
On the Equivalence of Incremental and Fixpoint Semantics
for Business Artifacts with Guard-Stage-Milestone

Lifecycles

Elio Damaggioa, Richard Hullb,1, Roman Vaculı́nb

aUniversity of California, San Diego
bIBM T.J. Watson Research Center, New York

Abstract

Business artifacts (or simply, artifacts) are used to modelconceptual entities that are
central to guiding the operations of a business, and whose content changes as they move
through those operations. The recently introduced Guard-Stage-Milestone (GSM) meta-
model for artifact lifecycles is declarative in nature, andallows concurrent execution of
long-running (possibly human-executed) activities. Modularity is incorporated through
the use of hierarchical clustering of activities. Milestones are used to track whether key
business-relevant operational objectives have been achieved by a business artifact. The
GSM operational semantics is based on a variant of Event-Condition-Action (ECA)
rules, which are used to control the start and termination ofindividual and composite
activities, and the recording of milestone status. This paper introduces, in an abstract
setting, three different and provably equivalent formulations of the GSM operational
semantics. The semantics is specified in terms of how a singleexternal event is in-
corporated into the current “snapshot” (i.e. full description) of a running execution
of an artifact model. The “incremental” formulation corresponds to the sequential ap-
plication of the ECA-like rules in response to the event; the“fixpoint” formulation
characterizes the mathematical properties of pairs of snapshots corresponding to the
full impact of incorporating the event; and the “closed-form” formulation captures the
fixpoint one in terms of first-order logic. The paper introduces a formally specified
well-formedness condition on GSM models that guarantees the equivalence of the three
formulations while permitting commonly arising patterns for using GSM constructs to
model business operations.

Keywords: Business Artifacts; Business Entities with Lifecycles; Business Process
Management; Case Management; Declarative Semantics.

Email addresses:elio@cs.ucsd.edu (Elio Damaggio),hull@us.ibm.com (Richard Hull),
vaculin@us.ibm.com (Roman Vacuĺın)

1This author supported in part by NSF grant IIS-0812578 and bythe European Community’s Seventh
Framework Programme FP7/2007-2013 under grant agreement number 257593 (ACSI).

Preprint submitted to Elsevier May 17, 2012

1. Introduction

There is increasing interest in frameworks for specifying and deploying business
operations and processes that combine both data and processas first-class citizens.
One such approach is called Business Artifacts2 (or simply “artifacts”), and has been
studied by a team at IBM Resarch for several years [35, 25, 39,6, 9, 34, 11]. Artifacts
are key conceptual entities that are central to the operation of part of a business and that
change as they move through the business’s operations. An artifact type includes both
an information modelthat uses attribute/value pairs to capture, in either materialized
or virtual form, all of the business-relevant data about artifacts of that type, and alife-
cycle model, that specifies the possible ways that an artifact of this type might progress
through the business, and the ways that it will respond to events and invoke external ser-
vices, including human activities. The recently introduced [22] Guard-Stage-Milestone
(GSM) meta-model3 for Business Artifact lifecycles (abbreviated simply as “GSM”)
provides a substantially declarative approach for specifying artifact lifecycles that sup-
ports parallelism and modularity, with an operational semantics based on a variant of
Event-Condition-Action (ECA) rules.

As described in [22], the core motivation leading to GSM has been to create a
meta-model for specifying business operations and processes that:

1. Will help business-level stakeholders to gain insight into and understanding of
their business operations;

2. Is centered around intuitively natural constructs that correspond closely to how
business-level stakeholders think about the operations oftheir business;

3. Can provide a high-level, abstract view of the operations, and gracefully incor-
porate enough detail to be executable;

4. Can support a spectrum of styles for specifying business operations and pro-
cesses, from the highly “prescriptive” (as found in, e.g., BPMN) to the highly
“descriptive” (as found in Adaptive Case Management systems); and

5. Can serve as the target into which intuitive, informal, and imprecise specifica-
tions of the business operations (e.g., in terms of “business scenarios”) can be
mapped.

A fundamental research challenge underlying the development of GSM has been
to find a meta-model that on the one hand incorporates the business-level constructs
in an intuitive and flexible manner, and on the other hand supports a precise seman-
tics that can support both implementation and mathematicalinvestigation. The current
paper presents the core constructs of GSM and the formal foundations for the GSM
operational semantics. This includes specification of a well-formedness condition on
GSM models, and proving the equivalence of three different formulations of the seman-
tics, with each having its own intrinsic value. The well-formedness condition, while
somewhat intricate, was chosen so that most commonly arising patterns for using the

2In some publications the term “Business Entity (with Lifecycle)” is used in place of “Business Artifact”.
3Following the tradition of UML and related frameworks, we use here the terms ‘meta-model’ and

‘model’ for concepts that the database and workflow researchliterature refer to as ‘model’ and ‘schema’,
respectively.

2

GSM constructs can be specified using well-formed GSM models. We expect that this
framework and approach can be adapted to variants of the GSM meta-model.

There are four key elements in the GSM meta-model: (a)Information Modelfor
business artifacts, as in all variations of the artifact paradigm; (b)Milestones, which
correspond to business-relevant operational objectives,and are achieved (and possibly
invalidated) based on triggering events and/or conditionsover the information models
of active artifact instances; (c)Stages, which correspond to clusters of activity intended
to achieve milestones; and (d)Guards, which control when stages are activated, and
as with milestones are controlled through triggering events and/or conditions. Multi-
ple stages of an artifact instance may be active (or “open”) at the same time, which
enables the modeling of parallel activity such as when two human performers are si-
multaneously conducting different tasks in connection with the same artifact instance.
Hierarchical structuring of the stages supports a rich formof modularity.

The GSM meta-model is an outgrowth of several years of practical experience with
earlier artifact-centric meta-models, combined with a desire to provide a more flexible
and goal-driven approach than offered by the previous meta-models. For example, this
led to the use of a largely declarative paradigm, and to the use of milestones based on
ECA-like rules as a central building block for artifact lifecycles.

The operational semantics for GSM is specified in terms of howa single “incom-
ing event” is incorporated into the current “snapshot” (i.e., description of all relevant
aspects at a given moment of time) of a GSM system. This semantics is based on a
variant of the Event-Condition-Action (ECA) rules paradigm, and is centered around
GSM Business steps(or B-steps), which focuses on the full impact of incorporating the
incoming event. In particular, the focus is on what milestones are achieved or inval-
idated, and what stages become active or inactive, as a result of this incoming event.
Changes in milestone and/or stage status are treated as internal “status events”, and can
trigger further status changes in the snapshot. Intuitively, a B-step corresponds to the
smallest unit of business-relevant change that can occur toa GSM system.

The semantics for B-steps has three equivalent formulations, each with their own
value. These are:

Incremental: This corresponds roughly to the incremental application ofthe ECA-
like rules, provides an intuitive way to describe the operational semantics of a
GSM model, and provides a natural, direct approach for implementation.

Fixpoint: This provides a concise “top-down” description of the effect of a single
incoming event on an artifact snapshot. It is useful for developing alternative
implementations for GSM, and optimizations of them; something especially im-
portant if highly scalable, distributed implementations are to be created.

Closed-form: This straight-forward rewriting of the fixpoint formulation provides a
characterization of snapshots and the effects of incoming events using a first-
order logic formula. This permits the application of previously developed verifi-
cation techniques to the GSM context. (The previous work, [7, 15, 12], assumed
that tasks were performed in sequence, whereas in GSM tasks and other aspects
may be running in parallel.)

3

This paper formally defines these three formulations of the semantics, and shows
that they are equivalent for GSM models that satisfy the well-formedness condition.
The development is in some ways reminiscent of logic programming [29], and the
well-formedness condition, which is based on an acyclicitycondition, can be viewed
as providing a kind of stratification on the ECA-like rules. For ease of presentation,
and without fundamentally compromising the applicabilityof the results, this paper
uses a common restriction that puts the focus on a single artifact instance of a single
artifact type. Citation [23] presents an extension of the meta-model described here
that supports multiple artifact types, multiple artifact instances, and structured attribute
values. (See also [24].)

While this paper focuses on the foundations of the GSM meta-model, it is also be-
ing studied from the practical perspective. A prototype engine, called Barcelona, is
being developed to support experiments and implementations using GSM (discussed
briefly in Section 6). Importantly, the incremental semantics introduced in this paper
serves as a basis for implementation of Barcelona GSM execution engine. We are cur-
rently working on two variations of GSM implementation, one[40] taking advantage of
highly parallel multi-threaded architectures for allowing very efficient implementation
of GSM execution engine, and the other one being built on top of a distributed publish-
subscribe platform. These two alternative approaches are taking advantage of the fix-
point formulation to make sure that they fully satisfy the GSM operational semantics.
Finally, there is another ongoing thread of activities focused on formal verification of
GSM models that leverage results of the closed-form formulation.

As briefly discussed in Section 7, there is a strong connection between GSM and
the area of Adaptive Case Management [41], and with the emerging OMG standard
[8]. In particular, the consortium leading the OMG effort has adopted the core GSM
constructs of stages, milestones, guards and sentries, andwork is underway to adapt
the GSM semantics to that meta-model.

This paper is an extension of publication [13] and it extendsit in several ways. The
informal description of the GSM meta-model is considerablyexpanded, including both
a listing of key GSM concepts and an extended example. The formal development
of the GSM meta-model is expanded and presented in a comprehensive manner. The
discussion of the condition for well-formed GSM models is expanded, and includes ex-
amples of what can go wrong with non-well-founded models. Finally, detailed proofs
of the key results are included.

Organizationally, Section 2 provides an informal introduction to GSM, including
both a listing of key concepts and an extended example. Section 3 presents a series
of formal definitions for GSM, leading up to the key notion of GSM model. Section
4 presents the notion of B-steps in an informal way, and introduces some additional
formalism, including the variant of ECA rules used, and the well-formedness condi-
tion on GSM models. Section 5 presents the three formulations of B-step and proves
their equivalence; B-steps form the core of the GSM operational semantics. Section 6
briefly discusses GSM implementation; how the equivalence theorem can be used in
connection with verification; and it discusses some aspectsof sequences of B-steps.
Section 7 overviews related work and Section 8 concludes thepaper.

4

2. Informal Introduction to GSM

This section provides an informal and intuitive introduction to the GSM meta-
model used for this paper. Listings of key constructs in the GSM meta-model, and
of key concepts for the operational semantics, are provided. Then an example GSM
model is described in detail.

2.1. Key constructs in GSM

The four key elements of the GSM meta-model areInformation Model, Milestones,
Stages, andGuards. Here we present informal, intuitive descriptions of thesecentral
notions of GSM, as well as several related constructs, including artifact instance, task,
environment, events, etc. These are formalized primarily in Section 3. In the listing
below, the most important constructs are indicated inbold italics, and other constructs
indicated inbold. The conceptual underpinnings of the GSM meta-model described in
this listing were developed collectively by the several authors of [22, 23].

Artifact Instance: Artifact Instance corresponds intuitively to a single business-relevant
conceptual entity (of a particular artifact type) that progresses through some busi-
ness operations. By way of illustration, we note that in the financial application
described in [9] one of the artifact types corresponds to thenotion of a finan-
cial Deal, i.e., a loan from one party to another secured by some collateral. An
artifact instance of a Deal can be in existence for several years, and progresses
through activities involving checking on the borrower and the collateral, com-
pleting negotiations and a contract, and managing the periodic payments until
termination of the contract.

Information model: Information model is an integrated view of all business-relevant
information about an artifact instance as it moves through the business opera-
tions. This has two components, thedata attributesand thestatus attributes.
Data attributes hold data about the business itself and how it is being affected by
the artifact instance. Status attributes hold “control information”, that is, infor-
mation about the progress of the artifact instance as it moves through the business
operations. This information is indicated by the current status of milestones and
stages in that instance .

Task: Task corresponds to a unit of business-relevant work that isto be performed by
an outside agent (either human or machine). Tasks are invoked by artifact in-
stances. When a task is invoked, the artifact instance provides input data from its
information model, and when the task terminates the task output data is written
into the artifact instance information model.

Environment: Corresponds to environment within which artifact instances exist. In
the current paper the environment hosts the task executionsthat are invoked by
artifact instances.

Event: In GSM there are three categories of event.

5

- Outgoing Event:Outgoing events are events sent from artifact instances
to the environment. There is one kind of outgoing event, namely task in-
vocation event, which correspond to when an artifact instance invokes an
occurrence of a task.

- Incoming Event:Incoming events include events that can be sent from the
environment to artifact instances. There are two kinds of incoming event.

+ One-way Message Event(also referred to asRequest Event), which
corresponds to a message sent pro-actively from the environment, e.g.,
a user request.

+ Task Termination Event,which corresponds to the message sent into
an artifact instance upon termination of a previously invoked task.

- Internal Event, a.k.a., Status Change Event:These correspond to when a
milestone changes status from false to true, or visa-versa,or when a stage
changes status from inactive to active, or visa-versa.

Sentry: An expression in a condition language, that can refer to incoming events,
internal events, and the values of data and status attributes. Sentries provide the
core of the ECA-like rules that govern the progress of an artifact instance. In
practical settings, a sentry will have the formon<event> if <condition> then
<action>, where either the event or condition may be omitted. In the formalism
here, a syntactic variant of this is used.

Milestone: A business-relevant operational objective that can be achieved by an ar-
tifact instance. In the artifact information model milestones are represented as
named Boolean attributes. At a given moment in time a milestone has status
trueor false. Milestones have associatedachieving sentriesthat determine situa-
tions under which the milestone becomes “achieved” and changes to statustrue,
and invalidating sentriesthat determine situations under which the milestone
becomes “invalidated” and change to statusfalse.

Stage: Intuitively, a stage is a cluster of business-relevant activity that might be per-
formed in connection with an artifact instance. Stages are organized into a hier-
archy, to provide a rich form of modularity for specifying the overall behavior
of an artifact instance. Each atomic stage contains exactlyone task. Each stage
“owns” one or more milestones, and the intuitive goal of executing a stage is to
achieve one of these milestones. At a given moment in time a stage may have
statusactive(or “open”), which corresponds to when the stage is executing, or
inactive (or “closed”), which corresponds to when the stage is not executing.
In the meta-model of the current paper, a stage may execute multiple times in
sequence, but cannot have two occurrences that are executing simultaneously.
(However, different stages might be executing simultaneously.)

Guard: Guards are used to control whether a stage should become active, i.e., whether
it should begin executing. Each guard is specified as a sentry. Guards are un-

6

named, and their status cannot be referred to.4

Lifecycle model: The lifecycle model is a component that specifies the milestones and
stages of a GSM artifact model, including their relationships (stage hierarchy,
association of milestones to stages, and association of tasks to atomic stages),
and the sentries that govern the guards and milestones.

2.2. Key concepts of GSM operational semantics

Here we introduce the key concepts relevant for the GSM operational semantics
which will be in detail described in Sections 4 and 5.

Processing of incoming events:We assume in the GSM operational semantics that
incoming events are processed one at a time. If more events occur at the same
time we assume that it is the role of the implementing system to take care of
managing the queue of incoming events.

GSM invariants: In the GSM meta-model of this paper, stages and milestones sat-
isfy two properties that correspond to central business-level intuitions concern-
ing how they interact. These are:

GSM-1 If a stageS owns a milestonem, then it cannot happen that bothS is active
andm has statustrue. In particular, ifS becomes active thenm must
change status tofalse, and ifm changes status totrue thenS must become
inactive.

