branch) during trace record-
ing.

Stop-at-backward-branch has good time and space-efficiency,
but it tends to terminate traces before repeating cyclic execution
paths are detected [15]. In many cases, it does not form traces that
are cyclic. This repetition detector has been largely superseded by
the cyclic-path-based repetition detector.

2.2.2 Cyclic-path-based Repetition Detector
A cyclic path refers to an execution path that starts and ends at the
same PC. A cyclic-path-based repetition detector uses cyclic paths
detected at trace recording as the indicator of a repeating cyclic
execution pattern.

A cyclic-path-based repetition detector was first proposed for
the last-execution-iteration (LEI) selection method [15] and sub-
sequently used in PyPy [6] and by Merrill et al. [18]. When a PC
appears twice in the trace recording buffer, the LEI selection creates
a trace corresponding to the path between the repeating PCs.

The main benefit of cyclic-path-based repetition detection is its
simplicity and flexibility. It can be applied to a wide variety of
trace selection algorithms, tracing systems and target workloads.
The main drawback is the accuracy of the repetition detection. This
is because not every cyclic path represents a true repeating cyclic



execution pattern, as shown in Section 1. When a repetition detector
terminates a trace due to a falsely detected repeating pattern, it hurts
the selection algorithm’s ability to form long traces.

2.2.3 Static-scope-based Repetition Detector
A static-scope-based repetition detector leverages the information
about the static scopes and program structures (such as loops and
methods), and constructs a trace starting from a loop header and
spanning the loop body to capture repeating cyclic execution paths.
The traces resemble loop structures in the source program. This
is based on the observation that loops are the primary sources of
repeating cyclic execution paths.

HotpathVM [12] was the first to use a static-scope-based repe-
tition detector. The system forms traces in a tree topology, where
the root is a loop header and the branches are different recorded
execution paths that start from the loop and end when the execu-
tion (1) returns to the loop header, (2) leaves the owning method
of the loop header (stop-when-leaving-method), or (3) the number
of backedges in the tree exceeds the limit. Traces formed in this
way resemble the control-flow representation of a loop region that
includes only hot execution paths and inlined methods called by
the loop. SPUR [4] and TraceMonkey [13] also use trace tree for-
mation but with some variations, such as (4) ending a trace when
leaving the loop scope (stop-when-leaving-loop) or (5) when the
stack depth of the inlined calls exceeds a threshold.

Unlike stop-at-backward-branch or cyclic-path-based repetition
detectors, static-scope-based repetition detectors do not suffer from
false loop problems. A false loop like the one shown in Figure 1
always contains a method return from the owing method of the
starting point of the false loop. Therefore, such false loops are
filtered out implicitly by the stop-when-leaving-owning-method or
the stop-when-leaving-loop conditions.

A static-scope-based repetition detector typically requires the
selection algorithm to form only traces starting from loop headers.
For this reason, they are most suitable to forming trace trees, where
paths along the side-branches of a loop can be incorporated into a
trace tree that is rooted at a loop header. Such trace trees are close
to traditional program representations and are typically good for
compiler optimizations and implementations.

The main limitation of a static-scope-based repetition detector
is its applicability. When a static-scope-based repetition detector is
used, the traces always start from a loop header and must fit within
the maximum trace size. For workloads that are not particularly
loop intensive, trace trees representing loops may only capture a
small fraction of the dynamic execution paths. Therefore, they are
not applicable to systems forming traces that do not start from non-
loop headers or that do not align with static program structures.
Static-scope-based repetition detectors also require knowledge of
the loops and the methods of the target programs, and thus they are
hard to apply to systems where such information is not available,
such as binary tracing systems. For these reasons, a static-scope-
based repetition detector is not a replacement for a cycle-based
repetition detector in many systems.

3. False Loop Filtering
We propose false loop filtering to improve the accuracy of cyclic-
path-based repetition detectors by rejecting the false loops de-
scribed in Section 1.

We first formalize a repetition detector and false loop filtering.
We define a repetition detector as a component that, for a given
instruction sequence insts[0, ..., n] (typically given by the trace
recording buffer) and an integer 0 ≤ s < n, determines whether
the instruction subsequence insts[s, ..., n] is a repeating cyclic ex-
ecution sequence. Typically the repetition detector is used in the
trace recording step of the trace selection algorithm, and the input

sequence for a repetition detector is a trace recording buffer. The
trace selection algorithm uses the result of a repetition detector to
determine whether or not to terminate a trace. For example, when
the repetition detector returns true for some s, the recording is ter-
minated and a trace is formed.

The parameter s indicates the starting point of a repeating cyclic
execution sequence inside the instruction sequence. We use this
formalization to support both a repeating cyclic execution sequence
starting from the head of a trace (s = 0) and the middle of a trace
(s > 0). The parameter s is given by the trace selection algorithm
that uses a repetition detector, for example by enumerating all
possible values of s or by using a fixed value s = 0.

A cyclic-path-based repetition detector without false loop filter-
ing checks whether the address of the first and the last instructions
of the subsequence are the same, as shown in Algorithm 1. If that
is the case, the repetition detector considers the sequence as a re-
peating cyclic execution path (though it can be a false loop).

Algorithm 1 Cyclic-path-based Repetition Detector without False
Loop Filtering
Input: insts[0, ..., n]: a sequence of dynamic instructions
Input: s: the candidate for the starting point of a repeating cyclic

execution sequence (0 ≤ s < n)
Output: true if the subsequence insts[s, ..., n] is a repeating cyclic

execution sequence, or false otherwise
1: if insts[n].address ̸= insts[s].address then
2: return false // Not a cyclic path
3: else
4: return true // Cyclic path
5: end if

Algorithm 2 describes a repetition detector with false loop fil-
tering. In addition to checking the instruction address at Line 1, it
further applies false loop filtering, as shown in Line 5 in Algorithm
2, to reject false loops.

