
Instantaneous Soundness Checking of Industrial
Business Process Models

Dirk Fahland1, Cédric Favre2, Barbara Jobstmann4, Jana Koehler2, Niels Lohmann3,
Hagen Völzer2, and Karsten Wolf3

1 Humboldt-Universität zu Berlin, Institut für Informatik, Unter den Linden 6, 10099 Berlin,
Germany, fahland@informatik.hu-berlin.de

2 IBM Zurich Research Laboratory, Säumerstrasse 4, 8803 Rüschlikon, Switzerland,
(ced|koe|hvo)@zurich.ibm.com

3 Universität Rostock, Institut für Informatik, 18051 Rostock, Germany,
(niels.lohmann|karsten.wolf)@uni-rostock.de

4 EPF Lausanne, 1015 Lausanne, Switzerland, barbara.jobstmann@epfl.ch

Abstract. We report on a case study on control-flow analysis of business process
models. We checked 735 industrial business process models from financial ser-
vices, telecommunications and other domains. We investigated these models for
soundness (absence of deadlock and lack of synchronization) using three differ-
ent approaches: the business process verification tool Woflan, the Petri net model
checker LoLA, and a recently developed technique based on SESE decomposi-
tion. We evaluate the various techniques used by these approaches in terms of
their ability of accelerating the check. Our results show that industrial business
process models can be checked in a few milliseconds, which enables tight in-
tegration of modeling with control-flow analysis. We also briefly compare the
diagnostic information delivered by the different approaches.

1 Introduction

Various studies [1] show that many business process models contain control-flow er-
rors such as deadlocks. Such errors obstruct the correct simulation, code generation and
execution of these models. Therefore, detecting and removing control-flow errors be-
comes crucial in view of the increasing popularity of these use cases. Preventing errors
by using a restricted, for example a purely block-oriented modeling language is rarely
an option because a model typically needs to reflect the real causal process structures
present in an enterprise.

In this paper, we are interested in checking business process models for the clas-
sical notion of soundness [2, 3], which entails the absence of deadlocks and lack of
synchronization, which are explained in more detail below. Our interest in soundness is
motivated by an increased need in creating business process models not only for doc-
umentation purposes, but for an input into a translation and code generation process
where, e.g., WS-BPEL code is generated. Soundness is necessary to translate a process
modeled in a graph-based language, such as UML Activity Diagrams or BPMN, to WS-
BPEL in a way that preserves the execution semantics and the structure of the process.
This use case requires a process to be checked in a relatively short amount of time, say
500 ms or less, because checks are to be performed on each major modification, that is,

at least on each save operation on the process model. Moreover, entire libraries of up
to several hundred processes have to be checked when models are exchanged between
modeling tools. Short response times make it possible to integrate control-flow analy-
sis tightly with modeling such that errors are found at the earliest possible time, which
would allow the user to relate an error to the latest change in the model. Furthermore,
use cases such as code generation from models also require that an analysis produces
sufficient diagnostic information to allow the user to locate and repair the detected er-
rors.

A variety of techniques for checking soundness exists in the literature. They dif-
fer in their completeness, worst-case complexity, and quality of diagnostic information
returned. Most techniques can be easily combined to optimize performance. The most
flexible technique is state space exploration. It is most likely applicable to other similar
use cases, such as checking a relaxed notion of soundness or checking more expres-
sive languages supporting OR-joins and other advanced synchronization constructs. But
state space exploration suffers from the state space explosion problem, i.e., the fact that
the number of reachable states can be exponential in the size of the process model. On
the other hand, many business process models have a simple structure, for instance, they
are sequential to a large extent, hence they do not necessarily have a large state space.

At the onset of our project, it was not clear from the literature how large the state
spaces of control-flow models of realistic business processes are and hence which ad-
ditional techniques are needed to check their soundness as fast as required by our use
case. It was completely open whether such a check can be performed in the required
time and in such a way that sufficient diagnostic information is obtained. In addition,
given the variety of available approaches, it was unclear which would be the most suit-
able techniques.