GSM-2 If stageS becomes inactive, the executions of all substages ofS also be-
come inactive.

Snapshot: A snapshot is an instantaneous description of an artifact instance at some
moment in time. The snapshot includes the values of all data attributes and also
the status of all milestones and stages of that time. In fact,an artifact instance
can be thought of as the sequence of snapshots that it moves through during its
lifetime.

Business step (B-step): B-step corresponds to the atomic unit of business-relevantpro-
cessing in a GSM model. More specifically, it corresponds to incorporating into
a GSM instance a single event incoming from the external environment, and
then “firing” all of the sentries that might be applicable to the snapshot after the
incoming event is incorporated.

2.3. An example GSM model

The GSM constructs are now illustrated through a series of examples.

4This is analogous to the fact that the individual achieving or invalidating sentries of milestones are not
named. This design choice is based on experience in practical situations, where business process model
designers see naming of the guards as unimportant.

7

Data Attributes

. . .

Status
attributes

. . .

Stages
(open or
closed)milestones

DesignSuspended

DesignCompletedEngineering
Design

RequirementsApprovedRequirements
Gathering

Evaluating
Country

Restrictions
RestrictedProducts ListCompiled

Legal Reviewing
Preparing

Export
Documents

ExportDocsPrepared Legal
Review
Completed

. . .

g1
g2 g3

g4

g5 g7
g8

Preparing Suspendedg6 g9

Figure 1: Graphical representation of parts of the Design-to-Order GSM model with its
information model with data and status attributes, and its lifecycle model. Circles rep-
resent milestones, rounded rectangles represent stages, and diamonds represent guards.

Guard Sentry
g1 LatestIncEventType = Request : NewOrder

g2 LatestIncEventType = Request : CustomerChange

g3 RequirementsApproved ∧ RestrictedProductsListCompiled ∧ ¬DesignCompleted

g4 LatestIncEventType = Request : ResumeEngineeringDesign

g5 LatestIncEventType = Request : NewOrder

g6 LatestIncEventType = Request : RedoExportDocuments

g7 ¬RestrictedProductsListCompiled

g8 +DesignCompleted

g9 LatestIncEventType = Request : RedoExportDocuments

Figure 2: Guards of Design-to-Order GSM model

RequirementsApproved

achieving: LatestIncEventType = Termination : RequirementsGathering

DesignCompleted

achieving: LatestIncEventType = Termination : EngineeringDesign

invalidating: −RequirementsApproved

DesignSuspended

achieving: −RequirementsApproved

RestrictedProductsListCompiled

achieving: LatestIncEventType = Termination : EvaluatingCountryRestrictions

ExportDocsPrepared

achieving: LatestIncEventType = Termination : PreparingExportDocuments

invalidating: −DesignCompleted

PreparingSuspended

achieving: −DesignCompleted

LegalReviewCompleted

achieving: +ExportDocsPrepared

invalidating: −ExportDocsPrepared

Figure 3: Sentries associated with milestones of Design-to-Order GSM model

8

Example 2.1. Order-to-Design Overview. Figures 1, 2, and 3 together illustrate an ex-
ample GSM model, calledDesign-to-Order. Figure 1 provides a diagrammatic view;
Figure 2 lists the sentries associated with the guards, and Figure 3 lists, for each mile-
stone, its achieving and/or invalidating sentries. In thisexample, each milestone has at
most one achieving sentry and at most one invalidating sentry. However, in the general
case, multiple achieving and invalidating sentries are permitted.

The bottom part of Figure 1 shows the information model, which includes data
attributes and status attributes. Status attributes are associated to the achievement status
of a milestone (trueor false) and to the activity state of stages (indicating whether they
are active or inactive). The top half of the diagram shows thelifecycle specification.
In the graphical notation milestones are shown as circles, stages are shown as rounded
boxes, and guards are shown as diamonds.

This example models a design process that includes activities for requirements
gathering, engineering design and legal review. We consider five actors in this process:
customer, sales manager, request manager, engineering manager, and legal manager.
The top-level activities, represented as stages in the GSM model, have the following
functions.

Requirements gathering. This starts when a request with customer’s requirements is
received from the sales manager. It is considered completedwhen the require-
ments have been gathered and appropriate approvals obtained. The activity may
be restarted if the customer wants to change the requirements.

Engineering design. This starts when the requirements are ready and the country re-
strictions have been evaluated as part of the legal review. It is considered com-
pleted when the design is created and appropriate approvalsobtained. It might be
suspended if the customer wants to change the requirements.The Engineering
Design stage might need to be re-opened after it has successfully completed; this
arises if the customer wants to change the requirements.

Legal review. The activity of this stage is divided between two sub-stages: Evaluating
Country Restrictions, and Preparing Export Documents. Thefirst starts as soon
as the request for a new order is received. The second starts when the Engineer-
ing Design stage has completed successfully. Preparing Export Documents stage
might have to be suspended or re-done if the customer requirements change.

In GSM, a fundamental step in designing an artifact type is choosing the milestones
that are typically achieved during the lifetime of instances of that type. The stages
provide a natural mechanism for thinking in terms of groupings of work at various
levels of detail. The stage hierarchy enables designers andbusiness-level users to work
with artifact lifecycles at varying levels of abstraction.In general, the milestones of
higher-level stages correspond to the more visible, more business-important goals that
an artifact instance might achieve. In practice for modestly sized examples the stage
hierarchy is typically 3 to 5 levels deep. The running example is now used to illustrate
the use of milestones and stages in GSM.

9

Example 2.2. Milestones and Stages. In Design-to-Order, the three most important
milestones are ‘Requirements Approved’, ‘Design Completed’, and ‘Legal Review
Completed’. It is then natural to choose to have three top-level stages, one per ma-
jor milestone. In the example, these stages are ‘Requirements Gathering’, ‘Engineer-
ing Design’, and ‘Legal Reviewing’. Stage ‘Engineering Design’ has an additional
milestone called ‘Design Suspended’. ‘Design Suspended’ is included for cases where
‘Requirements Approved’ has been achieved and ‘Engineering Design’ launched, but
then the customer presents new requirements. (See Example 2.4 for more detail on the
full set of actions that might take place in this situation.)

In this simplified example, the stages ‘Requirements Gathering’ and ‘Engineering
Design’ are atomic. This means that at the level of the GSM model, their internal
functioning is a “black box”, which is modeled as a task to be performed by an external
agent (either human or automated). In the example in Figure 1the tasks inside the
atomic stages are omitted. Stage ‘Legal Review’ is a composite stage and it has two
atomic sub-stages. This decomposition is motivated by the observation that there are
two key milestones — ‘Restricted Products List Compiled’ and ‘Export Docs Prepared’
— that must be achieved before ‘Legal Review Completed’ can be achieved.

While stages provide an intuitive form of encapsulation, they do not provide strict
encapsulation in the way that, e.g., abstract data types, objects in object-oriented pro-
gramming, or some web services paradigms do. Intuitively, the boundaries of stages
are “soft”, in the sense that sentries in any part of a lifecycle model may refer to the
status of, and to attributes written by, any stage. For example, the guardg3 of top-level
stage ‘Engineering Design’ (see Figure 2) refers to the milestone ‘Restricted Products
List Compiled’, which is inside the ‘Legal Reviewing’ stage. Changes in a status at-
tribute in one part of the stage hierarchy may also trigger sentries elsewhere in the
hierarchy (e.g., guardg8). The ability of stages to “see” data and status change events
from essentially anywhere in the stage hierarchy is one aspect of the data-centric nature
of the artifact approach.

The next example illustrates the event types supported in GSM and the central
construct called ‘sentry’.

Example 2.3. Sentries and Event Types. Figures 2 and 3 show the sentries associated
with the guards (Figure 2) and milestones (Figure 3) of Design-to-Order GSM model.
Although guards are un-named in GSM, in the Figures 1 and 2 we have included names
g1, g2, . . . for ease of exposition.

Intuitively, sentries have the form “on 〈 event〉 if 〈 condition〉,” which corresponds
to the first two parts of traditional event-condition-action rules. In GSM, the event may
be an incoming event type or a status change event type, and the condition may refer
to data and status attributes in the information model.

In the formal notation, incoming events are specified using the dedicated data at-
tribute LatestIncEventType, which is intended to hold the type of the most recently
arrived incoming event. For example, the guardg1 of ‘Requirements Gathering’ is
specified as “LatestIncEventType = Requests : NewOrder”. This sentry becomes true
if there is an incoming event with type ‘Request: New Order’.

10

Analogously, the milestone ‘Requirements Approved’ is achieved when an event
of type ‘Termination: Requirements Gathering’ is received, i.e., when an occurrence
of the atomic task associated with ‘Requirements Gathering’ terminates.

We next illustrate a sentry triggered by a change in value of astatus attribute. The
guardg8 of ‘Preparing Export Documents’ is specified as “+DesignCompleted”; this
is triggered when milestone ‘Design Completed’ is achieved, i.e., when it transitions
from falseto true. Similarly, an invalidating sentry of milestone ‘Design Completed’
is “−RequirementsApproved”, that is, if the ‘Requirements Approved’ milestone of
‘Requirements Gathering’ is invalidated, then so is the ‘Design Completed’ milestone.

Some sentries do not have a triggering event. Guardg3 of ‘Engineering Design’
is specified as “RequirementsApproved∧RestrictedProductsListCompiled∧¬Design-
Completed”; this is based on having two milestones be true and a third one false.
Permitting sentries such as this, which do not explicitly refer to a change in status
attribute, can enable more flexibility and succinctness. Because guardg3 does not
involve a triggering event, it is important to prevent the ’Engineering Design’ stage
from unintended openings after it has successfully completed. This is accomplished in
this sentry by including the third conjunct¬DesignCompleted. (An alternative would
be to adopt a semantics based on “when first becomes true” for condition-based guards.
In this semantics, such guards would trigger when their condition shifts from false to
true. Study of this variation is left for future research.)

The final example illustrates the notion of B-steps. Recall that intuitively, a B-
step corresponds to incorporating one incoming event into an artifact instance, and
then “firing” sentries to change the status of milestones and/or stages until no further
sentries can be applied.

Example 2.4. Illustration of B-steps. This example describes three representative B-
steps. All of them start with events from the customer. The first example describes
what happens when a new order arrives, the second describes what happens when an
‘Engineering Design’ stage gets suspended, and the final onedescribes what may hap-
pen if the customer wants to incorporate additional requirements.

Initial steps in Design-to-Order artifact instance. Upon receiving an event of the type
Request : NewOrder the guardg1 of ‘Requirements Gathering’ opens that stage and
invokes the associated task. In the same B-step, the composite stage ‘Legal Review’ is
opened by the guardg5 with condition “LatestIncEventType =Request : NewOrder”.
This makes all stages inside ‘Legal Review’ eligible. In particular, the guardg7 of stage
‘Evaluating Country Restriction’ with condition¬RestrictedProductListCompiled opens
its stage since the mentioned milestone is false, and this inturn invokes the task inside
the stage. Thus, the B-step resulting from the incoming event involves opening three
stages and launching of two tasks.

Suspending ‘Engineering Design’. First, suppose that ‘Requirements Approved’ is
true and that ‘Engineering Design’ is active. Suppose further that the customer now
submits a change in requirements, i.e., an event of formRequest : CustomerChange

arrives. This triggers guardg2 and leads to re-opening the stage ‘Requirements Gather-
ing’. This in turn leads to invalidation of milestones ‘Requirements Approved’, based

11

on the policy that you cannot simultaneously have a stage active and one of its mile-
stones true. Next, the ‘Design Suspended’ milestone is achieved because its sentry is
triggered by invalidation event of ‘Requirements Approved’ milestone. This in turn
leads to closing the stage ‘Engineering Design’ (i.e., its execution is halted), again
based on the policy that you cannot simultaneously have a stage active and one of its
milestones true.5

Re-doing legal work. As a final illustration, suppose that all three top-level stages have
completed successfully, and then the customer submits new requirements. Over time
this will lead to re-doing ‘Requirements Gathering’ and ‘Engineering Design’. When
‘Engineering Design’ starts it will automatically invalidate ’Design Completed’, which
will in turn invalidate ‘Export Docs Prepared’ and then ‘Legal Review Completed’.
When ‘Design Completed’ is achieved again the stage ‘Preparing Export Documents’
will not be re-opened, because its parent stage ‘Legal Reviewing’ is currently inactive.
In the Design-to-Order GSM model, the legal manager can issue a request of form
Request : RedoExportDocuments. This will triggerg6 to open ‘Legal Reviewing’ and
alsog9 to open ‘Preparing Export Documents’.

As just illustrated, the propagation of actions in a B-step can become rather intri-
cate. One intention of GSM is to enable business-level workers to specify large portions
of a GSM model in terms of milestones, stages, and their associated sentries. Special-
ized business analysts may be needed to design the more intricate interactions between
the sentries, but in most cases the chain of actions in response to an incoming event can
still be explained to the business-level workers. A primarycontribution of the current
paper is to provide a robust, formal foundation so that for any well-formed GSM model
there is an unambiguous and intuitively natural semantics that underlies the response
to incoming events.

3. Formal basis for GSM

This section introduces the formal definitions for most of GSM, leading to the cen-
tral notion of GSM model.

3.1. Names, attributes, domain, condition language

We assume infinite, pairwise disjoint sets EVENT of (incoming) event names, STAGE

of stage names, and MILESTONE of milestone names.
In order to represent artifact information models we assumedisjoint sets ATTdata

of data attribute names, or simply,data attributes, and ATTstatusof status attribute
names, or simply,status attributes. Data attributes are used to hold information about
the business operations that are being managed by an artifact instance. The set ATTstatus
= M ILESTONE∪{activeS | S ∈ STAGE} (where we assume MILESTONE∩{activeS |
S ∈ STAGE} = ∅). Status attributes help to record the current status of an artifact

5In practice, the task owned by ‘Engineering Design’ might itself be suspended rather than aborted, so
that work already performed as part of the task is not lost; this is not addressed in the abstract GSM model
presented in this paper.

12

instance. A milestone namem, when considered as an attribute, will take Boolean
values, and will indicate whether the milestonem is currently true or not. An attribute
activeS for S ∈ STAGE will take Boolean values, and will indicate whether the stage
S is active or inactive.

For ease of presentation, we consider attributes to have a single common domain
DOM, which includes anundefinedsymbol⊥, a set of elements that represent num-
bers and strings, and the two Boolean constants{true, false}. We assume further
that DOM includes EVENT. (Intuitively, this will allow for expressions of the form
LatestIncEventType= E whereE is an event type andLatestIncEventTypeis an at-
tribute intended to hold the type of the incoming event that arrived most recently to an
artifact instance.)

If A is a finite set of data attributes, alogical structureoverA is an assignment
Ξ : A → DOM. (In what follows, such structures correspond intuitivelyto snapshots
of artifact instances.) For this paper we shall use a condition languageC that refers
to attributes inAtt as variables (whereAtt ⊂ ATTdata∪ ATTstatus). For instance, if
completed andprice are attributes inAtt, thencompleted = true ∧ price = $50 is a
condition. In the rest of the paper, when it is clear from the context that an attributea
holds a Boolean value we use the notationa and¬a to meana = true anda = false,
respectively. For the purposes of the present paper we assume thatC is a propositional
language, with atoms of the formxθy wherex, y ∈ A∪DOM andθ is a binary relation
symbol. (The particular set of relation symbols supported does not matter, as long as =
is present.)