Algorithm 2 isRepetitionDetected(insts[s, ...n]): Cyclic-path-
based Repetition Detector with False Loop Filtering
Input: insts[0, ..., n]: a sequence of dynamic instructions
Input: s: the candidate for the starting point of a repeating cyclic

execution sequence (0 ≤ s < n)
Output: true if the subsequence insts[s, ..., n] is a loop, or false

otherwise
1: if insts[n].address ̸= insts[s].address then
2: return false // Not a cyclic path
3: else
4: apply false loop filtering
5: if insts[s, ..., n] is a false loop then
6: return false // False loop
7: else
8: return true // True repeating cyclic execution sequence
9: end if

10: end if

3.1 Design Considerations for False Loop Filtering
In this section, we cover the basic aspects of false loop filtering.
False loop filtering can be used with trace selection algorithms in a
wide variety of systems, so different false loop filtering algorithms
can be used depending on the system requirements.

First, the false loop filtering algorithm depends on the type
of information that is available for each instruction insts[i]. For
example,

• insts[i].address: The address of the instruction.



• insts[i].isBackwardBranch: Whether or not the instruction is a
backward intra-procedural branch. This is available in most sys-
tems including binary code, but is unavailable in a few systems.

• insts[i].isMethodInvoke: Whether or not the instruction is a
method invocation.

• insts[i].isMethodReturn: Whether or not the instruction is a
method return.

• insts[i].callStack: The call stack (that is, the stack of return
addresses) at the instruction. This can be obtained via a stack
walk, or reconstructed from insts[0, .., n].isMethodInvoke, in-
sts[0, .., n].isMethodReturn, and insts[0, .., n].address, as shown
in Section 3.2.2.

• insts[i].method: the method to which the instruction belongs.

Second, the false loop filtering algorithm depends on the trace
selection algorithm being used. For example, some trace selection
algorithms always start traces from loop headers, while others can
create traces starting from arbitrary program points.

Third, the precision of false loop filtering algorithms affects the
performance and code size.

• Accepting false loops as true repetitions has a large negative
impact on the performance (though it probably leads to smaller
code), because the false loops terminate traces prematurely and
are suboptimal for compiler optimizations. In this case, a true
repeating cyclic execution path is split into multiple traces, and
trace exits occur at every iteration.

• Missing true repetitions (that is, considering true repeating
cyclic execution paths as a non-loop sequence or a false loop)
has a relatively small negative impact in the performance.
Even when true repeating cyclic execution paths are missed,
trace recording continues and a longer trace may be created in
most trace selection algorithms (unless the trace recording is
aborted), and thus trace exits are not so frequent compared to
accepting false loops. This, however, leads to larger amounts of
code.

3.2 False Loop Filtering Algorithms
We propose a false loop filtering algorithm, call-stack-comparison,
designed for systems where all of the information described in
Section 3.1 is available:

#1: Call-stack-comparison considers a cyclic execution sequence
as a repeating cyclic execution path if the top k elements of
the call stacks at the first and last instructions are the same, in
addition to the instruction addresses. The number k is set so
that this algorithm can support both natural loops and recursive
calls. We describe this in more detail in Section 3.2.1.
We think this is a direct and accurate way to detect false loops
such as the one shown in Figure 1. This call-stack-comparison
algorithm is also one of the best false loop filtering algorithms
among the false loop filtering algorithms we tested. The call-
stack-comparison algorithm achieved the best steady-state per-
formance among all of them, and the generated binary code size
was the smallest among the algorithms with the best steady-
state performance. Therefore, we use this as the default false
loop filtering algorithm.

We can design simpler approximation algorithms with similar
performance and small number of false loops. Here is one example
of such approximation algorithms:

#2: The one-backward-branch-in-head-method algorithm con-
siders a cyclic execution path as a repeating cyclic execution
path if it contains at least one backward branch in the path

and the backward branch belongs to the same method as the
first instruction of the path. This is based on the intuition that
a repeating cyclic execution path in a loop contains at least
one backward branch in the path. Formally, the algorithm con-
siders insts[s, ...n] as a repeating cyclic execution path if in-
sts[s].address = insts[n].address and, for some t such that s ≤
t < n, insts[t].isBackwardBranch is true and insts[t].method =
insts[s].method.
This algorithm requires a separate mechanism to detect recur-
sive method calls, and cannot filter out some false loops. How-
ever, this worked well when applied to our trace selection algo-
rithm and the benchmark we used, as shown in the evaluations.
This algorithm does not require call stack information, and
thus the implementation can be simpler than the call-stack-
comparison algorithm.

These two algorithms require information related to methods
and call stacks. In some systems such as binary tracing in some
architectures, such information might be not directly available. In
such systems, one approach is to obtain the information about
methods by approximation or heuristics. For example, when the in-
struction set architecture has explicit call and/or return instructions
such as IA-32, or when we can assume a standard binary appli-
cation interface (that is, a standard calling convention) and typical
code patterns for method invocation and return, then we might be
able to infer method calls and returns. This approximation is safe,
because the approximation only affects the precision of false loop
filtering, and does not affect the correctness of program execution
itself.

Another approach is to use false loop filtering algorithms that
do not use information about methods. We present two false loop
filtering algorithms below that do not require such information. We
can use these algorithms, at the cost of performance or code size.

#3: Repeated-twice considers an instruction sequence as a repeat-
ing cyclic execution path if the sequence is executed twice
consecutively. Formally, the algorithm consider insts[s, ...(n+
s)/2] as a repeating cyclic execution path if, for all i such
that s ≤ i ≤ (n + s)/2, insts[i].address = insts[i + (n −
s)/2].address.
This algorithm requires only the instruction address informa-
tion and thus is applicable broadly. It incurs no false loops, be-
cause detected repeating paths can be repeated at least twice.
However, it tends to create longer traces and results in larger
amounts of code, as shown in the evaluations.