Remark 3.1. We note that the results of this paper remain true if the artifact instances
are considered within a larger context, e.g., one that includes a family of database
relations in the spirit of [15]. In such cases, the conditionlanguageC used may include
variables other than attributes inA, and may include quantification over those variables.

In this paper it is convenient to work with pairs(Ξ,Ξ′) of structures, where intu-
itively Ξ′ is constructed at some point in time afterΞ was constructed. In such cases,
following convention from the verification community, we may use formulas that refer
to attributes inA and toprimed attributes, i.e., expressions of the formA′ whereA ∈
A, that are used to refer to the values associated to attributes in Ξ′. Given a formula
ϕ(x1, . . . , xn, y

′

1, . . . , y
′

m) wherex1, . . . , xn, y1, . . . , ym ∈ A, the pair(Ξ,Ξ′) satis-
fiesϕ, denoted(Ξ,Ξ′) |= ϕ, if ϕ[x1/Ξ(x1), . . . , xn/Ξ(xn), y′1/Ξ

′(y1), . . . , ym/Ξ
′(ym)]

evaluates to true.

3.2. Tasks, Messages, Events

We now turn to the kinds of events that can pass between an artifact instance and
the environment. These event types are in two categories

• Incoming Event Types: these include types forone-way messagesandtask ter-
minations

• Outgoing Event Types: these include types fortask invocations

13

To formalize these we first consider incoming one-way messages, and then tasks.
Intuitively, incoming one-way messages are unsolicited events from the environ-

ment that are used to model direct user requests (e.g., request to create a new order,
request to revise requirements, manager approval) and other spontaneous phenomena
occurring in the external environment.

We assume a set MESSAGEof message names, that is disjoint from the other sets
of names already established.

Definition 3.2. An incomingone-way message(event) typeis a tripleE = 〈M,O,ψ〉,
where

• M ∈ MESSAGEis a message name,

• O ⊆ ATTdata is a message payload structure, and

• ψ is a condition that refers to attributes inO.

It is assumed that two distinct message types have distinct names, i.e., if〈M,O,ψ〉
and 〈M, O′, ψ′〉 are message types, thenO = O′, andψ andψ′ are identical. We
sometimes refer to message type〈M,O,ψ〉 simply asM . The set of one-way message
event types is denoted EVENTmsg.

A one-way message eventof one-way message typeE = 〈M,O,ψ〉 is a paire =
〈M,p〉 wherep : O → DOM is thepayloadandψ[p] evaluates to true.

The conditionψ in a one-way message type corresponds intuitively to restrictions
that are known to apply to payloads of messages of that type.

Tasks model both computer-executed tasks as well as human-performed ones. Fol-
lowing the spirit of semantic web services [32] and also the earlier work on declarative
artifact meta-models [7, 15, 12], tasks include input and output attributes, and postcon-
ditions. (We do not include preconditions, because the guards on atomic stages holding
tasks will take that role.)

We assume a set TASK of task names, that is disjoint from the other sets of names
already established.

Definition 3.3. A taskis a tuple〈T, I,O, ψ〉, where

• T ∈ TASK is a task name,

• I ⊆ ATTdata (input attributes),

• O ⊆ ATTdata (output attributes), and

• ψ (postcondition) is a logical formula inC referring to attributes inI without
primes and to attributes inO with primes.

It is assumed that two distinct tasks have distinct names, i.e., if 〈T, I,O, ψ〉 and〈T, I ′,
O′, ψ′〉 are tasks, thenI = I ′, O = O′, andψ andψ′ are identical. We sometimes
refer to task〈T, I,O, ψ〉 simply asT .

14

A task invocation event typeis a pairE = 〈T, I〉 where〈T, I,O, ψ〉 is a task. A
task invocation eventof this type is a paire = 〈T, p〉 wherep : I → DOM is theinput
payload. The set of task invocation event types is denoted EVENTinv.

A task termination event typeis a tripleE = 〈T, I,O〉 where〈T, I,O, ψ〉 is a task.
A task termination eventof this type is a triplee = 〈T, p, p′〉 where〈T, p〉 is a task
invocation event,p′ : O → DOM, andψ[p, p′] evaluates to true. Herep is called the
input payloadof e andp′ is called theoutput payloadof e. The set of task termination
event types is denoted EVENTterm.

Intuitively, task invocation events occur when an artifactinstance invokes a task,
and task termination events occur when the invoked task is completed. The assignment
p will correspond to the values of attributes inI of the invoking artifact instance, and
assignmentp′ will cause the assignment of values to attributes inO of the artifact
instance at the time when the task terminates. Postconditions model constraints on
the outcomes of task executions. They can model both (i) deterministic tasks (e.g.
performing a computation:x′ = x+1), and (ii) black-box services or human performed
tasks (e.g. stating that an attribute is only guaranteed to be filled: x′ 6= ⊥; or that an
attribute lies within some range:20 ≤ y′ ∧ y′ ≤ 30).

It is convenient to refer to the full set of incoming types.

Definition 3.4. The set ofincoming event typesis EVENTinc = EVENTterm∪EVENTmsg.
It is assumed that EVENTinc ⊆ EVENT.

3.3. GSM data model and pre-snapshot

We introduce the notion of GSM model in two steps. The first is focused on the
data structure associated with a GSM model. This structure will allow us to define the
important notion of ‘sentry’, which form the core of the ECA-like rules that are used
in GSM lifecycle models.

Definition 3.5. A GSM data modelis a triple∆ = (Att,S,M) where the following
hold.

1. Att ⊂ ATTdata ∪ ATTstatus is finite, called theattributesof ∆. (Recall that
ATTdata∩ ATTstatus= ∅.)

2. S ⊂ STAGE is finite, called thestagesof ∆.
3. M ⊂ M ILESTONE is finite, called the set ofmilestonesof ∆.
4. Att includes a data attribute calledLatestIncEventType.
5. M ⊂ Att, i.e., each milestone namem ∈ M also occurs inAtt as a status

attribute.
6. {activeS | S ∈ S} ⊂ Att, i.e., for each stage nameS ∈ S, the status attribute

activeS occurs inAtt.

Intuitively, a GSM data model∆ = (Att,S,M) provides the skeleton for GSM ar-
tifact instances, including the basic control structure provided by stages and milestones.
In particular, the data attributes inAtt are used to hold business-relevant information

15

about the progress of the artifact instance through the business operations. The mile-
stone attributesm ∈M will take Boolean values, and will record, at a given moment in
time, whetherm has most recently been achieved or invalidated. And attributesactiveS
for S ∈ S will take Boolean values, and will record whether stageS is currently active
or inactive. As described in Subsection 3.5 below, a GSM lifecycle model associated
with a GSM data model will specify relationships between thestages and milestones.

We now introduce the notion of ‘pre-snapshot’ for a GSM data model; this corre-
sponds to an instantaneous description of a running instance of the GSM data model at
a given point in time. (This notion is extended to GSM models in Definition 3.12.)

Definition 3.6. A pre-snapshotof a GSM data model∆ = (Att,S,M) is an assign-
ment functionΣ : Att → DOM where

(i) Σ(a) ∈ {true, false} for each status attributea ∈ Att, and
(ii) Σ(LatestIncEventType) ∈ EVENTinc.

3.4. Status event and Sentry

In addition to incoming events, it is useful to model events corresponding to changes
in the status attributes of an artifact instance.

Definition 3.7. Let ∆ = (Att,M,S) be a GSM data model. Astatus change event,
or simply status event, for ∆ is an expression of form+a or −a wherea is a status
attribute for∆, i.e.,a ∈ Att ∩ ATTstatus. The set of status events for∆ is denoted as
Estatus(∆)

We typically use the symbol ’⊙’ to denote thepolarity of a status event, i.e.,⊙ ∈
{+,−}.

Recall that in the condition languageC used in this paper, data attributes are used
as variables. We shall also use status events as Boolean variables in expressions inC.
The intuitive meaning of+a is thata has shifted from false to true during the course
of a B-step, and analogously for−a.

Definition 3.8. Let∆ = (Att,S,M) be a GSM data model, andΣ,Σ′ be pre-snapshots
of ∆. If a is a status attribute inAtt then(Σ,Σ′) satisfies+a, written (Σ,Σ′) |= +a
if Σ |= ¬a andΣ′ |= a. Similarly, (Σ,Σ′) satisfies−a, written (Σ,Σ′) |= −a if
Σ |= a andΣ′ |= ¬a. The meaning of(Σ,Σ′) |= ϕ, whereϕ is a formula inC possibly
involving status events and both unprimed and primed attribute symbols, is defined in
the natural manner.

Intuitively, a status event+a can be viewed as a macro for the condition¬a ∧ a′,
and the status event−a can be viewed as a macro for the conditiona ∧ ¬a′.

We can now define the notion of ‘sentry’, which forms the core of the ECA-like
rules used in GSM.

Definition 3.9. Let ∆ = (Att,S,M). A sentryfor ∆ is a Boolean formula of the form
τ ∧ γ, where

16

1. γ is a formula that contains no incoming event types or status events, and
2. τ is (a) empty, or (b) has the formLatestIncEventType = E for some incoming

event typeE, or (c) has the form⊙a for some status attributea and⊙ ∈ {+,−}.
In case (b),E is the trigger of this sentry, and in case (c),⊙a is thetrigger of
this sentry.

The set of sentries for∆ is denoted SENTRY(∆).

If a sentry is written in formτ ∧ γ as above, then it is easy to transform it into the
classical form “on 〈 event〉 then 〈 condition〉.”

Remark 3.10. Recall Remark 3.1, which stated that the results of this paper remain
true if artifact instances are considered within a larger context, e.g., one that includes
a family of database relations. In that case, the notion of ‘sentry’ can be expanded
by permitting the formulasγ in Definition 3.9 be closed formulas including quantified
variables ranging over elements of the larger context.

3.5. GSM model, snapshot, and environment

A GSM model includes a GSM data model and a lifecycle model.

Definition 3.11. A GSM modelis a tupleΓ = (Att,S,M,L), where(Att,S,M) is a
GSM data model, and where thelifecycle modelL of Γ has structure(Substages,Task,
Owns,Guards,Ach, Inv) and satisfies the following properties.

1. Substages: S → P(S) is a function fromS to finite subsets ofS, such that the
relation{(S, S′) | S′ ∈ Substages(S)} creates a forest. A root of this forest is
called atop-level stage, a leaf is called anatomic stage, and a non-leaf node is
called acomposite stage. The set of atomic stages is denotedSatomic.

2. Task: Satomic→ TASK is an injection.
3. Owns : S → Pnonempty(M) (i.e., mapping to nonempty subsets ofM) such

that Owns(S) ∩ Owns(S′) = ∅ for S 6= S′. A stageS ownsa milestonem if
m ∈ Owns(S).

4. Guards: S → Pfin(SENTRY(Att,M,S)) (i.e., mapping to finite subsets of sen-
tries over the data model ofΓ).

5. Ach : M → Pfin(SENTRY(Att,M,S)). For milestonem, each element of
Ach(m) is called anachieving sentryof m.

6. Inv : M → Pfin(SENTRY(Att,M,S)). For milestonem, each element of
Inv(m) is called aninvalidating sentryof m.

We now extend the notion of pre-snapshot for GSM data models to full GSM mod-
els. We also define the notion of ‘snapshot’, which is a pre-snapshot satisfying some
internal consistency conditions. These correspond to the intuitions that (a) once a mile-
stone is achieved then the owning stage should be terminated, and (b) if a stage is
terminated all of its children should be terminated.

17

Definition 3.12. Let Γ = (Att,S,M,L) be a GSM model. Each pre-snapshot of
(Att,S,M) is also said to be apre-snapshotof Γ. A pre-snapshot ofΓ is asnapshotof
Γ if it satisfies the followingGSM invariants:

• GSM-1: Stage and milestone cannot both be true.If m ∈ Owns(S) andΣ(activeS)
= true, thenΣ(m) = false

• GSM-2: No activity in closed stage.If Σ(activeS) = falsefor stageS ∈ S and
S′ ∈ Substages(S), thenΣ(activeS′) = false.

Remark 3.13. In some variations of the GSM meta-model [24, 23] a third invariant
GSM-3is assumed, which states that for each stageS, at most one of its milestones
can be true. This invariant is enforced by some form of syntactical restriction on the
milestone achieving conditions. To streamline presentation here, and without loss of
generality, we do not considerGSM-3here.

We conclude the subsection by formalizing a notion of ‘environment’ that is used to
model the part of the real-world environment relevant to theoperation of a GSM artifact
instance. In particular, it is assumed that the environmentwill perform the tasks that
are invoked from the artifact instance, and send termination events back to the instance
when a task completes. In the current GSM meta-model, each stage can have at most
one active occurrence at a given time (although it may have multiple occurrences that
occur sequentially through time). Thus, to model the environment of a GSM model
Γ = (Att,S,M,L), it is sufficient to incorporate, for each taskT occurring in the
range ofTask, variables to hold the values of the input attributes used inan invocation
of taskT .

As a technical convenience we first extend the set of attributes as follows.

Definition 3.14. An environment attributeis a symbolxT where〈T, I,O, ψ〉 is a task
andx ∈ I. The set of environment attributes is denoted ATTenv.

Definition 3.15. The environmentfor GSM modelΓ = (Att,S,M,L) is the set of
attributes ENVΓ = {xT | T = Task(S), S ∈ Satomic}. A valuefor this environment is
a functionΩ : ENVΓ → DOM.

4. PAC rules and Well-formed GSM Models

This section presents the building blocks used to define the operational seman-
tics of GSM models. The section starts with an informal description of the notion
of GSM Business Step (B-step). It then describes Precedent-Antecedent-Consequent
(PAC) rules, a variation of ECA rules used to capture the intended meaning of the
sentries used in a GSM model, and also the GSM invariants. Using examples (Exam-
ples 4.6 and 4.7), we illustrate potential non-intuitive behaviors that can be exhibited
by unrestricted application of PAC rules. Finally, the section introduces the Polarized

18

Ω
∑

Ω’
∑’e

G

GSM
snapshot
before

Environment
snapshot
before

Events being
generated to send
to environment

Incoming
event being
consumed GSM

snapshot
after

Environment
snapshot
after

Can be
• One-way message, or
• Task termination event

Contains
•Task invocation events

Figure 4: Illustration of a single GSM Business step (B-step)

Dependency Graph (PDG) of a GSM model. The PDG is used to definethe well-
formedness condition for GSM models (based on an acyclicityof the PDG), and to
structure the application of the PAC rules, with the goal of avoiding the non-intuitive
behaviors and thus providing unambiguous and intuitively natural semantics that un-
derlies the response to incoming events.

4.1. Informal Description of GSM Business steps (B-steps)

The operational semantics for GSM are focused on the notion of B-steps, which
capture the impact of a single incoming event occurrencee on a snapshotΣ of a GSM
modelΓ. In Section 5 three formal notions of B-step are defined and shown to be
equivalent. The term ‘B-step’ will then be defined to includethe B-steps of each (any)
of the three formal notions.

The notion of B-step is illustrated in Figure 4. The semantics characterizes 6-tuples
of the form(Σ, e,Σ′,Ω, G,Ω′), where the following hold.

1. Σ is theprevioussnapshot.
2. e is a ground occurrence of an incoming event type associated with Γ.
3. Σ′ is thenextsnapshot.
4. Ω is thepreviousvalue of the environment.
5. G is the set of groundgenerated event occurrences, all of whom have task invo-

cation type. (These arise when atomic stages become active.)
6. Ω′ is thenextvalue of the environment.

To illustrate the notion of B-step, we describe key aspects of the incremental for-
mulationof the operational semantics. (This is formalized in Definition 5.1 below.) In
this case,Σ′ is constructed in two phases (see Figure 5). The first is to incorporate
evente into Σ, by computing the “immediate effect”Σe of e onΣ. Intuitively, this has
the effect of (a) updating the attributeLatestIncEventTypeto hold the type ofe, and (b)
updating the values of all data attributes directly affected by the payload ofe.

We pause to give the formal definition of ‘immediate effect.’To that end, we first
introduce the notion of when an event is “applicable” to a GSMsnapshot.

19

Definition 4.1. Let Γ = (Att,S,M,L) be a GSM model andΣ a snapshot ofΓ. In-
coming evente is applicableto Σ if either

1. e = 〈M,p〉 has typeE = 〈M,O,ψ〉 ∈ EVENTmsgandp |= ψ, or
2. e = 〈T, p, p′〉 has typeE = 〈T, I,O, ψ〉 ∈ EVENTterm, T = Task(S) for some

atomic stageS ∈ Stages, Σ(activeS) = true, and(p, p′) |= ψ.

For both kinds of events, in order to be applicable the formulaψ must be satisfied by
the associated assignments. Further, with regards to termination eventse = 〈T, p, p′〉,
the atomic stageS that owns taskT must be active in snapshotΣ. (We note thatS
might become active, launch an occurrence ofT , and then become inactive because
some milestone ofS unrelated toT goes true. In that case the occurrence ofT should
be abandoned, and any termination event from that occurrence should be ignored.)

Definition 4.2. Let Γ = (Att,S,M,L) be a GSM model andΣ a snapshot ofΓ, and
let e ∈ EVENTinc be applicable toΣ. The immediate effectof e on Σ, denotedΣe is
defined as follows.

1. if e = 〈M,p〉 has typeE = 〈M,O,ψ〉 ∈ EVENTmsg, thenΣe is defined so
thatΣe(A) = p(A) for each attributeA ∈ I andΣe(A) = Σ(A) for all other
attributesA.

2. if e = 〈T, p, p′〉 has typeE = 〈T, I,O, ψ〉 ∈ EVENTterm, thenΣe is defined so
thatΣe(A) = p′(A) for each attributeA ∈ O andΣe(A) = Σ(A) for all other
attributesA.

We now return to incremental construction of B-steps. The second phase is to
incorporate the effects of the guards, achieving and invalidating sentries for mile-
stones, and the two GSM invariants. A family of ECA-like rules corresponding to
these constructs is derived fromΓ (Subsection 4.2). A sequenceΣ = Σ0,Σ

e = Σ1,
Σ2, . . . ,Σn = Σ′ of pre-snapshots is constructed, where (1) each step in the computa-
tion afterΣe is called amicro-stepand it corresponds to the application of one ECA-like
rule, and where (2) no ECA-like rule can be applied toΣn. (The intermediate values
Σ1, . . . ,Σn−1 might violate GSM-1 or GSM-2, which is why they are permittedto be
pre-snapshots as opposed to snapshots.) There are restrictions on the ordering of rule
application, as detailed in Subsection 5.1 below. Finally,Σ′ is returned as the result of
the B-step. For each micro-step one also maintains a setGj of generated events, which
are sent to the environment at the termination of the B-step.

In order to streamline the presentation, in the rest of the paper we do not consider
the generation of outgoing events, and assume that the environment is correctly updated
at the end of each B-step. In particular, when discussing B-steps we shall focus on
triples of the form(Σ, e,Σ′) whereΣ,Σ′ are snapshots of the GSM model ande is an
incoming event applicable toΣ.

Although the creation ofΣ′ from Σ ande may take a non-empty interval of clock
time, in the formal model this is considered instantaneous.(In other, more practically
oriented investigations of GSM [22, 23] the logical timestamp of each B-step is also
maintained; this detail is omitted here because the focus ison properties of a single
B-step.)

20

Ω
∑ ∑’e G

GSM
snapshot
before

Environment
snapshot
before

GSM
snapshot
after

Environment
snapshot
after

∑e = ∑1 ∑2
e

G2

∑ ∑n Gn

∑’...
∅∅∅∅

Each micro-step impacts exactly one status
attribute, i.e.,
•Toggling a milestone attribute, or
•Toggling a stage active/inactive
Some micro-steps add a new event to G

Send events in
G = G� to external
environment in this
final micro-step

Attributes directly
affected by e are
updated in ∑e

Events being
generated to send
to environment

Incoming
event being
consumed

G

Ω’

Ω Ω’

Figure 5: Incremental formulation of GSM semantics

Intuitively, B-steps are considered to be natural “units ofbusiness-relevant change”.
In naturally arising cases, a B-step will capture all of the effects of incorporating a sin-
gle incoming event, including changes to milestone and stage status. While the con-
struction of a snapshotΣ′ from snapshotΣ and evente will be treated as a “black box”
from the perspective of the business, the values ofΣ andΣ′ are considered business
relevant. This perspective on B-steps will lead to some requirements on how they are
defined (see Subsection 4.3).

4.2. Prerequisite-Antecedent-Consequent Rules

We now turn to the ECA-like rules associated with a GSM model.These are used
to guide the micro-steps in the incremental computation of aB-step, and are also used
in the other formulations of the GSM operational semantics.

Definition 4.3. A precedent-antecedent-consequent(or PAC) rule is a triple〈π, α, γ〉,
where:

- π (prerequisite), is a formula inC on attributes inAtt,

- α (antecedent), is a formula inC on attributes inAtt, and

- γ (consequent), is a status change eventof form ⊙a, wherea ∈ Attstatus and
⊙ ∈ {+,−}

Figure 6 shows templates for the six kinds of PAC rules associated with a GSM
modelΓ. The first three templates correspond directly to sentries in Γ, and address
opening stages, achieving milestones, and invalidating milestones. The last three tem-
plates correspond to maintaining the GSM invariants. PAC-5and PAC-6 are straight-
forward. The primary role of PAC-4 is to ensure that when a stage opens then any true

21

Basis Prerequisite Antecedent Consequent
Explicit rules
PAC-1 Guard: for each stageS, for each

guard ϕ of S. (Include term
active

S′ if S′ is parent ofS.)

¬activeS ϕ ∧ active
S′ +activeS

PAC-2 Milestone achiever: For each mile-
stonem of stageS with achieving
sentryϕ.

activeS ϕ +m

PAC-3 Milestone invalidator: For each
milestonem of stageS with inval-
idating sentryϕ.

m ϕ −m

Invariant preserving rules
PAC-4 Guard invalidating milestone: For

each guardϕ of a stageS, for each
milestonem not occuring in a top-
level conjunct¬m. (Include term
active

S′ if S′ is parent ofS.)

m ϕ ∧ active
S′ −m

PAC-5 For each milestonem of a stageS. activeS +m −activeS
PAC-6 For each stageS child of S′. activeS −active

S′ −activeS

Figure 6: Templates for PAC rules associated with a GSM modelΓ. (Here ‘¬’ is
conventional logical negation, ‘+’ is used to indicate thata status attribute has/will
transition from false to true, and ‘-’ is used to indicate that a status attribute has/will
transition from true to false.)

milestone owned by that stage is invalidated; this is half ofenforcing invariant GSM-1.
Remark 4.12 below motivates the particular formulation of PAC-4 used here.

In all but PAC-2, the prerequisite is a kind of “opposite” of the consequent. Intu-
itively, PAC-2 is different because of the very close relationship between stages and
their milestones; see Remark 5.5 below.

Definition 4.4. Let Γ be a GSM model. The set ofPAC rulesfor Γ, denotedrulesΓ,
is the set of all PAC rules that are formed forΓ using the templates PAC-1,. . . , PAC-6
shown in Figure 6.

The following definition describes how PAC rules can be applied to pre-snapshots.

Definition 4.5. Let 〈π, α,⊙a〉 ∈ rulesΓ be a PAC rule. Theprimed versionof α,
denotedα′, is formed fromα by replacing each attributeA by A′. (The status events
⊙̂â are not modified.) The PAC rules isapplicableto pre-snapshotsΣ,Σ′ if Σ |= π and
(Σ,Σ′) |= α′. In this case, the result ofapplyingthe rule isΣ′′, which is constructed
from Σ′ by changing the value of status attributea according to⊙a. In this case we
say that polarized attribute·a is triggeredby the application of rule(π, α,⊙a).

A PAC rule isapplicableto the sequenceΣ = Σ0,Σ
e = Σ1,Σ2, . . . ,Σi, if it is

applicable toΣ,Σi; in this case the application of the rule addsΣi+1 to the sequence
whereΣi+1 is the result of applying the rule toΣ,Σi.

22

The intuition for using the primed versionα′ rather thanα in Definition 4.5 is as
follows. Suppose that a sequenceΣ = Σ0,Σ

e = Σ1,Σ2, . . . ,Σi of pre-snapshots
has been constructed and rule(π, α,⊙a) is under consideration, withΣ0 |= π. The
sentry underlyingα may refer to data attributes that were updated to formΣ1 (includ-
ing possiblyLatestIncEventType), and/or to status attributes that have changed when
constructingΣ2, . . . ,Σi. As is typical in rules-based systems, the conditionα should
be tested against the pre-snapshot that incorporates the effects of the previous updates.
This is achieved by testing(Σ,Σ′) |= α′ rather than(Σ,Σ′) |= α.

4.3. Intuitions underlying B-steps: Toggle Once and Inertial

This subsection describes two key intuitions underlying the notion of B-steps, and
provides illustrations of non-intuitive behaviors that will be prevented by the GSM
well-formedness condition.

Recall that B-steps are intended to correspond to the smallest unit of business-
relevant change in the state of an artifact. One intuitive principle of B-steps is called
Toggle Once. This states that in a B-step(Σ, e,Σ′), if Σ′ is constructed from(Σ, e, t)
through the incremental application of PAC rules, then eachstatus value attribute can
change at most once during that construction. Note that if the incremental computation
of a B-step did not satisfy Toggle Once, then a given status attribute might change
values inside the B-step, but those changes would not be visible from the starting and
ending snapshots of the B-step.

The Toggle Once principle is enforced by the use of prerequisites in the PAC rules
(see Lemma 5.10). In the formalism, enforcing the Toggle Once principle has the
advantage of preventing infinite cycles in the incremental computation of a B-step.

The second intuitive principle is calledinertial (formalized in Definition 5.4 be-
low). This states that if a status attribute changes during aB-step, then there should be
a “justification” for that change that is visible by examining only the starting and end-
ing snapshots of the B-step. Now, in the general case, the setof PAC rules of a GSM
modelΓ will involve a form of negation. As is well-known from logic programming
and datalog [29], the presence of negation in rules can lead to outcomes that are not
inertial. In the GSM operational semantics this will be avoided using an approach rem-
iniscent of stratification as developed in those fields [4, 16]. In particular, the approach
involves (i) requiring that a certain relation defined on therules be acyclic, and then
(ii) requiring that the order of rule firing comply with that relation. We note also that
our framework satisfies a form of monotonicity because of theToggle Once property.
Specifically, in a B-step, once a status attribute changes, then it will not change again.

We now present an example of how unrestricted use of the PAC rules can lead to a
non-inertial result.

Example 4.6. Consider Figure 7(a), and suppose that for some snapshotΣ we have
thatS1 andS2 are both open, thatm1 andm2 are both false, that attributeA = 20,
and that evente is to be processed. Suppose that the PAC rules are applied in the order
suggested by the numbers in the figure, that is

1. milestonem1 is achieved;
2. guardg3 is triggered (since at this momentm1 is true andm2 is false);
3. stageS3 is opened;

23

S3
S1

S2

m1Achieving sentry:
currentIncEventType=E

∧ A>5

m2Achieving sentry:
currentIncEventType=E

∧ A>10

g3:if m1 and not m2

S1

S2

1
2

3

4

S1

S2

m1Achieving sentry:
+m3 ∧ A>5

m2Achieving sentry:
+m1 ∧ A>10

S3
m3 Achieving sentry:
+m2 ∧ A>15

(a) The need for ordering (b) The need for acyclicity

Figure 7: Illustration of potential non-intuitive behaviors (explained in Examples 4.6
and 4.7). Stages in green are open in the snapshot under consideration.

4. milestonem2 is achieved;
5. (not numbered: stagesS1 andS2 are closed)

Let Σ′ be the result of these steps. ThenΣ′ is a snapshot. However, inΣ′ we have that
bothm1 andm2 are true, or in other words, the condition of guardg3 is not true inΣ′.
Intuitively, there is not an apparent reason, looking only at Σ andΣ′, as to whyS3 has
become open inΣ′. However, if using the ordering that will be imposed on the PAC
rules, in this example the rules governing bothm1 andm2 will have to be fired before
any rules governingg3 andS3.

A more subtle violation of inertial can arise if there are cycles, as illustrated next.

Example 4.7. Figure 7(b) shows a cycle of dependency between three milestones:
achieving one can lead to achieving a second one, which can inturn lead to achiev-
ing the third one. Suppose now that in some GSM snapshotΣ each ofS1, S2, andS3

are open. One can imagine a B-step(Σ, e,Σ′) wheree has nothing to do with those
stages, but where each ofm1,m2, andm3 are true inΣ′ (and the corresponding stages
are closed). InΣ′ the change in value for each ofm1, m2, andm3 is “justified”, and
so the “inertial” property is satisfied at a local level. However, intuitively it is unsatis-
factory to permit this situation. The acyclicity conditon imposed on the PAC rules will
prevent this kind of non-intuitive behavior.

4.4. Polarized Dependency Graph and Well-formedness

The Polarized Dependency Graph (PDG) is intended to capturedependencies be-
tween the PAC rules inrulesΓ, and will be used to constrain the order of application of
rules during the incremental construction of B-steps. Thisgraph incorporates several
aspects of the GSM semantics. The central intuition underlying the PDG is as follows:
an edge from polarized attribute⊙a to polarized attributê⊙â is included in the PDG if
consideration of PAC rules triggerinĝ⊙b should be performed only after consideration
of PAC rules triggering⊙a. In what follows, the definitions are presented, followed by
some examples and intuitions.

Definition 4.8. Thepolarized dependency graph(PDG) of a GSM modelΓ, denoted
PDG(Γ), is defined as follows. For each status attributea in Γ, we have two nodes
〈+, a〉 and〈−, a〉. For each stageS and each of its guardsϕ, we have a node〈+, S.ϕ〉.

24

When it is clear from the context, we abbreviate a node〈⊙, a〉 by writing simply “⊙a”.
In the following description of the edges of the PDG, the antecedentα of a PAC rule
is written asτ ∧ γ, whereτ is either empty, or has formLatestIncEventYype = E
for some incoming event typeE, or has the form⊙a for some status attributea and
⊙ ∈ {+,−}; and whereγ involves no incoming even types or status events.

1. For each PAC-1 rule〈¬activeS , τ ∧ γ,+activeS〉 in rulesΓ,

+ If ⊙̂b is a polarized status attribute occurring inτ , then include directed
edge(⊙̂b,+S.ϕ).