#4: End-with-backward-branch considers an instruction sequence
as a repeating cyclic execution path if the sequence goes back
to the head at a backward branch. In other words, this checks
repeating cyclic execution path only at backward branches.
Formally, the algorithm considers insts[s, ...n] as a repeating
cyclic execution path if insts[s].address = insts[n].address and
insts[n− 1].isBackwardBranch is true.
This is intuitive, but we show this also leads to larger code
size in the evaluations. It can also accept false loops, and it
also misses repeating cyclic execution paths not starting from
backward branch targets.

3.2.1 Call-stack-comparison False Loop Filtering
We show the call-stack-comparison false loop filtering algorithm
in Algorithm 3. Our algorithm first compares the addresses of the
instruction at the end (insts[n]) and possible start instruction of
a repeating cyclic execution path (insts[s]) at Line 1. If they are
the same, the algorithm compares the top k elements of the call
stacks of both instructions (Line 10). If the call stacks are the same,



Figure 2. Examples of call stack comparison

our algorithm considers it as a repeating cyclic execution path, or
otherwise rejects it as a false loop.

Algorithm 3 Cyclic-path-based Repetition Detector with False
Loop Filtering by call-stack-comparison
Input: insts[0, ..., n]: a sequence of dynamic instructions
Input: s: the candidate for the starting point of a repeating cyclic

execution sequence (0 ≤ s < n)
Output: true if the sequence is a repeating cyclic execution

sequence, or false otherwise
1: if insts[n].address ̸= insts[s].address then
2: return false
3: else
4: // false loop filtering begins
5: // insts[i].callStack is the call stack at insts[i].
6: m = mins≤i≤n insts[i].callStack.depth
7: k1 = insts[s].callStack.depth−m
8: k2 = insts[n].callStack.depth−m
9: k = min(k1, k2)

10: if the top k elements of call stacks insts[s].callStack and
insts[n].callStack are the same then

11: return true
12: else
13: return false // false loop
14: end if
15: end if

Figure 3. Call stack building

By comparing only the top k elements and calculating k as
shown in Lines 6-9, our algorithm can detect repeating cyclic exe-
cution paths in non-recursive loops and recursive method calls. For
non-recursive loops, our partial call stack comparison is the same
as comparing the entire call stacks. For recursive loops, call stack
elements added by recursive calls are not compared and thus recur-
sive loops can be detected as true loops.

Figure 2 shows examples of call stack comparisons, with the
values of k, k1, k2 and m. Examples of non-recursive loops are
shown in Figures 2 (a), (b), and (c) (for the same program as in
Figure 1), and examples of recursive calls are shown in Figures 2
(d), (e), and (f). Figures 2 (b), (c), (e), and (f) show execution paths
on the left and the call stacks for each instruction on the right (the
rightmost element is the top element in the stack).

The top k call stack elements being compared are shown in
grey boxes. Call stack elements added due to recursive calls (for
example, the Cs in Figures 2 (e) and (f)) are not compared.

In fact the call stacks are longer in actual execution (there are
call stack elements corresponding to the callers of method f), but
only the relevant parts are shown in Figure 2, and the irrelevant
parts are shown as boxes with “...”. The irrelevant parts are
always excluded from the top k elements compared.

Each element of a call stack contains a return address. For
example, the top element B of the call stack “...-B” in the first
row of Figure 2 (b) means that control will return to B after the next
method return.

3.2.2 Incremental Call Stack Generation
Call stack information (insts[i].callStack) can be obtained by doing
a stack walk when recording each instruction insts[i]. It can also be
incrementally reconstructed using these two types of information
for each instruction insts[i].

1. the instruction address (insts[i].address) and

2. the instruction type, that is, whether the instruction is a method
invocation, method return, or other (insts[i].isMethodInvoke or
insts[i].isMethodReturn).

We do not need to start our call stack generation from a known
stack state, but rather can infer it as we encounter new instructions.

Figure 3 (a) shows the instruction sequence P-B-P-C-A-P for
the sample code shown in Figure 1, starting with the first instruction



in Row 0. Figure 3 (b) shows call stacks for each instruction that
we are going to reconstruct.

We do not initially know the call stack state at the first instruc-
tion P. We will later find it is “...-B”, because the control returns
to B at the return instruction from P to B. This method return im-
plies that the caller of P was actually B, so we can update the call
stack information. There is still no information on the callers of B.

We can determine the call stack at Row 2 by pushing C onto
the call stack at Row 1, because we know the instruction at Row
1 (B) is a method invocation and C is the return address (C is the
next instruction of B). Similarly, we can calculate the call stack at
Row 3 by simply popping one element from the call stack at Row
2, because we know the instruction at Row 2 (P) is a method return.

Formally, Algorithm 4 shows the algorithm to incrementally
build the call stacks from a given sequence of instructions.

Algorithm 4 Call Stack Building
Input: insts[0, ..., n]: a sequence of instructions, where address,

isMethodInvoke, and isMethodReturn information is available.
Output: tree: a call stack tree
Output: insts[0, ..., n].callStack: insts[i].callStack points to a

node in tree that represents the call stack at insts[i]
1: tree← a call stack tree with only one node
2: p← the root node of tree
3: for i = 0 to n− 1 do
4: insts[i].callStack← p
5: if insts[i].isMethodReturn then
6: if p.parent does not exist then
7: p.address← insts[i+ 1].address
8: create a new parent node newp
9: p.parent← newp

10: end if
11: p← p.parent
12: else if insts[i].isMethodInvoke then
13: create a new child node newc
14: newc.address← address of the next instruction of insts[i]
15: // insts[i].address + 4 in a 32-bit fixed length instruction
16: newc.parent← p
17: p← newc
18: else
19: // do nothing
20: end if
21: end for
22: insts[n].callStack← p

For efficiency, we represent call stacks by nodes in a method
call tree. We define the method call tree as a directed tree where
each node has an ID (left field) and a return address value (right
field), as shown in Figure 3 (d). Edges are drawn from child to
parent (that is, callee to caller), and the root node is always “...”
to represent an irrelevant part of the call stack. A node represents
a call stack, which means that the path from the root node to that
node corresponds to a call stack. For example, Node #2 represents
the call stack “...-C”.