+ If a status attributeb occurs inγ, then include two directed edges(+b,+S.ϕ)
and(−b,+S.ϕ).

2. For each guardϕ of stageS:

+ add edge(+S.ϕ,+activeS).

+ for each milestonem owned byS that does not occur in a top-level conjunct
of form ¬m in γ, add the edge(+S.ϕ,−m). (These edges correspond to
PAC-4.)

3. For each PAC rule〈π, τ ∧ γ,⊙a〉 from templates PAC-2 or PAC-3 inrulesΓ,

+ If ⊙̂b is a polarized status attribute occurring inτ , then include directed
edge(⊙̂b,⊙a).

+ If b is a status attribute occuring inγ, then add two edges(+b,⊙a) and
(−b,⊙a).

4. For each PAC-5 rule〈activeS ,+m,−activeS〉 in rulesΓ, add edge(+m,−activeS),
and

5. For each PAC-6 rule〈activeS ,−activeS′ ,−activeS〉 in rulesΓ, add edge(−activeS′ ,
−activeS).

Thestatus-only polarized dependency graph, denotedPDGs(Γ), is formed fromPDG(Γ)
as follows. The nodes are{⊙a | a is a status attribute, and⊙ ∈ {+,−}}. Each edge
of PDG(Γ) that does not involve a guard is included. Also, for each pairof edges
(⊙a,+S.ϕ) and (+S.ϕ, ⊙̂b), add edge(⊙a, ⊙̂b). Finally, the transitive closure of
PDGs(Γ) is denotedPDGs∗(Γ).

It is straightforward to verify thatPDG(Γ) is acyclic iff PDGs(Γ) is acyclic.

Definition 4.9. A GSM modelΓ is well-formedif PDGs(Γ) is acyclic.

Example 4.10. Figure 8 shows part of the PDG for the Engineering Requirements
GSM model of Example 2.1, with a focus on the “Engineering Design” stage, its guards
and its milestones. For each milestone (oval) and stage (rounded rectangle) there are
two nodes, one corresponding to the positive polarity (+) and the other to the negative
polarity (−). For each guard (diamond) there is only the positive polarity.

Consider first the node “+Design Suspended”. Because of template PAC-5, a possi-
ble cause for “−activeEngineering Design” to become true (i.e., for “Engineering Design”

25

Engineering
Designg3

g4

+

+
Engineering

Design

+

−

Design
Completed

Design
Suspended

Design
Completed

Design
Suspended

+

−

+

−

Requirements
Approved

Requirements
Approved

+

−

Restricted Products
List Compiled +

−Restricted Products
List Compiled

Figure 8: Part of PDG for GSM model of Engineering Requirements example. (Here
rounded rectangles correspond to stages, ovals to milestones, and diamonds to guards.
The ‘+’ and ‘-’ signs indicate the polarities associated with those nodes.)

to become inactive), is if “+ Design Suspended” becomes true. Intuitively, if comput-
ing a B-step through incremental application of the PAC rules, then rules concerning
“+Design Suspended” should be evaluated before rules concerning “−Engineering De-
sign”. It is in this way that edges of the PDG indicate a dependency of the target of an
edge on the source of that edge.

Consider now the guard node labeled “+g4”. Technically, this corresponds in Def-
inition 4.8 to the node〈+, S.ϕ〉, whereS is the stage “Engineering Design” andϕ
is the sentry “LatestIncEventType = Request : ResumeEngineeringDesign.” Because
the sentry ofg4 involves only an incoming event, there are no edges in the PDGwith
target “+g4”.

According to Definition 4.8 an edge from+g4 to +activeEngineering Designis in-
cluded, corresponding to the template PAC-1. Also, edges from +g4 to “−Design
Suspended” and “−Design Completed” are included, corresponding to the template
PAC-4. Intuitively, in the general case, such edges are included because rules that can
affect status attributes in a guardg of S should be considered before the PAC-1 based
rule that usesg as antecedent can trigger+activeS , and also before the PAC-4 based
rules that uses+g as antecedent to invalidate milestones ofS.

Consider now+g3, which has associated sentry “ReqirementsApproved∧Restrict−
edProductsListCompiled∧ ¬DesignCompleted”. Edges from both polarities of “Re-
quirements Approved” to+g3 are included because during incremental application of
the PAC rules, the value of “Requirements Approved” should be stable before consider-
ing rules that haveg3 as antecedent. That is, rules that might trigger “+Requirements
Approved” and rules that might trigger “−Requirements Approved” should both be
considered before considering the value for+g3. The analogous is true for “Restricted
Products List Compiled” and “Design Completed”.

Consider now out-going edges from+g3. Similar to+g4, edges are included from
+g3 to +activeEngineering Designand “−Design Suspended”. An edge from+g3 to
“−Design Completed” is not included. Intuitively, this relates to the formulation of

26

S2
S2

+

−

m2
m2

+

−

g2+

S1
S1

+

−

m1
m1

+

−

g1+

Figure 9: Illustration of an acyclic polarized dependency graph, where the correspond-
ing non-polarized dependency graph is cyclic

template PAC-4 and the fact that¬DesignCompleted is a top-level conjunct ofg3.
Note that in an incremental application of PAC rules orderedaccording to the PDG, if
g3 were to fire, then necessarily “Design Completed” is false, and will not subsequently
be modified. Thus, in connection withactiveEngineering Designand milestone “Design
Completed,” the invariant GSM-1 will be satisfied.

The following example presents one motivation for using polarized status attributes
in the PDG, rather than simply the status attributes.

Example 4.11. Figure 9 illustrates the PDG for a GSM model involving two stagesSi

(with guardgi and milestonemi) for i ∈ [1, 2], whereS2 is a child ofS1. The sole
achieving sentry form1 is +m2. (The sentries in the guards, and for achievingm1, are
not relevant to the example.) As shown in the figure, there areedges:(+S2.g2,−m2),
(+m2,+m1), (+m1,−S1), (−S1,+S2.g2).

(The last edge is becauseactiveS1
is a conjunct in the antecedent for the PAC-1 rule

that corresponds to guardg2.) If plain status attributes rather than polarized ones were
used, this would yield a cycle.

The PDG of a GSM model provides an ordering for application ofthe PAC rules
that ensures an intuitively natural outcome for B-steps. The particular formulation of
PDG (and of the PAC templates) described in the current paperwas developed after
working with many GSM models, some of which have been used in practice. If using
the formulation of Definition 4.8, the PDGs of those GSM models are acyclic. The
next two remarks consider alternative formulations for thePDG.

Remark 4.12. We develop here a formulation of PDG based on a simplified version
of template PAC-4. In particular, suppose that PAC-4 is replaced by a template PAC-
4’, where PAC-4’ applies to each stageS and milestonem whereS ownsm, and has
prerequisitem, antecedent+activeS , and consequent−m. It would then be natural
to modify Definition 4.8 as follows: for each stageS with guardϕ and milestonem,
remove the edge(+S.ϕ,−m), and include an edge(+S,−m). (That is, delete the
second item in bullet (2.) of that definition, and use insteadan edge from+S to−m.)

This formulation of the PAC templates and the PDG is simpler than the ones of
Definitions 4.4 and 4.8, respectively. However, the PDG created from Design-to-Order
using this new formulation is not acyclic, because of the interplay of stage “Engineering
Design” and milestone “Design Completed”.

27

The next formulation of PDG is more lenient than Definition 4.8, in the sense that
it yields an acyclic graph for some GSM models that have cyclic PDGs

Remark 4.13. (Event-relativized PDG.) This formulation of PDG is based on the ob-
servation that B-steps are based on single incoming events.Given GSM modelΓ and
incoming event typeE, we define theevent-relativized polarized dependency graph
(ePDG) of Γ for E, denotedPDGE(Γ), as follows. The set of nodes forPDGE(Γ) is
the same as forPDG(Γ), except that an additional node〈+, E〉 is included. The set of
edges forPDGE(Γ) is constructed as follows:

1. Given a stageS with a guardϕ that hasE as triggering event, include edge
(+E,+S.ϕ).

2. For each milestonem with achieving sentry that hasE as triggering event, in-
clude the edge(+E,+m).

3. For each milestonem with invalidating sentry that hasE as triggering event,
include the edge(+E,−m).

4. Recursively add edges that are (a) inPDG(Γ) and (b) have source reachable from
edges already included intoPDGE(Γ).

Intuitively, if a node⊙a in PDGE(Γ) is reachable from+E, then it is possible that for
some snapshotΣ of Γ and some evente of typeE, the B-step resulting from incorpo-
ratinge into Σ includes the status attribute change⊙a. (Technically, we are guaranteed
only the converse of this property.)

Consider a GSM model with milestonesm1 andm2, wherem1 has achieving sen-
try “LatestIncEventType =E1∧m2” andm2 has achieving sentry “LatestIncEventType

=E2∧m1.” The PDG of Definition 4.8 for this model is cyclic, but the event-relativized
PDGs for this model are acyclic.

5. Equivalent Formulations of GSM Operational Semantics

This section presents the three formulations of the notion of B-step, and then proves
their equivalence in the case of well-formed GSM models.

5.1. Incremental formulation

For this formulation, each PAC rule with consequent⊙a is associated with the
corresponding node of the graphPDGs(Γ) (e.g.〈⊙, a〉 for a PAC rule with consequent
⊙a). Since the PDG is acyclic, its topological sort provides a partial order≺ on PAC
rules. The main idea of the incremental semantics is that we apply the PAC rules in an
order consistent with≺.

In more detail, letΣ be a snapshot of a well-formed GSM modelΓ ande an incom-
ing event of typeE that is applicable toΣ. Choose a topological sort⊙1a1,⊙2a2, . . . ,
⊙rar for PDGs(Γ). Construct the sequence

Σ = Σ0,Σ
e = Σ1,Σ2, . . . ,Σn

inductively as follows. Suppose thatΣi has been constructed fromΣi−1 by applying a
rule with consequent⊙pap, or thati = 1 in which case setp = 0. Consider the rules

28

associated with⊙p+1ap+1,⊙p+2ap+2, . . . in sequence until some rule for some⊙qaq

is applicable to(Σ,Σi) (see Definition 4.5). Use that to formΣi+1. Continue until
rules for all of the nodes inPDGs(Γ) have been considered.

Definition 5.1. Let Σ,Σ′ be snapshots of a well-formed GSM modelΓ ande an in-
coming event. Then(Σ, e,Σ′) is an incremental B-stepfor Γ if Σ′ is the result of
applying PAC rules toΣ,Σe in the manner described above, for some topological sort
of PDGs(Γ)

Well-formedness guarantees the following important result.

Theorem 5.2. For a well-formed GSM modelΓ, given a snapshotΣ and an applicable
evente, there always exists a uniqueΣ′ s.t. (Σ, e,Σ′) is an incremental B-step. Further,
Σ′ satisfies GSM-1 and GSM-2.

The proof of this result and others are presented in Subsection 5.4 below.

5.2. Fixpoint formulation

The fixpoint formulation for the GSM semantics is analogous to the fixpoint charac-
terization used in logic programming [29]. The formulationis based on two properties
of triples (Σ, e,Σ′). In the following definitions, we assume thatΣ,Σ′ are snapshots
of a well-formed GSM modelΓ, and thate is an incoming event applicable toΣ. Intu-
itively, the first property states thatΣ′ must comply with all of the demands of the PAC
rules.

Definition 5.3. Let Γ and (Σ, e,Σ′) be as above. The triple(Σ, e,Σ′) is compliant
with respect toΓ if

- Σ′ andΣe agree on all data attributes, and

- for each PAC rule(π, α,⊙a) in rulesΓ, if Σ |= π and (Σ,Σ′) |= α′, then
Σ′ |= ⊙a.

Intuitively, the second property states that if a status attribute toggles betweenΣ
andΣ′, then that toggling must be “justified” by some PAC rule in connection withΣ
andΣ′.

Definition 5.4. Let Γ and(Σ, e,Σ′) be as above. The triple(Σ, e,Σ′) is inertial with
respect toΓ if for each status attributea: if Σ(a) 6= Σ′(a) then there is a PAC rule
(π, α,⊙a) in rulesΓ such thatΣ |= π; (Σ,Σ′) |= α′; andΣ′ |= ⊙a.

We pause now to consider template PAC-2, which has consequent of form +m but
prerequisite of formactiveS rather than¬m.

Remark 5.5. Suppose that we attempt to create a template PAC-2’ as an alternative
to PAC-2, where PAC-2’ has precedent¬m rather thanactiveS . Suppose that stage
S is the owner ofm. Becausem may become true only ifS is currently active, we

29

need to include the conditionactiveS in the antecedent. So, PAC-2’ has precedent¬m,
antecedentα = activeS ∧ ϕ, and consequent+m.

Suppose now thatΣ = Σ0,Σ
e = Σ1, . . . ,Σi is a partially constructed sequence of

pre-snapshots according to the incremental formulation, except that PAC-2’ is used in
place of PAC-2. Suppose further thatΣ0 |= ¬m and(Σ0,Σi) |= α′. This means that
Σi |= activeS , so the rule can be applied. Let us assume that the rule is applied, so that
Σi+1 |= m. Because of PAC-5,activeS will be negated in some subsequent micro-step
in this B-step. LetΣ′ be the result of the B-step. We then haveΣ′ /|= activeS . It follows
that(Σ,Σ′) /|=α′. This means that the PAC rule for+m is not applicable toΣ,Σ′. But
sinceΣ |= ¬m andΣ′ |= m, this means that(Σ, e,Σ′) is not inertial (in the context of
the modified PAC template).

Returning to the main discussion, we now define the fixpoint formulation.

Definition 5.6. Let Γ and(Σ, e,Σ′) be as above. Then the triple is afixpoint B-step
for Γ if

1. e is applicable toΣ,
2. for each data attributea, Σ′(a) = Σe(a)
3. (Σ, e,Σ′) is inertial and compliant with respect toΓ.

5.3. The Closed-Form Formulation

The closed-form formulation of the GSM semantics is based onthe observation
that the properties of compliance and inertial can be captured in a first-order formula
that refers to structures having the form(Σ, e,Σ′). The construction of the overall
formula is reminiscent of constructions used for logic programming with negation, and
in particular, when characterizing “negation as failure” [4, 16].

We sketch here how the formula is constructed. This formula will refer to attributes
in Σ′ as primed attributes. Also, for a PAC rule(π, α,⊙a) we writeα in the form
δ ∧ γ whereδ is either empty or is a status change event. (If the rule is triggered by an
incoming event, that is reflected inγ.) Finally, δ̂ is the formula constructed fromδ as
follows: if δ has form+a then set̂δ to be¬a ∧ a′, and if δ has form−a then set̂δ to
bea ∧ ¬a′.

The main idea is to construct a logical formula from the setrulesΓ. Since many
rules affect the same status attribute, for each attribute we first construct a formula
that includes the effects of all such rules. We refer to all rules that have action⊙a as
Cnsq(⊙a).

For status attributea, we defineθ+a to be

((¬a ∧
∨

(π,δ∧γ,+a)∈Cnsq(+a)(π ∧ δ̂ ∧ γ′)) → a′) ∧

((¬a ∧
∧

(π,δ∧γ,+a)∈Cnsq(+a) ¬(π ∧ δ̂ ∧ γ′)) → ¬a′)

and defineθ−a to be

((a ∧
∨

(π,δ∧γ,−a)∈Cnsq(−a)(π ∧ δ̂ ∧ γ′)) → ¬a′) ∧

((a ∧
∧

(π,δ∧γ,−a)∈Cnsq(−a) ¬(π ∧ δ̂ ∧ γ′)) → a′)

30

The intuition is thatθ+a considers the effect of all the rules that might result in
a changed totrue. Note how the first conjunct intuitively refers to thecompliance
requirement in the sense that it forces the attribute to transition to true whenever any
individual rule has prerequisite and antecedent both true.The second conjunct forces
the intertial requirement by forcing the attribute to remainfalse in case none of the
rules can be ”triggered”. The same can be said for theθ−a, which considers the rules
that govern the transitions of the attribute tofalse.

For the whole system we then define:

ΘΓ = (
∧

a∈Attstatus

(θ+a ∧ θ−a)) ∧ Ψ(e)

whereΨ(e) is a formula (not defined here) that states that the data attributes ofΣ′

reflect the updates called for bye. (The conditionΘΓ can also be extended to include
the requirement thate is applicable toΣ.)

Definition 5.7. Let Γ and(Σ, e,Σ′) be as above. Then the triple is aclosed-form B-
stepfor Γ if e is applicable toΣ and(Σ, e,Σ′) |= ΘΓ.

We can now state the main result.

Theorem 5.8. Suppose thatΓ is a well-formed GSM schema,Σ,Σ′ are snapshots
of Γ, ande an incoming event applicable toΣ. Then the following are equivalent:
(i) (Σ, e,Σ′) is an incremental B-step,(ii) (Σ, e,Σ′) is a fixpoint B-step, and(iii)
(Σ, e,Σ′) is a closed-form B-step.

Recall, as discussed in Introduction, that each of these three formulations has it
own intrinsic value — theincremental formulationbeing useful primarily for direct
GSM implementations (such as the one in the Barcelona GSM engine), thefixpoint
formulationbeing of use in developing alternative (e.g., distributed)implementations
and optimizations, and the theclosed-form formulationbeing critical for verification
purposes and for transferring existing verification results [7, 15, 12] to the GSM realm
as we discuss in more detail in Subection 6.1.

The equivalence of the three specialized notions of B-step now allows us to for-
mally define the unified notion of B-step.

Definition 5.9. Let Γ be a well-formed GSM model,Σ,Σ′ be snapshots ofΓ, ande an
event applicable toΣ. Then(Σ, e,Σ′) is aB-stepfor Γ if this triple is an incremental
B-step forΓ (or equivalently, a fixpoint B-step forΓ or a closed-form B-step forΓ).

5.4. Proofs

This subsection includes proofs for Theorems 5.2 and 5.8.
We begin with two lemmas. The first focuses on the relationship of the PAC rules

and the Toggle Once principle.

Lemma 5.10. (Toggle Once) LetΓ be a well-formed GSM schema,Σ a snapshot ofΓ,
ande an incoming event applicable toΣ. Let Σ = Σ0,Σ

e = Σ1,Σ2, . . . ,Σn = Σ′ be
constructed according to the incremental semantics, usingtopological sort⊙1a1, . . . ,

31

⊙rar of PDGs(Γ). Suppose that status attributea changes value during the formation
of Σi. Thena does not change value again in the sequence, i.e., for eachj ∈ [i..n],
Σj(a) = Σi(a).

Proof: LetS be a stage. Suppose thatΣ |= activeS . Then for each pre-snapshotΣ̂ we
have that(Σ, Σ̂) violates the prerequisite of the PAC-5 and PAC-6 rules forS. Thus, if
activeS changes to false at some point in the sequence, then it cannotchange back to
true. A similar argument using PAC-1 can be used ifΣ |= ¬activeS .

Suppose nowΣ |= m. By GSM-1,Σ |= ¬activeS . Thus, for each pre-snapshotΣ̂,
(Σ, Σ̂) violates the prerequisite of the PAC-2 rule form. This implies that ifm changes
to false at some point in the sequence, then it cannot change back to true. Finally,
supposeΣ |= ¬m. Thus, for each pre-snapshotΣ̂, (Σ, Σ̂) violates the prerequisites of
rules PAC-3 and PAC-4. Ifm changes to true at some point in the sequence, it cannot
change back to true.

We now present a “stability” lemma and corollary for incremental constructions,
that describe sufficient conditions for when a status attribute will remain fixed from an
intermediate snapshotΣi until the end of the sequence.

Lemma 5.11. (Stability) LetΓ be a well-formed GSM schema,Σ a snapshot ofΓ, and
e an incoming event applicable toΣ. Let Σ = Σ0,Σ

e = Σ1,Σ2, . . . ,Σn = Σ′ be con-
structed according to the incremental semantics, using topological sort⊙1a1, . . . ,⊙rar

of PDGs(Γ). If a rule with consequent⊙a is applied to createΣi, and if (⊙̂b,⊙a) ∈
PDGs∗(Γ), then:

(a) if (+b,⊙a) and(−b,⊙a) are inPDGs∗(Γ) then for eachj ∈ [i..n], Σj(b) =
Σi−1(b).

(b) if only one of(+b,⊙a) or (−b,⊙a) is in PDGs∗(Γ), then for eachj ∈ [i..n],
(Σ,Σj) |= ⊙b iff (Σ,Σi−1) |= ⊙b.

Proof: Recall that a rule for⊙a cannot be applied in the sequence until all rules are
considered for polarized attributes⊙′b where(⊙′b,⊙a) ∈ PDGs∗(Γ).

If both (+b,⊙a) and(−b,⊙a) are inPDGs∗(Γ), then the rules for both+b and−b
have been considered beforeΣi is constructed. If any such rules were applied, then the
value ofb has changed at or beforeΣi−1, and cannot change again because the Toggle
Once Lemma 5.10.

Now consider the situation where only(+b,⊙a) ∈ PDGs∗(Γ). (The situation of
(−b,⊙a) ∈ PDGs∗(Γ) is analogous.) There are two cases.
Case 1:Σ |= b. In this case there is no pre-snapshotΣ̂ such that(Σ, Σ̂) |= +b. Thus
(Σ,Σj) does not model+b for anyj ∈ [i− 1..n].
Case 2:Σ |= ¬b. In this case, since+b is considered before⊙a, it is considered before
Σi is constructed. Thus, for eachj ∈ [i..n], Σj(b) = Σi−1(b). This implies that for
eachj ∈ [i..n], (Σ,Σj) |= +b iff (Σ,Σi−1) |= +b.

It is straightforward to verify the following.

Corollary 5.12. (Stability) Let Γ be a well-formed GSM schema,Σ a snapshot ofΓ,
ande an incoming event applicable toΣ. Let Σ = Σ0,Σ

e = Σ1,Σ2, . . . ,Σn = Σ′ be

32

constructed according to the incremental semantics, usingtopological sort⊙1a1, . . . ,
⊙rar of PDGs(Γ). Suppose that⊙a is considered onΣi (whether or not it is applied to
createΣi+1), and let(π, α,⊙a) be a rule for⊙a. Then for eachj ∈ [i..n], (Σ,Σj) |=
α′ iff (Σ,Σi) |= α′.

The next two lemmas show that ifΣ′ is the result of an incremental construction
from Σ ande, thenΣ′ is a fixpoint forΣ, e.

Lemma 5.13. (Incremental is compliant) Let Γ be a well-formed GSM model,Σ a
snapshot forΓ, ande an applicable incoming event. If(Σ, e,Σ′) is an incremental
B-step then(Σ, e,Σ′) is compliant with respect toΓ.

Proof: Assume thatΣ = Σ0,Σ
e = Σ1,Σ2, . . . ,Σn = Σ′ is constructed according to

the incremental semantics, using topological sort⊙1a1, . . . ,⊙rar of PDGs(Γ).
Consider a rule(π, α,⊙a), and suppose thatΣ |= π and(Σ,Σ′) |= α′. Suppose

that in the incremental construction rules for⊙a are considered onΣi (regardless of
whether one of the rules is applied to createΣi+1). By the Stability Corollary 5.12,
(Σ,Σi) |= α′. Therefore ifΣi /|= ⊙ a, some rule with consequent⊙a will be applied
to createΣi+1. By the Toggle Once Lemma 5.10,Σn |= ⊙a.

Lemma 5.14. (Incremental is inertial) Let Γ be a well-formed GSM model,Σ a
snapshot forΓ, ande an applicable incoming event. If(Σ, e,Σ′) is an incremental
B-step then(Σ, e,Σ′) is inertial with respect toΓ.

Proof: Σ = Σ0,Σ
e = Σ1,Σ2, . . . ,Σn = Σ′ and the topological sort be as in proof of

Lemma 5.13. Suppose thatΣ /|= ⊙ a andΣ′ |= ⊙a. We shall exhibit a rule(π, α,⊙a)
such thatΣ |= π and(Σ,Σ′) |= α′. SinceΣ′ |= ⊙a, the value ofa was changed in
someΣi. Let (π, α,⊙a) be the rule used. It follows thatΣ |= π and(Σ,Σi−1) |= α′.
By the Stability Corollary 5.12,(Σ,Σ′) |= α′.

We next show that the result of an incremental construction satisfies the two invari-
ants.

Lemma 5.15. Let Γ be a well-formed GSM model,Σ a snapshot forΓ, ande an ap-
plicable incoming event. If(Σ, e,Σ′) is an incremental B-step thenΣ′ satisfies GSM-1
and GSM-2.

Proof: Assume thatΣ = Σ0,Σ
e = Σ1,Σ2, . . . ,Σn = Σ′ is constructed according to

the incremental semantics. By Lemmas 5.13 and 5.14,(Σ, e,Σ′) is both compliant and
inertial.

Let stageS1 have childS2. In this case GSM-2 states that ifS1 is closed inΣ′

then stageS2 is closed inΣ′. Suppose thatΣ′ |= ¬activeS1
. There are two cases to

consider:Σ |= activeS1
or Σ |= ¬activeS1

. In the first case,(Σ,Σ′) |= −activeS1
and

so by PAC-6 and compliance,Σ′ |= ¬activeS2
. In the second case, it follows from the

Toggle Once Lemma 5.10 that for eachi ∈ [1..n], Σi |= ¬activeS1
. By construction of

PAC-1, no rule can be applied to change the value ofactiveS2
from false to true. Thus

Σ′ |= ¬activeS2
as desired.

Suppose now that stageS owns milestonem. In this case GSM-1 states that ifS
is open thenm should be false. Suppose thatΣ′ |= activeS . There are two cases to
consider:Σ |= activeS or Σ |= ¬activeS .

33

For the first case, suppose thatΣ′ |= m. SinceΣ is a snapshot,Σ satisfies GSM-
1 and in particular,Σ |= ¬m. Thus(Σ,Σ′) |= +m. By compliance and PAC-5,
Σ′ |= ¬activeS , a contradiction.

Consider the second case. Then(Σ,Σ′) |= +activeS . Suppose thatΣ |= −m. The
only rules with consequent+m are from template PAC-2, and these have prerequisite
activeS . Since this is false forΣ, no such rules will apply and soΣ′ |= −m.

Suppose now thatΣ |= m. Because(Σ, e,Σ′) is inertial andΣ′ |= activeS , there is
some rule(¬activeS , α,+activeS) that was applied to create the pre-snapshotΣi for
somei during the construction ofΣ. By the Stability Corollary 5.12,(Σ,Σ′) |= α′.
There are two sub-cases: (a)¬m does not occur as a top-level conjunct inα or (b) it
does. For (a), by PAC-4 there is a rule(m,α,−m). By compliance,Σ′ |= ¬m as
desired. For (b), since the rule was applied onΣi−1 to createΣi, (Σ,Σi−1) |= α′.
By the Stability Corollary,(Σ,Σ′) |= α′. Since¬m is a top-level conjunct inβ, this
implies thatΣ′ |= ¬m as desired.

We now demonstrate that ifΣ′ is obtained through an incremental construction
from Σ ande, and ifΣ′′ is a fixpoint forΣ, e, thenΣ′ andΣ′′ are identical. As a by-
product we establish that the incremental construction is independent of the topological
sort used, and that there is a unique fixpoint.

Lemma 5.16. Let Γ be a well-formed GSM model,Σ a snapshot forΓ, ande an appli-
cable incoming event. If(Σ, e,Σ′) is an incremental B-step and(Σ, e,Σ′′) is a fixpoint
B-step thenΣ′ = Σ′′

Proof: Assume thatΣ = Σ0,Σ
e = Σ1,Σ2, . . . ,Σn = Σ′ is constructed according

to the incremental semantics using topological sort⊙1a1, . . . ,⊙rar of PDGs(Γ). As-
sume also thatΣ′ 6= Σ′′. Of the status attributesa such thatΣ′(a) 6= Σ′′(a), choose the
one for which there is a polarity⊙ such that⊙a is least in the topological sort among
all ⊙̂b such thatΣ′(b) 6= Σ′′(b).
Case 1: Σ′(a) = Σ(a). We will show thatΣ′′ is not inertial. Suppose that in the
construction ofΣ′, rules for⊙a are considered atΣi. For each rule(π, α,⊙a), either
Σ /|=π or (Σ,Σi) /|=α′. If Σ /|=π then none of the rules is satisfied by(Σ,Σ′′). In this
case, sinceΣ′′ is inertial,Σ′′(a) = Σ(a) = Σ′(a), a contradiction.

Suppose now thatΣ |= π. By the Stability Corollary 5.12, for each rule of form
(π, α,⊙a) we have(Σ,Σ′) /|=α′. Since⊙a was chosen to be least among polarized
attributes whereΣ′ andΣ′′ differ, we also have that(Σ,Σ′′) /|=α′. Again sinceΣ′′ is
inertial we reach a contradiction.
Case 2: Σ′(a) 6= Σ(a). We will show thatΣ′′ is not compliant. There is some rule
(π, α,⊙a) and somei such that this rule is applied toΣi to obtainΣi+1. ThusΣ |= π
and(Σ,Σi) |= α′. By the Stability Corollary,(Σ,Σ′) |= α′. Since⊙a was chosen to
be least,Σ′′ matchesΣ′ on each status attributes occurring inα. Thus(Σ,Σ′′) |= α′.
Because(Σ, e,Σ′′) is compliant,(Σ,Σ′′) |= ⊙a, and soΣ′′(a) = Σ′(a) afterall, a
contradiction.

Proof of Theorem 5.2. Let Σ be a snapshot of well-formed GSM modelΓ ande an
applicable event. First note that the incremental construction always succeeds, and by
Lemmas 5.13 and 5.14, it creates a snapshotΣ′ of Γ that is compliant and inertial. This
implies that there is at least one fixpoint forΣ, e.

34

To see that there is only one incremental B-step for(Σ, e), suppose that there are
two distinct snapshotsΣ′ andΣ′′ such that(Σ, e,Σ′) and(Σ, e,Σ′′) are incremental
B-steps. From Lemma 5.16, we see that these are both fixpoint B-steps as well. Since
(Σ, e,Σ′) is an incremental B-step and(Σ, e,Σ′′) is a fixpoint B-step, Lemma 5.16
implies thatΣ′ = Σ′′, a contradiction.

Proof of Theorem 5.8.The proof of Theorem 5.2 above demonstrated that the notions
of incremental B-step and fixpoint B-step are equivalent. Because of the construction
of the closed form formulas, it is straightforward to show the equivalence of closed-
form B-step with fixpoint B-step.