First, we create an initial call stack tree tree in Lines 1-2,
as shown in Row 0 in Figure 3. The p indicates the node that
corresponding to the current call stack. Then, for each instruction
i, we update tree and p and set insts[i].callStack (Lines 3-21),
according to the instruction addresses and instruction types. In
other words, at method invocation we move p to a child node
corresponding to the callee method (corresponding to pushing a
new element to the call stack), and at method return we move p to
a parent node (popping an element from the call stack). If needed,
a new node is created. For each i, the call stack tree (at Line 4) is

shown in Figure 3 (d) Row i, where p is indicated by the grey node,
and insts[i].callStack is shown in Figure 3 (c) Row i.

The time and space complexity of this call stack building al-
gorithm is O(n), and it is independent of the maximum depth of
the call stack. Also, this algorithm collects only the necessary por-
tion of the call stacks. This can be faster and space-efficient than
recording all of the call stack elements at every instruction.

3.3 False Loop Filtering for Trace Trees
In the evaluation in Section 5, we will evaluate false loop filtering
algorithms by using them with linear trace selection algorithms.
However, false loop filtering can also be applied to the trace trees
when a cyclic-path-based repetition detector is used.

Figure 4 shows an example of the false loop problem in trace
tree formation. Here we collect the execution paths starting from
each trace head and terminated when a repeating cyclic execution
path is detected (using a cyclic-path-based repetition detector), and
merge those paths into one tree-shaped trace. We do not use the
stop-when-leaving-owning-method or the stop-when-leaving-loop
conditions.

Program 3 shown in Figure 4 (a) contains interprocedural nested
loops. The inner loop is executed more frequently than the outer
loop, so P in method g, the loop head of the inner loop, is selected
as the trace head. In cyclic-path-based repetition detectors, the se-
quences P-Q-P (a true iteration of the loop in method g), P-B-P,
and P-C-A-P (these two are false loops) are considered as cyclic
execution sequences, and Trace 3A is formed by merging them,
as shown in Figure 4 (c). However, if we can exclude false loops,
the sequences P-Q-P, P-B-P-C-A-P, P-B-P-Q-P-C-A-P,
P-B-P-Q-P-Q-P-C-A-P, ... are detected as repeating cyclic
execution sequence, and Trace 3B is formed, as shown in Figure 4
(d). The three sequences P-B-P-C-A-P, P-B-P-Q-P-C-A-P,
and P-B-P-Q-P-Q-P-C-A-P are true iterations of the loop in
method f, with zero, one, and two iterations of the inner loop are
unrolled and inlined, respectively. Trace 3B is longer and more
suitable for optimization than Trace 3A.

4. Implementation
We prototyped a trace-driven system based on IBM’s J9 JVM. The
original J9 interpreter was modified to send control-flow events
such as branches and method invocations to the trace selection
engine that forms traces out of the executed Java bytecode. Once
a trace has been recorded, it is added to a compilation queue shared
by all of the Java threads, which is compiled by a compilation
thread. To compile the traces, we extended the original method-
based JIT in J9 to take traces as the basic unit for compilation [16].

Once a trace is compiled, the binary code is placed in a global
trace cache. Dispatches to compiled code are initially done by
the interpreter that checks if the next bytecode to be executed
corresponds to the head of a compiled trace. When the execution
exits from a trace, a runtime helper is invoked to link the traces if a
compiled trace is available at the exit target.

The rest of the section discusses a few implementation details
of the system.

4.1 Interpreter event monitoring
The trace selection engine is driven by these control-flow events
generated by the interpreter.

• method invocation: when executing an invoke bytecode.
• method enter: when entering a Java method.
• method return: when executing a return bytecode or returning

from a JNI method.



1: void f(){
2: for(A){
3: g();
4: B;
5: g();
6: C;
7: }
8: }
9: void g(){
10: for(P)
11: Q;
12: }

(a) Program 3 (b) CFG of Program 3 (c) Trace 3A (without
false loop filtering)

(d) Trace 3B (with
false loop filtering)

Figure 4. False loop filtering for trace tree selection

• branch: when executing a branch bytecode (such as goto,
ifeq, or tableswitch).

• exception throw: when an exception occurs or the interpreter
executes an athrow bytecode.

• exception catch: when an exception is caught by a catch block.
• trace exit: when returning from a compiled trace to the inter-

preter (i.e., via unlinked trace exits).

For each monitored event, the interpreter invokes a call-back func-
tion to the trace selection engine with the event information and its
context, such as the current and next PCs, the caller/callee methods,
and the receiver object class.

4.2 Trace Selection
The trace selection engine is implemented as a runtime library
driven by the control-flow events described in Section 4.1. The se-
lection engine maintains a counter to track the execution frequency
for each target PC of a backward branch (at branch events) or a
trace exit (at trace exit events). Currently our trace selection engine
only creates linear traces.

When the counter of the current PC exceeds a predefined thresh-
old, the selection engine switches to trace recording mode and
records subsequent interpreter events until a termination condition
is met. Since the interpreter monitors every control-flow bytecode,
a trace of bytecodes (basic blocks) can be constructed out of the
sequence of recorded control-flow events.