6. Discussion

In this section we briefly consider four topics: (a) generalization of the verification
techniques of [7, 15, 12] to apply to GSM; (b) variations of the GSM meta-model;
(c) intuitions concerning sequences of B-steps; and (d) GSMimplementation. Item
(a) provides an important illustration of the value of the Equivalence Theorem 5.8,
because it provides a bridge between the intuitive incremental formulation of the GSM
operational semantics, and the succinct, logic-based closed-form formulation.

6.1. Generalization of the verification techniques to GSM

Here we briefly discuss how the existing verification results[7, 15, 12] can be
applied to GSM. Notice that due to the equivalence of the three formulations of GSM
operational semantics the generalized verification techniques can be directly applied to
systems implementing the incremental as well as the fixpointsemantics.

References [7, 15, 12] develop verification results for a family of sequential declar-
ative artifact-based meta-models. Similar to GSM, those models assume that artifacts
have information models and lifecycles. These meta-modelssupportservices, that are
essentially identical to the GSM tasks described above. In contrast with GSM where
stages (and thus tasks) may run in parallel, in the sequential declarative meta-models
the services operate in sequence. References [15, 12] also support the presence of a
fixed external database that may be referred to in the pre- andpost-conditions. The
research reported there demonstrates decidability of questions of the form: do all runs
of a sequential declarative artifact-based model satisfy agiven LTL-FO formula.

The Closed Form formulation of the GSM semantics enables application of the
proof techniques developed in [15, 12]. To see how, note thata run of a GSM model
involves execution of B-steps in response to a series of incoming events. Each such B-
step is characterized by the formulaΘΓ (extended to include testing for applicability of
an incoming event), and can be modeled as a service in the sense of [15, 12]. Also, the
incoming events themselves can be modeled as the responses to other services calls. As
a result, the closed-form formulation provides a direct wayto translate GSM models
into ‘sequential’ declarative artifact models. It followsthat verification techniques and
results in the spirit of [15, 12] can be extended to GSM.

35

6.2. Variations of the GSM meta-model

The larger GSM team has worked on a number of variations of thebasic GSM meta-
model studied in the current paper. As noted earlier, [22, 23] permit multiple artifact
types and multiple artifact instances that can interact through the use of sentries.

A minor but convenient generalization of the GSM approach isto permit more
than one event expression to be present in sentries. In this case, when putting a sentry
into the formτ ∧ γ as in Definition 3.9,τ might involve a boolean combination of
multiple incoming and internal event expressions. The results of the current paper can
be generalized to this case.

Citation [40] studies a simplified GSM meta-model, in which milestones and stages
are not tightly linked as in the current paper. In particular, milestones are not required
to be linked to a stage, but rather can stand freely, either atthe same level as the top-
level stages, or nested within stages. Guards are used to govern when stages open, and
“terminating sentries” govern when stages close. The PAC rules and notion of PDG can
be simplified. Importantly, the simplified GSM meta-model can nevertheless simulate
the tight linkage of milestones to stages as found in the current paper. The separation
of milestones from stages was inspired in part by the initialapproach to milestones
taken in the IBM Case Manager product [47], and is also found in the emerging OMG
standard for case management [8] (see Section 7).

In GSM as studied here, a stage may not have two occurrences that are running
simultaneously. However, in some cases it is natural to use the same stage to perform
work in parallel on multiple elements of a collection. For example, in business-to-
business commerce it may be natural to process each line itemof a purchase order
using different occurrences of the same stage. It appears that the GSM meta-model
could be extended with a form ofindexed stage executionwhile still satisfying some
analog of the Equivalence Theorem.

Finally, we note that in the abstract meta-model of this paper, concurrency control
mechanisms are not provided. In particular, two tasks that write to the same data at-
tribute might be executing in parallel, and the value written by the first task to complete
might be overwritten when the second task completes. It would be natural to develop
an approach forbusiness-level concurrency control. This might require, for example,
that an atomic stage would not be eligible to open if appropriate read- and write-locks
on data attributes were not available. Develoiping this extension may require a gener-
alization of the notion of B-step to allow for non-determinism which may arise from
contention between atomic stages that may potentially openin a single B-step.

6.3. Sequences of B-steps

We now turn to situations where it makes intuitive sense to consider a cluster of
B-steps as a single unit. In the formalism presented above, if an atomic stage contains
a computational task (e.g., assigning one data attribute toequal another one), then
this stage is opened in one B-stepb1 and is closed in some subsequent B-stepb2.
Because the assignment is purely computational, it may makesense to haveb2 happen
“immediately” afterb1. In practice, we define amacro-B-stepto be a family of B-steps
that starts with incorporation of an incoming event from theenvironment, and includes
any subsequent B-steps stemming from computational actions. Macro-B-steps are not

36

guaranteed to terminate, nor to be unique. We also note that in some corner cases, a
change made by one B-step may be “undone” by another B-step inthe same macro-B-
step.

We also note that in some corner cases, a B-step may complete,and some PAC rule
may be applicable to the result. As a simple example, supposethatS1 andS2 are two
stages that are “siblings” in the hierarchy, with milestonesm1 andm2, respectively.
Letm1 be triggered by incoming events of typeE, let +m1 be an achieving sentry of
m2, and letm2 be a guard forS1. Suppose that both stages are open and an event of
typeE arrives. The resulting B-step will includem1 is achieved,S1 is closed, andm2

is achieved. The guard “m2” of S1 will not be fired, because the associated PAC rule
has precedent¬activeS1

. Snapshots that are created by a B-step and for which a rule
is immediately applicable are termedorphans. If an orphan does arise, then it seems
natural to permit applicable rules to fire in the same macro-step as the initial B-step. It
appears that GSM models that permit orphans do not commonly arise in practice. The
problem of finding a useful syntactic characterization thatguarantees that a model is
orphan-free remains open at the time of writing.

6.4. GSM implementation

As mentioned in Introduction, a prototype engine, called Barcelona, is being de-
veloped to support experiments and implementations using GSM. Barcelona software
supports execution as well as design of GSM models. Notice, that while in this paper
(for ease of presentation) we have assumed a restriction that puts the focus on a single
artifact instance of a single artifact type, Barcelona actually supports interactions of
multiple artifact types and instances. Barcelona supportsa simple graphical design ed-
itor, and captures the GSM models directly into an XML format. It is an outgrowth of
the Siena system [10], that supports an artifact meta-modelwith state-machine based
lifecycles. The expression language [28] used in Barcelonais an extension of the Ob-
ject Constraint Language (OCL) [19]; it supports first-order logic constructs in a con-
text of nested collection-based structures. The Barcelonaengine has already been used
for two pilots, including one [42] that supports a style of “knowledge- and data- in-
tensive processes”. The Barcelona implementation of GSM incorporates a number of
practical capabilities, such as bindings between the variables of incoming messages
and how their values are incorporated into appropriate artifact instances, handling of
time outs and other failures, etc., that are not addressed inthe current paper.

7. Related work

The GSM meta-model is a natural evolution from the earlier practical artifact meta-
models [35, 10, 39], but using a declarative basis. It can be viewed as a natural evolu-
tion from the sequential declarative artifact-centric models of [7, 15, 12], extended to
support modularity and parallelism within artifact instances. GSM draws on previous
work on ECA systems [31], and develops a specialized variantuseful for data-centric
BPM.

There is a strong relationship between the artifact paradigm and Case Management
[45, 14, 47]. In general, both approaches focus on conceptual entities that evolve over

37

time, and supportad hocstyles of managing activities. In both approaches, there isa
strong emphasis on conceptual entities that evolve as they move through a business.
Both approaches make data a first-class citizen, and in particular call for maintaining
an integrated view of all data that is business-relevant to agiven entity (case) instance
as it evolves. The artifact approach has been used in a variety of contexts for which
case management is rarely if ever deployed, e.g., the use of multiple artifact types
to support the management of financial “deals” [9], to manage“distributed enterprise
services” [6], and to provide cross-silo visibility into the management of engineering
changes in large-scale manufacturing. Also, while not being the focus of the current
paper, the GSM meta-model provides richer declarative constructs for supporting the
interaction of artifacts than typically found in the meta-models for Case Management
[23]. Citation [42] provides various examples of such rich declarative interactions in
GSM.

The work on Case Management that is arguably closest to the current paper is the
Case Handling meta-model (called here “CH” for short) described in [45]. In both CH
and GSM, models involve an information model and closely coupled process model.
CH focuses onactivitiesthat are essentially the same as tasks of GSM. Unlike GSM,
activities in CH have an explicit finite-state based lifecycle involving 6 states (initial ,
ready, running, passed, skipped, andcompleted). CH does not support grouping of
activities into composite stages, nor does it support milestones as in GSM. In both CH
and GSM, the process model is obtained by adorning units of work (activities in [45]
and stages in GSM) with a form of pre- and/or post-conditions, and the operational
semantics is based on ECA rules derived from them. In CH, the activities are arranged
into a directed acyclic graph derived from the conditions, whereas in GSM there is an
acyclicity requirement on the Polarized Dependency Graph (which has a node for both
“positive” and “negative” versions of stages and milestones). A notion of roll-back is
supported explicitly in CH, whereby if some activityA must be re-worked, then activ-
ities subsequent toA are also enabled for re-work. Although a detailed comparative
analysis between CH and GSM has not been performed, it appears that with some mi-
nor extensions (including use of the event-relativized PDGmentioned in Remark 4.13),
GSM can simulate essentially all of the characteristics of CH.

Recently, the perspective of Adaptive Case Management [41]has emerged; this
permits more freedom than earlier case management approaches in how the process-
ing of case instances is organized. Both GSM and Adaptive Case Management offer
a spectrum of styles for managing the conceptual entities, from highly “prescriptive”
to highly “descriptive”. GSM includes a focus on the development of a precise mathe-
matical definition for the operational semantics.

As noted in the Introduction, the leading industry consortium that is responding
to the OMG call to standardize a Case Management Model Notation (CMMN) has
adopted the core constructs of the GSM model, including guards, stages with hierar-
chy, milestones, and sentries [8]. There are some differences between GSM and the
meta-model being developed there, including most notably (i) in [8] milestones and
stages are more independent than in GSM (see Subsection 6.2); (ii) stages, tasks and
milestones have finite-state machine based lifecycles (reminiscent of the Case Handling
meta-model of [45]); and (iii) [8] includes rich mechanismsthat enable case workers to
modify the case model of case instances they are currently working with. An effort is

38

underway to provide a variant of the GSM operational semantics for the meta-model of
[8]. The consortium favors the GSM approach because it (i) can support the spectrum
from prescriptive to descriptive in modeling behaviors, and (ii) it provides a formal
foundation that is more declarative than classical, procedural approaches such as Petri
nets.

Statecharts [20] have some features that resemble GSM, mostnotably the use of hi-
erarchy for structuring clusters of work, and the support for parallelism. Fundamental
differences between statecharts and GSM include: (a) GSM isfundamentally data cen-
tric whereas data is not central to the statechart meta-model (although it can be added);
(b) statechart behavior is specified in a navigational, procedural manner, whereas GSM
behavior is considerably more declarative, includes an explicit milestone construct,
and permits far greater flexibility in representing the possible interleaving of parallel
activities; and (c) although not explored in the current paper, artifact instance interac-
tion is an important element of the GSM framework, and declarative mechanisms are
provided to specify that interaction.

There is a relationship between the artifact approach and proclets [43]. Both ap-
proaches focus on factoring business operations into components, each focused on a
natural portion of the overall operations, and where communication between compo-
nents is supported in some fashion. Proclets use a Petri-netmodel to govern internal
behavior and reaction to incoming events, and a message-based paradigm for interac-
tions between the proclets. While proclets may maintain some data, the data cannot be
shared except through the message-based interface. The artifact approach places more
emphasis on data that is held and maintained by each component. GSM provides a
declarative operational semantics, rather than one based on Petri nets. Although not
studied in the current paper, in the case of multiple artifact types and instances, GSM
permits declarative interactions between artifact instances. In particular, sentries of one
artifact instance may incorporate tests against data, status attribute values, and/or status
change events in other artifact instances [23].

Several other data-centric approaches to Business ProcessManagement have been
developed in recent years. Similar to the early artifact-centric models, Redding et.
al. [36, 37] propose theFlexConnectmeta-model where processes are organized as
interacting business objects rather than as flows of activities. InFlexConnectlifecycles
are defined as communicating finite state machines, with operational semantics defined
by means of Coloured Petri nets. The states correspond to targeted activities to be
performed during the overall lifecycle of an object. The objects can hold information,
although it is not exposed to other objects or the external environment, as done in the
business artifacts approach. Communication between objects can occur in sub-states
of a state called gateways; these can be included at the startand end of any state.
Flexibility is achieved by introducing patterns consisting of coordination objects, job
objectsandreferral objects.

PHILharmonicFlows [26, 27] also defines a framework for object-aware process
management which marries data with processes. The processes in PHILharmonicFlows
are modeled on two levels:micro processesrepresent data and behavior of individual
objects, whilemacro processesdefine interactions between the objects. The data model
of objects is based on the relational data model, while the behavior is defined as a so-
phisticated combination of finite state machines and flows with well defined semantics

39

and with transitions being dependent on data. The approach also defines access control
and a mechanism for auto generated user forms.

Müller et. al. [33] propose the COREPRO framework for data-driven modeling of
large process structures. The data structure types have associated with object lifecycles
(defined as state transition systems), and relationships are used to characterize process
structures. A domain specific data model consisting of object and relation types is
defined at design time, and such a data model can then be instantiated to create specific
data structures that serve as a definition of the run time process.

While theFlexConnect, PHILharmonicFlows and COREPRO approaches are all
data-centric, there are significant differences compared to GSM. First, all these ap-
proaches are in essence based on variations of finite state machines or on a combina-
tion of finite state machines with flows. In this respect, these approaches are in essence
more procedural with a navigational style semantics, compared to more declarative
ECA style semantics of GSM. Next, GSM provides support for hierarchical organiza-
tion of life-cycles by means of stages and sub-stages. PHILharmonicFlows introduces
an explicit mechanism for separation of concerns between internal object behavior and
object interactions by means of micro and macro processes, but the hierarchical organi-
zation of stages in GSM is different in the sense that it allows the hierarchical definition
of behavior on the level of artifact instances. Finally, GSMenables rich parallelism in
single instances,which is not supported by finite state machines.

Product-Based Workflow Design [38, 46] is a data-centric approach to workflow
specification that focuses on definition of the information outcome (called Product
Data Model, or PDM) of the workflow. In essence, PDM is a tree-like structure with
nodes representing data elements and edges representing functional dependencies be-
tween the data elements. Actions are located on edges in-between data nodes, and
generate new data values from the existing ones in a bottom-up manner. The PDM
formalism represents how the final data outcome is calculated as well as the possible
alternative ways of generating the outcome. Execution of the workflow is driven by the
PDM structure and the possible choices between alternatives are derived from various
action attributes, such as the price or the probability of failure. Compared to GSM,
the Product-Based Workflow approach is specifically targeted at processes whose out-
come can be represented in a tree like structure, which in turn can be used to drive the
processes’ execution. This approach imposes a rather specific operational semantics,
which is in essence derived from the tree structure of PDM andfrom the availability
of the data values. Artifact-centric processes and GSM, on the other hand, are focused
on specification of generic processes where no such particular structure is assumed
upfront.