The trace selection engine can be configured to use the various
subsets of trace termination conditions defined here:

1. When the repetition detector detects a repeating cyclic execu-
tion sequence

1a. that cycles back to the head of the buffer (the repetition
detector returns true for s = 0), or

1b. that cycles back to the middle of the buffer (the repetition
detector returns true for s > 0).

2. When the recorded events exceed the maximum length.

3. When there is an unusual or unsupported instruction sequence
such as

3a. an exception-throw event,

3b. certain JNI invocation event2,

3c. returning to JNI event, or

3d. an unexpected event sequence.

4. When the last basic block is the head of another existing trace
(i.e., stop-at-existing-trace-heads).

Conditions (1a) and (1b) use a repetition detector. Whether or
not to use false loop filtering in repetition detectors is another
configurable parameter of the trace selection engine. Condition
(4), stop-at-existing-trace-head, is a heuristic used in NET, LEI,
and [18] for space efficiency.

4.3 Trace JIT
To compile the traces selected by the trace runtime, we imple-
mented our trace JIT compiler by enhancing the existing (method-
based) JIT compiler in the IBM’s J9 JVM. Our trace JIT compiler
assumes the mixed execution of the interpreter and the trace JIT. It
does not support mixed execution of the method-based JIT and the
trace JIT.

The trace JIT is implemented from the same code base as the
method JIT and the interpreter. It supports the basic functions of
the method JIT including exception handling, GC, synchronization,
and JNI calls. Compilation is done by a separate dedicated thread,
similar to the method JIT.

Our trace JIT guarantees that the JVM states, such as the Java
stack and the program counter value, are compatible with the inter-
preter at the trace exit points. We do not maintain the JVM states in
the middle of the trace to improve the performance. If a stop-the-
world garbage collection begins while a Java thread is executing a
compiled trace, we reconstruct the Java stack before the garbage
collector walks the stack frames of this Java thread. We prepare the

2 We allow a small set of JNI methods in the Java standard library to be
included in traces. Invocation and return events for these JNI methods do
not terminate a trace [16].



Benchmark Description
antlr A parser generator and translator generator
bloat A bytecode-level optimizer and analyzer for Java
chart A graph plotting toolkit and pdf renderer
eclipse An integrated development environment
fop An output-independent print formatter
hsqldb An SQL relational database engine written in Java
jython A python interpreter written in Java
luindex A text indexing tool
lusearch A text search tool
pmd A source code analyzer for Java
xalan An XSLT processor

Table 1. Description of the DaCapo benchmark.

special metadata for this reconstruction at the JIT compilation time.
If an exception occurs during the execution of compiled trace, we
update the JVM states and fall back to the interpreter to handle the
exception.

Our trace compiler applies optimizations that are almost equiv-
alent to the “warm” optimization level in the existing IBM’s Java
JIT compiler. These optimizations include common subexpression
elimination, dead store elimination, dead code elimination, value
propagation, and global register allocation. Currently we only sup-
port one optimization level and we do not support recompilation.

Our trace JIT also supports trace linking optimizations to reduce
the overhead in the trace runtime. The execution jumps directly
from a trace exit to the entry point of the next trace without going
back to the interpreter if, for example, the trace exit has only one
candidate for the next program counter value.

5. Evaluation
5.1 Benchmarks and Setup
We used the DaCapo benchmark suite [5, 9] with the default data
size (-s default) to evaluate false loop filtering. Table 1 gives
a brief description of the benchmarks. We executed 10 iterations
of the long eclipse benchmark, and 25 iterations for the other
benchmarks.

The trace selection engine uses these default parameters. The
trace-head selection threshold is 500, which was determined based
on the thresholds used by the original method JIT for method
compilation. The maximum trace length is 128 basic blocks, which
was determined based on an experimental evaluation. Using these
default parameters , the coverage of traces (the ratio of dynamic
basic blocks executed in the compiled binary code of traces) was
more than 98.9% at steady-state for the DaCapo benchmarks. The
trace JIT used its highest optimization level, which is equivalent to
the warm-level optimization in the original method JIT.

To study the impact of the false loop filtering, we defined two
baseline trace selection algorithms without false loop filtering,
BASE and BASE+.

• BASE uses termination conditions (1)-(4) (defined in Sec-
tion 4.2) to model a LEI-like selection, and uses the repetition
detector without false loop filtering (Algorithm 1).

• BASE+ uses termination conditions (1)-(3) and and uses the
repetition detector without false loop filtering (Algorithm 1).
Condition (4), stop-at-existing-trace-head, is removed to allow
the creation of longer traces.

We then define two variations of the baseline selection algo-
rithms with the false loop filtering by using call-stack-comparison:

BASE BASE w/FLF BASE+ BASE+ w/FLF
Condition (1) Yes Yes Yes Yes
False loop filtering No Yes No Yes
Condition (2) Yes Yes Yes Yes
Condition (3) Yes Yes Yes Yes
Condition (4) Yes Yes No No

Table 2. Summary of trace selection algorithms

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BASE BASE

w/FLF

BASE+ BASE+

w/FLF
d

y
n

a
m

ic
 b

a
s
ic

 b
lo

c
k
s

True Loop False Loop Rejoined by False Loop Others

Figure 5. Average distribution of true-loops and false-loop-related
traces in DaCapo.

• BASE w/FLF uses termination conditions (1)-(4) and uses the
repetition detector with the false loop filtering by call stack
comparison (Algorithm 3).

• BASE+ w/FLF uses termination conditions (1)-(3) and uses
the repetition detector with the false loop filtering by call stack
comparison (Algorithm 3). This is the default trace selection
algorithm for our trace JIT.

We summarized the four trace selection algorithms in Table 2.
We also compared the trace JIT with the following configura-

tions for the method JIT.

• method (warm) uses the method JIT with warm-level opti-
mizations.

• method (full) uses the method JIT with default (full) optimiza-
tion levels and upgrade compilation.

All performance data was gathered on a 4.0-GHz IBM R⃝

POWER6 R⃝ blade center with 4 cores (8 threads) running on IBM
AIX R⃝ 6.1. We averaged 16 runs to gather the performance data.

We also collected detailed statistics for the trace JIT (Figures
5 and 13) by executing 16 instrumented runs (only for the trace
JIT). In these runs, the trace JIT generates JITed code with statistics
collection code.

5.2 Quantify False Loops and FLF
Figure 5 shows the ratios of the numbers of dynamic basic blocks
executed in each of the following types of traces, averaged over the
DaCapo benchmarks:

• True loop: A trace is terminated because it forms a cycle and
the cycle is a true repeating cyclic execution path (after the false
loop filtering by call-stack-comparison). In other words, a trace
is terminated by the condition (1a) and the detected repetition
is a true repeating cyclic execution path.



0.0

0.5

1.0

1.5

2.0

antlr bloat chart eclipse fop hsqldb jython luindex lusearch pmd xalan geomean

R
e

la
ti
v
e

 E
x
e

c
u

ti
o

n
 T

im
e

BASE BASE w/FLF BASE+ BASE+ w/FLF method (warm) method (full)
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Figure 7. Relative startup time (normalized to BASE+ w/FLF)
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Figure 8. Relative compiled code size (normalized to BASE+ w/FLF)
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Figure 9. Relative number of bytecodes compiled (normalized to
BASE+ w/FLF)

• False loop: A trace is terminated because it forms a cycle, but
is a false loop. In other words, a trace is terminated by the
condition (1a) and the detected repetition is a false loop.

• Rejoined by false loop: A trace is terminated because a false
loop cycle is formed in the middle of the trace recording buffer.
In other words, a trace is terminated by the condition (1b) and
the detected repetition is a false loop.

• Others: A trace is ended by other termination conditions.

Figure 5 quantifies the extent of the false loop problem in the
DaCapo benchmarks using our baseline selection algorithms: 55%
(for BASE+) and 19% (for BASE) of the dynamic basic blocks
are executed on traces terminated by false loops or rejoined by
false loops. BASE suffers much less from false loops than BASE+
because stop-at-existing-trace-head often terminates a trace before
a false loop cycle can be formed.
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Figure 10. Relative compilation time (normalized to BASE+ w/FLF)

Most false loops are caused by multiple invocations of the
same method in one execution path. This pattern is quite common
in object-oriented programs, which often makes frequent calls to
small methods such as accessor methods.

Figure 5 also shows one positive effect of false loops filtering:
the ratio of true loop traces has increased from 19% to 22% (for
BASE) and from 25% to 38% (for BASE+).

5.3 Impact of FLF on the Trace JIT
We next evaluate the impact of the false loop filtering on key
measurable aspects of the trace-driven system: steady-state perfor-
mance, start-up performance, compiled code size, and compilation
time.

Figure 6 shows the steady-state execution time of the trace
JIT and the method JIT normalized to that of BASE+ w/FLF. In
Figure 6 and the following figures, the error bars show the sample
standard deviations. The steady-state performance is measured as
the average execution time of each of the last 5 iterations, to avoid
fluctuation due to garbage collection events. On average, false loop
filtering improved the steady-state performance by 16% for BASE+
and 10% for BASE. The benefit is much smaller for BASE because,
as shown in Figure 5, fewer traces are terminated by false-loop
related termination conditions due to the use of another termination
condition, stop-at-existing-head. At the same time, for BASE+, the
improvements from false loop filtering are quite significant for
some benchmarks, such as 37% for bloat, 27% for jython, and
24% for hsqldb.

For systems with a larger trace runtime overhead, we expect the
impact from false loop filtering on the runtime component to be
more significant. For example, if we disable a runtime overhead
optimization (fast trace look-up using shadow arrays [16]), the
steady-state performance improvement from false loop filtering
was 64% and 32% for BASE+ and BASE, respectively, which are
much larger than the results shown in Figure 6.

In steady-state execution, the execution time of the false loop
filtering algorithm itself was negligible (typically less than 0.1%),
because trace recording occurs rarely in steady state.

Figure 7 shows the start-up execution time, which is the execu-
tion time of the first iteration of each benchmark. False loop filter-
ing increases the start-up time by an average of 12% for BASE+
and decreases it slightly for BASE. This is because in our system
the start-up performance is dominated by how soon a trace is com-
piled. While longer traces are in general preferable for better code
quality, they can be detrimental to start-up performance due to the
longer compilation time.

Figure 9 shows the total number of bytecodes being compiled.
False loop filtering almost doubles the cumulative bytecode size for
BASE+. This leads to an increase in compilation time (by 71%) and
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Figure 11. Relative execution time and compiled code size when
various false loop filtering algorithms are applied to BASE+, nor-
malized to the call-stack-comparison.

the compiled code size (by 31%) for BASE+, as show in Figure 10
and Figure 8, respectively.

Ways to reduce code size expansion and compilation times are
also an important aspect of trace compilation and will be future
work.

5.4 Comparison of False Loop Filtering Algorithms
Figure 11 shows the relative steady-state execution times and rel-
ative compiled code sizes for the other variations of false loop fil-
tering algorithms described in Section 3.2, relative to call-stack-
comparison. All schemes are applied to BASE+.

Two algorithms, call-stack-comparison and one-backward-
branch-in-head-method, achieve the best performance and the min-
imum code size among those with equivalent performance. One-
backward-branch-in-head-method is slightly more conservative in
detecting false loops than call-stack-comparison, where 4% of its
traces are either false loops or rejoined by false loops. But these
false loops have little effect on the performance and the the com-
piled code size.