Formal analysis of artifact-based business processes in various contexts has been
reported in [17, 18, 7, 15, 12]. As noted in Subsection 6.1, unlike the GSM meta-model,
all of these assume that the external tasks (services) are performed in a sequential fash-
ion. Notably, [15] permits infinite data domains with order,and an underlying (static)
database; and [12] extends to include arithmetic operations. Both works characterize
bounds on expressive power that support decidability of LTL-FO properties.

The AXML Artifact model [2, 30] supports a declarative form of artifacts using
Active XML [1] as a basis. Hierarchy based on the XML structure is used in AXML;
this contrasts with the stage hierarchy in GSM. Automatic verification for AXML is

40

studied in [3].
DecSerFlow [44] is a fully declarative business process language, in which the

possible sequencings of activities are governed entirely by constraints expressed in a
temporal logic. GSM does not attempt to support that level ofdeclarativeness. In
terms of essential characteristics, GSM can be viewed as a reactive system that permits
the use of a rich rules-based paradigm for determining, at any moment in time, what
activities should be performed next. The work in [21] falls in the same category as
[44].

8. Conclusion

The Business Artifact paradigm provides a compelling data-centric approach for
modeling and deploying business operations and processes,that is now incorporated
into IBM products and service offerings. The Guard-Stage-Milestone (GSM) meta-
model for artifacts represents a substantial extension of previous artifact meta-models,
that supports a declarative style, parallelism within artifact instances, and modularity
through hierarchical constructs. Based on the recent development of two substantial
pilot projects using GSM, it appears that the core constructs of the GSM meta-model,
and the essential aspects of the GSM operational semantics,are robust and will not
undergo fundamental changes.

This paper provides the core mathematical foundations for GSM in an abstract set-
ting. The paper introduces a well-formedness condition forGSM models that supports
naturally arising patterns of dependencies and interrelationships between business op-
erations that have been combined using declarative constructs, and helps to ensure key
mathematical properties. The paper demonstrates the equivalence of three formulations
for the GSM operational semantics, and describes how the result can be used to adapt
verification results obtained for sequential artifact meta-models to the GSM context.

In this paper we have assumed a common restriction that puts the focus on a single
artifact instance of a single artifact type and we did not consider interactions of multi-
ple types and multiple instances. This restriction was motivated purely by making the
presentation easier and, importantly, it does not fundamentally compromise the appli-
cability of the results. Actually, citation [23] presents an extension of the meta-model
described here that supports multiple artifact types, multiple artifact instances, and
structured attribute values. (See also [24].) Also, the implemented execution engine
Barcelona supports interactions of multiple artifact types and instances. The coordina-
tion between artifact instances is taking advantage of powerful declarative sentries as
is illustrated for example in citation [42].

The development and results in this paper provide the foundation for a number of
research and practical investigations into the use of declarative artifact-based frame-
works. Importantly, an effort is currently underway to develop a variation of the GSM
operational semantics for use with the emerging OMG standard for case management
[8]. Some specific extensions of the GSM meta-model presented here include: (1) ex-
tension to multiple artifact types and instances (see [23, 24]); (2) simplification of the
GSM meta-model by permitting a looser relationship betweenstages and milestones
(see [40]); and (3) incorporation of “collection-indexed”stages, so that multiple occur-
rences of a stage can be executing simultaneously, where each occurrence corresponds

41

to a different member of the indexing collection (e.g., performing an operation on each
line-item in an purchase order). Some additional areas of investigation include: (4)
incorporating business-level transactional guarantees;(5) incorporating roles, perform-
ers, teams, accountability, and delegation into an hierarchically organized lifecycle; (6)
development of practical verification systems for GSM; (7) development of optimized
implementations for GSM, including highly distributed, massively scalable ones; (8)
the study of variations and customization of business processes; and (9) the devel-
opment of a declarative approach for specifying transformations and integrations of
legacy business processes into “views” of them.

Acknowledgements.The authors thank the many people in the extended Project Ar-
tiFact team at IBM Research, the EU ACSI team [5], and others.Most notable among
these are: David Cohn, Giuseppe De Giacomo, Manmohan Gupta,Riccardo De Masel-
lis, Nirmit Desai, Alin Deutsch, Marlon Dumas, Fabiana Fournier, Hojjat Ghaderi,
Fenno (Terry) Heath III, Stacy Hobson, Mark Linehan, Sridhar Maradugu, Renee
Miller, Nanjangud C. Narendra, Anil Nigam, Mohammad Sadoghi, Biman Saha, Jian-
wen Su, Piwadee (Noi) Sukaviriya, Yutian (James) Sun, John Vergo, and Victor Vianu.

References

[1] S. Abiteboul, O. Benjelloun, and T. Milo. The Active XML project: An overview.
Very Large Databases Journal, 17(5):1019–1040, 2008.

[2] S. Abiteboul, P. Bourhis, A. Galland, and B. Marinoiu. The AXML Artifact
Model. In Proc. 16th Intl. Symp. on Temporal Representation and Reasoning
(TIME), 2009.

[3] S. Abiteboul, L. Segoufin, and V. Vianu. Static analysis of active XML systems.
In Proc. Intl. Symp. on Principles of Database Systems (PODS), 2008.

[4] K.R. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge. In
J. Minker, editor,Foundations of Deductive Databases and Logic Programming,
pages 89–148. Morgan Kaufmann, Los Altos, CA, 1988.

[5] Artifact-centric service interoperation (ACSI) web site, 2011.
http:/acsi-project.eu/.

[6] K. Bhattacharya, N. S. Caswell, S. Kumaran, A. Nigam, andF. Y. Wu. Artifact-
centered operational modeling: Lessons from customer engagements.IBM Sys.
J., 46(4):703–721, 2007.

[7] K. Bhattacharya, C. E. Gerede, R. Hull, R. Liu, and J. Su. Towards formal anal-
ysis of artifact-centric business process models. InProc. Int. Conf. on Business
Process Management (BPM), pages 288–304, 2007.

[8] BizAgi and Cordys and IBM and Oracle and SAP AG and Singularity (OMG
Submitters) and Agile Enterprise Design and Stiftelsen SINTEF and TIBCO and
Trisotech (Co-Authors). Proposal for: Case Management Modeling and Notation
(CMMN) Specification 1.0, Feb. 2012. Document bmi/12-02-09, Object Man-
agement Group.

42

[9] T. Chao et al. Artifact-based transformation of IBM Global Financing: A case
study. InIntl. Conf. on Business Process Management (BPM), 2009.

[10] D. Cohn, P. Dhoolia, F.F. (Terry) Heath III, F. Pinel, and J. Vergo. Siena: From
powerpoint to web app in 5 minutes. InIntl. Conf. on Services Oriented Comput-
ing (ICSOC), 2008.

[11] D. Cohn and R. Hull. Business artifacts: A data-centricapproach to modeling
business operations and processes.IEEE Data Eng. Bull., 32:3–9, 2009.

[12] E. Damaggio, A. Deutsch, and V. Vianu. Artifact systemswith data dependencies
and arithmetic constraints. InProc. Intl. Conf. on Database Theory (ICDT), 2011.

[13] E. Damaggio, R. Hull, and R. Vaculı́n. On the equivalence of incremental and
fixpoint semantics for business artifacts with guard-stage-milestone lifecycles. In
Intl. Conf. Business Process Mgmt. (BPM), 2011.

[14] H. de Man. Case management: Cordys approach, February 2009.
http://www.bptrends.com/deliver file.cfm?fileType=

publication&fileName=02-09-ART-BPTrends%20-%20Case%20

Management-DeMan%20-final.doc.pdf.

[15] A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automaticverification of data-
centric business processes. InProc. Intl. Conf. on Database Theory (ICDT), 2009.

[16] A. Van Gelder. Negation as failure using tight derivations for general logic pro-
grams. InIEEE Symp. on Logic Programming, pages 127–139, 1986.

[17] C. E. Gerede, K. Bhattacharya, and J. Su. Static analysis of business artifact-
centric operational models. InIEEE International Conference on Service-
Oriented Computing and Applications, 2007.

[18] C. E. Gerede and J. Su. Specification and verification of artifact behaviors in busi-
ness process models. InProceedings of 5th International Conference on Service-
Oriented Computing (ICSOC), Vienna, Austria, September 2007.

[19] Object Management Group. Object Constraint Language:OMG Available Spec-
ification, Version 2.0.http://www.omg.org/technology/documents/formal/ocl.htm,
May 2006.

[20] D. Harel and A. Naamad. The STATEMATE Semantics of Statecharts. ACM
Transactions on Software Engineering and Methodology, 5(4), October 1996.

[21] T. Hildebrandt and R. R. Mukkamala. Distributed dynamic condition response
structures. InPre-proceedings of Intl. Workshop on Programming LanguageAp-
proaches to Concurrency and Communication Centric Software (PLACES 10),
2010.

43

[22] R. Hull, E. Damaggio, F. Fournier, M. Gupta, F. Heath III, S. Hobson, M. Line-
han, S. Maradugu, A. Nigam, P. Sukaviriya, and R. Vaculı́n. Introducing the
guard-stage-milestone approach for specifying business entity lifecycles. InProc.
of 7th Intl. Workshop on Web Services and Formal Methods (WS-FM 2010), Re-
vised Selected Papers, Lecture Notes in Computer Science 6551. Springer-Verlag,
2010.

[23] R. Hull, E. Damaggio, R. De Masellis, F. Fournier, M. Gupta, F. Heath III, S. Hob-
son, M. Linehan, S. Maradugu, A. Nigam, P. Sukaviriya, and R.Vaculı́n. Busi-
ness artifacts with guard-stage-milestone lifecycles: Managing artifact interac-
tions with conditions and events. InACM Intl. Conf. on Distributed Event-based
Systems (DEBS), 2011.

[24] R. Hull, E. Damaggio, R. De Masellis, F. Fournier, M. Gupta, F. Heath
III, S. Hobson, M. Linehan, S. Maradugu, A. Nigam, P. Sukaviriya, and
R. Vaculı́n. A formal introduction to business artifacts with guard-stage-
milestone lifecycles, Version 0.8, May, 2011. Draft IBM Research internal
report, available athttp://researcher.watson.ibm.com/researcher/
view page.php?id=1710.

[25] S. Kumaran, P. Nandi, F.F. (Terry) Heath III, K. Bhaskaran, and R. Das. ADoc-
oriented programming. InSymp. on Applications and the Internet (SAINT), pages
334–343, 2003.

[26] Vera Künzle and Manfred Reichert. A modeling paradigmfor integrating pro-
cesses and data at the micro level. In Terry A. Halpin, SelminNurcan, John
Krogstie, Pnina Soffer, Erik Proper, Rainer Schmidt, and Ilia Bider, editors,En-
terprise, Business-Process and Information Systems Modeling - 12th Interna-
tional Conference, BPMDS 2011, and 16th International Conference, EMMSAD
2011, held at CAiSE 2011, London, UK, June 20-21, 2011. Proceedings, vol-
ume 81 ofLecture Notes in Business Information Processing, pages 201–215.
Springer, 2011.

[27] Vera Künzle and Manfred Reichert. PHILharmonicflows:towards a frame-
work for object-aware process management.Journal of Software Maintenance,
23(4):205–244, 2011.

[28] M. Linehan et al. GSM expression language, Version 1.0,January 28, 2011. IBM
Research internal report, available on request.

[29] John. W. Lloyd.Foundations of Logic Programming, 2nd Edition. Springer, 1987.

[30] B. Marinoiu, S. Abiteboul, P. Bourhis, and A. Galland. AXART – Enabling
collaborative work with AXML artifacts.Proc. VLDB Endowment, 3(2):1553–
1556, Sept. 2010.

[31] D. R. McCarthy and U. Dayal. The architecture of an active data base manage-
ment system. InProc. ACM SIGMOD Intl. Conf. on Mgmnt of Data (SIGMOD),
pages 215–224. ACM Press, 1989.

44

[32] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic web services.IEEE Intelligent
Systems, 16(2):46–53, 2001.

[33] Dominic Müller, Manfred Reichert, and Joachim Herbst. Data-driven modeling
and coordination of large process structures. InOTM Conferences (1), pages
131–149, 2007.

[34] P. Nandi et al. Data4BPM, Part 1: Introducing Business Entities
and the Business Entity Definition Language (BEDL), April 2010.
http://www.ibm.com/ developerworks/websphere/library/

techarticles/1004 nandi/1004 nandi.html.

[35] A. Nigam and N. S. Caswell. Business artifacts: An approach to operational
specification.IBM Systems Journal, 42(3):428–445, 2003.

[36] G. Redding, M. Dumas, A.H.M. ter Hofstede, and A. Iordachescu. Modelling
flexible processes with business objects. InProc. 11th IEEE Intl. Conf. on Com-
merce and Enterprise Computing (CEC), 2009.

[37] Guy Redding, Marlon Dumas, Arthur H. M. ter Hofstede, and Adrian Ior-
dachescu. Transforming object-oriented models to process-oriented models. In
Arthur H. M. ter Hofstede, Boualem Benatallah, and Hye-Young Paik, editors,
Business Process Management Workshops, volume 4928 ofLecture Notes in
Computer Science, pages 132–143. Springer, 2007.

[38] H.A. Reijers, S. Limam, and W.M.P. van der Aalst. Product-based workflow
design.Journal of Management Information systems, 20(1):229–262, 2003.

[39] J.K. Strosnider, P. Nandi, S. Kumarn, S. Ghosh, and A. Arsanjani. Model-driven
synthesis of SOA solutions.IBM Systems Journal, 47(3):415–432, 2008.

[40] Y. Sun, R. Hull, and R. Vaculin. Parallel processing forbusiness artifacts with
declarative lifecycles, 2012. Submitted for publication.

[41] Kieth D. Swenson. Mastering the Unpredictable: How Adaptive Case Man-
agement will Revolutionaize the Way that Knowledge WorkersGet Things Done.
Meghan-Kiffer Press, Tampa, FL, 2010.

[42] R. Vaculı́n, R. Hull, T. Heath, C. Cochran, A. Nigam, andP. Sukavirirya. Declar-
ative business artifact centric modeling of decision and knowledge intensive busi-
ness processes. InThe Fifteenth IEEE International Enterprise Computing Con-
ference (EDOC 2011), pages 151–160. IEEE Computer Society, 2011.

[43] W. M. P. van der Aalst, P. Barthelmess, C.A. Ellis, and J.Wainer. Proclets: A
framework for lightweight interacting workflow processes.Int. J. Coop. Inf. Syst.,
10(4):443–481, 2001.

[44] W. M. P. van der Aalst and Maja Pesic. Decserflow: Towardsa truly declarative
service flow language. InThe Role of Business Processes in Service Oriented
Architectures, 2006.

45

[45] W.M.P. van der Aalst, M. Weske, and D. Grünbauer. Case handling: a new
paradigm for business process support.Data Knowl. Eng., 53(2):129–162, 2005.

[46] Irene T. P. Vanderfeesten, Hajo A. Reijers, and Wil M. P.van der Aalst. Product-
based workflow support.Inf. Syst, 36(2):517–535, 2011.

[47] W.-D. Zhu et al. Advanced Case Management with IBM Case Manager. Pub-
lished by IBM. Available athttp://www.redbooks.ibm.com/redpieces/
abstracts/sg247929.html?Open.

46