Two other algorithms, repeated-twice and end-with-backward-
branch, also achieved the best performance, but with a much larger
amounts of code. These algorithms are overly aggressive in their
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Figure 12. Relative steady-state execution time breakdown (normalized to BASE+ w/FLF)

false loop detection in the sense that certain true loop cycles (e.g.,
ones that start from non loop-headers) may be detected as false
loops, leading to longer traces. The value of these algorithms is
that they require less information for the executed instructions
than the first two. For example, end-with-backward-branch requires
isBackwardBranch and address, and repeated-twice requires only
the address. Therefore, they may be used for binary trace-based
systems where precise information on executed instructions, such
as the owning methods or call stack information, is not available.

We added two additional configurations, call-site-comparison
and no-repetition-detection, which are inferior to the other algo-
rithms but are evaluated to demonstrate the inefficiency of simpler
heuristics.

Call-site-comparison compares the callers of the first and the
last instruction on a cyclic path and detects a false loop if the
callers are not the same. This scheme can be viewed as a restricted
form of call-stack-comparison (#1) where only the top of the call
stacks are compared. Call-site-comparison is 3% slower than call-
stack-comparison and fails to detect a significant portion of false
loops. For example, with call-site-comparison, 29% of dynamic
basic blocks are still executed from traces related to false loops.
This indicates that comparing only the call sites is not sufficient
and a deeper call stack needs to be inspected.

When traces are not terminated in any repeating cyclic paths
(no-repetition-detection), the code size is more than 3x larger than
call-stack-comparison. This demonstrates the importance of repe-
tition detection to achieve good space-efficiency in trace formation.

5.5 Why False Loop Filtering Improves Performance?
To understand the performance benefit of false loop filtering, we
profiled the steady-state execution of luindex and jython in
our trace system and divide the time spent into components.

• Compiled code represents the execution time of compiled
(JITed) traces.

• Runtime represents the execution time of the interpreter, helper
functions called from compiled code, and trace execution over-
head.
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Figure 13. Average dynamic trace length in BBs

• Native library, GC, and OS Kernel represent the execution
time of native parts of the Java class libraries, garbage collec-
tion, and OS kernel, respectively.

As shown in Figure 12, the steady-state performance improve-
ments from false loop filtering come mostly from the compiled
code component.

To further understand these improvements, we measured sev-
eral metrics of trace execution in the instrumented runs. We found
that improvements in the dynamic trace lengths, defined as the av-
erage number of consecutive basic blocks executed between enter-
ing and exiting from a trace in a program, is a good indicator of
relative performance among different selection algorithms. Figure
13 shows average dynamic trace lengths of the four selection al-
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Figure 14. Average number of method boundaries per compilation scope

gorithms, where longer dynamic trace lengths often correspond to
shorter running time in Figure 6.

A longer dynamic trace length means fewer trace exits and
less runtime overhead. However, Figure 12 shows only a slight
reduction in trace runtime overhead (part of Runtime) by false loop
filtering despite a significant reduction in the number of dynamic
trace exits (the inverse of the dynamic trace length). This is because
our system has aggressively optimized the runtime overhead due
to trace exits [16] using techniques such as trace linking, fast
trace look-up using shadow arrays, and inlining of trace look-
up sequence into compiled code. As a result, the trace runtime
overhead at steady-state is quite small.

Another indicator is the number of method boundaries (both
method invocations and method returns) crossed in one compilation
scope. In the trace JIT, a trace can naturally span multiple methods
(since we do not terminate traces at method invocations or method
returns). In the method JIT, method boundaries are included in a
compilation scope by method inlining.

The direct effect of crossing method boundaries in a compila-
tion scope is the elimination of method invocation and return over-
head. The indirect but more significant benefit is the expansion of
compilation scope that facilitates more effective optimizations.

Figure 14 shows the average number of method boundaries per
compilation scope. We counted a method invocation or a method
return as one method boundary crossing. For example, when a
method is entered and returned in a compilation scope (for exam-
ple, a method is inlined once in the method-based JIT), the num-
ber of method boundaries in the compilation scope is two. Figure
14 shows that our trace JIT (BASE+ w/FLF) crosses many more
method boundaries than the method JIT. The improved code qual-
ity in the current trace JIT most likely comes from this effect.

6. Related Work
Dynamo is the most influential trace-based compilation system [1,
2, 10]. Traces are formed out of binaries and collected using a na-
tive binary interpreter. The system optimizes traces for better code
layout and for partial redundancy elimination [19]. Dynamo intro-
duced the next-executing-tail (NET) policy for trace selection. The
NET policy achieves much lower profiling overhead than exhaus-
tive path profiling schemes such as the one presented by Ball and
Larus [3] with the same prediction quality and faster convergence.
The NET policy terminates traces at every backward branch. That
is, it uses a stop-at-backward-branch repetition detector.

Hiniker, Hazelwood and Smith [15] introduced the last-executing-
iteration (LEI) policy as an improvement over the NET policy. The
LEI policy uses a cyclic-path-based repetition detector, instead of
a stop-at-backward-branch repetition detector. Merrill and Hazel-

wood [18] focused on evaluating the potential of using traces for
better code layout for a Java virtual machine using the LEI policy.

PyPy tracing JIT [6] applies trace compilation to Python. Pypy’s
tracing JIT traces a language interpreter executing a user program,
and aims to capture the repeating cyclic execution paths in the
user program, not those in the language interpreter. This is done
by, for example, considering an execution path as a repetition if
the program counter in the language interpreter and the program
counter in the user program are the same at the beginning and the
end of the execution path. The program counter in the user program
is given as a hint by the implementers of the interpreter. This is also
a cyclic-path-based repetition detector, where the program counter
used by the repetition detector is that in the user program, rather
than that in the direct target program.

Static-scope-based repetition detectors are used in trace compil-
ers that support tree-shaped traces, such as HotpathVM [11, 12] for
Java, TraceMonkey [13] for JavaScript, LuaJIT [17] for Lua, and
SPUR [4] for CIL (and JavaScript converted to CIL). They utilize
loop structures and methods of programs, and start trace recording
of a root trace from a loop header. The trace recording is termi-
nated or aborted when the execution leaves the method scope (Hot-
pathVM) or loop scope (TraceMonkey, LuaJIT, and SPUR) which
the loop header belongs to.

7. Conclusion
In this paper, we identified the problem of false loops in existing
trace selection algorithms, which was not explicitly addressed in
previous literature. We quantified the impact of false loops on trace
selection algorithms using cyclic-path-based repetition detection.
Depending on the trace selection algorithms being used, we showed
that on average 55% and 19% of dynamic basic blocks are executed
on traces affected by false loops (for BASE+ and BASE selection,
respectively). We suggest false loop filtering is an important aspect
in trace selection algorithm design.

We proposed the concept of false loop filtering and explored the
design space of false loop filtering heuristics. We proposed a tech-
nique called false loop filtering by call-stack-comparison as well as
several alternatives to satisfy other systems with different require-
ments. False loop filtering increased the dynamic trace length and
method boundary crossings per trace, which produced better code
and fewer trace exits.

We showed that our false loop filtering algorithm improved
the steady-state performance of our trace-based Java system sig-
nificantly (by 16% and 10% on average when applied to BASE+
and BASE, respectively) with acceptable code size and compila-
tion time increases (by 31% and 71%, respectively). We also ob-
served that improvements are much larger on systems with more
trace runtime overhead (64% and 32% improvement on average



when applied to BASE+ and BASE, respectively, when a runtime
overhead optimization is disabled).

False loop filtering has a significant positive impact on the
performance and its concept is useful for designing trace selection
algorithms that maximize steady-state performance.
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A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and
B. Wiedermann. The DaCapo benchmarks: Java benchmarking devel-
opment and analysis. In Proceedings of the 21st Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA ’06, pages 169–190, New York,
NY, USA, Oct. 2006. ACM.

[6] C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing the meta-
level: PyPy’s tracing JIT compiler. In Proceedings of the 4th Workshop
on the Implementation, Compilation, Optimization of Object-Oriented
Languages and Programming Systems, ICOOOLPS ’09, pages 18–25,
New York, NY, USA, 2009. ACM.

[7] D. Bruening and S. Amarasinghe. Maintaining consistency and
bounding capacity of software code caches. In Proceedings of the In-
ternational Symposium on Code Generation and Optimization, CGO
’05, pages 74–85, Washington, DC, USA, Mar. 2005. IEEE Computer
Society.

[8] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for
adaptive dynamic optimization. In Proceedings of the International

Symposium on Code Generation and Optimization, CGO ’03, pages
265–275, Washington, DC, USA, Mar. 2003. IEEE Computer Society.

[9] DaCapo. The DaCapo benchmark suite. http://dacapobench.
org/.

[10] E. Duesterwald and V. Bala. Software profiling for hot path prediction:
less is more. In Proceedings of the 9th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS-IX, pages 202–211, New York, NY, USA, Oct.
2000. ACM.

[11] A. Gal and M. Franz. Incremental dynamic code generation with trace
trees. Technical report, University of California Irvine, November
2006.

[12] A. Gal, C. W. Probst, and M. Franz. HotpathVM: an effective JIT
compiler for resource-constrained devices. In Proceedings of the 2nd
International Conference on Virtual Execution Environments, VEE
’06, pages 144–153, New York, NY, USA, June 2006. ACM.

[13] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R.
Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ru-
derman, E. W. Smith, R. Reitmaier, M. Bebenita, M. Chang, and
M. Franz. Trace-based just-in-time type specialization for dynamic
languages. In Proceedings of the 2009 ACM SIGPLAN conference on
Programming Language Design and Implementation, PLDI ’09, pages
465–478, New York, NY, USA, 2009. ACM.

[14] N. Grcevski, A. Kielstra, K. Stoodley, M. Stoodley, and V. Sundare-
san. Java just-in-time compiler and virtual machine improvements for
server and middleware applications. In Proceedings of the 3rd con-
ference on Virtual Machine Research And Technology Symposium -
Volume 3, pages 12–12, Berkeley, CA, USA, June 2004. USENIX As-
sociation.

[15] D. Hiniker, K. Hazelwood, and M. D. Smith. Improving region
selection in dynamic optimization systems. In Proceedings of the 38th
Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 38, pages 141–154, Washington, DC, USA, Dec. 2005. IEEE
Computer Society.

[16] H. Inoue, H. Hayashizaki, P. Wu, and T. Nakatani. A trace-based Java
JIT compiler retrofitted from a method-based compiler. In Proceed-
ings of the International Symposium on Code Generation and Opti-
mization (to be published), CGO ’11, Apr. 2011.

[17] LuaJIT. LuaJIT design notes in lua-l mailing list. http:
//lua-users.org/lists/lua-l/2008-02/msg00051.
html, http://lua-users.org/lists/lua-l/2009-11/
msg00089.html, http://lua-users.org/lists/
lua-l/2008-06/msg00228.html.

[18] D. Merrill and K. Hazelwood. Trace fragment selection within
method-based JVMs. In Proceedings of the 4th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments, VEE ’08, pages 41–50, New York, NY, USA, June 2008.
ACM.

[19] K. Pettis and R. C. Hansen. Profile guided code positioning. In
Proceedings of the ACM SIGPLAN 1990 conference on Programming
Language Design and Implementation, PLDI ’90, pages 16–27, New
York, NY, USA, June 1990. ACM.

[20] M. Zaleski, A. D. Brown, and K. Stoodley. YETI: a graduallY exten-
sible trace interpreter. In Proceedings of the 3rd International Confer-
ence on Virtual Execution Environments, VEE ’07, pages 83–93, New
York, NY, USA, 2007. ACM.