In this case study, we investigated three approaches implemented in three different
tools as outlined in Fig. 1:

1. The Petri net model checker LoLA [4], from which we used CTL model checking
with partial order reduction.

2. The business process verification tool Woflan [3], which uses a mixture of Petri net
analysis techniques, most notably structural Petri net reduction and S-coverability
analysis, as well as a form of state space exploration based on coverability trees.

3. The process validation technique used in the IBM WebSphere Business Modeler,
which combines SESE decomposition [5] with heuristics and state space explo-
ration.

The data set for our case study was a large collection of process libraries available
in the IBM WebSphere Business Modeler tool. The first two approaches required a
translation of these models into Petri nets, whereas for the third approach, the models
were translated into workflow graphs.

We obtained the following results: Based on the 735 process models that we an-
alyzed, soundness of industrial business process models can be decided in a few mil-
liseconds per process. Although many processes are simple enough that state space
exploration alone would be sufficient to decide soundness, this method is not sufficient
in general. However, all three approaches perform similarly fast, meeting the above-
mentioned performance requirements. This implies that one can focus on different re-

2

SESE
decomposition

liveness check
(reduced state space)

safeness check
(reduced state space)

soundness check
(plain state space)

matches
structural heuristics?

translation

translation

Petri net

SESE fragments analysis result

✔ /

analysis result

workflow graph

A

B

C

choice depends on SESE fragment

always perform both checks

sound counterexample

✗
✗

✔ /
sound counterexample

✗

extension to
workflow net

structural
reduction

reduced workflow networkflow net

trivial workflow net?

soundness check
(structure and
state space)

analysis result

✔ /
sound structural information

analysis result

✔
sound

choice depends on net structure

for each SESE fragment

LoLA

Woflan

IBM WebSphere Business Modeler / SESE approach

Compiler

business process
model

✗

Fig. 1. Three different approaches and tools to check soundness.

quirements such as the quality of the returned diagnostic information when deciding
for a soundness-checking technique. Our study also shows that there is a high percent-
age of unsound models, confirming the need for better tool support for execution-aware
modeling.

Previous studies [6, 7, 3] on checking soundness or the similar notion of EPC sound-
ness of realistic business process models concentrate on error findings and error predic-
tion. These studies do not report runtimes for the analysis. Mendling [8] reports an
average analysis time of 1.8 secs and maximal time of 142 secs for checking the EPC
soundness of 604 processes. His technique of using structural reduction rules that op-
erate directly on the process model does not find all violations of soundness. A post-
processing with state space exploration is not included in these runtimes. The same set
of processes was also checked for relaxed soundness [9] with a reported runtime of
46 secs per process on average [8, 1]; however, no maximal times are reported. Recent
work [10] extends control-flow analysis to more advanced synchronization constructs
such as OR-joins and cancelation regions, but so far no empirical results have been
reported. A preliminary and incomplete version of the SESE decomposition technique
that used heuristics only, but did not include state space exploration, was partially eval-
uated on a different set of data [5].

The remainder of this paper is organized as follows: In Sect. 2, we discuss the data
used in this study, their translation to workflow graphs and Petri nets, and the notion of
soundness. Sections 3, 4, and 5 present the three approaches together with the results
they achieved on the data. In Sect. 6, we review the results in a comparison of the three
approaches and draw conclusions.

3

2 Selecting the Empirical Data and Preparing the Case Study

2.1 Sampling the process data

We scanned a large set of real-world data available to the IBM team for our practical
validation of the soundness-checking approaches and tools. These data mostly resulted
from modeling activities in customer projects within a SOA context, i.e., processes were
captured with the final goal of implementing them in a Service-Oriented Architecture.
The models covered various industry domains such as financial services, automotive,
telecommunications, construction, supply chain, health care, and customer relationship
management. We also looked at large collections of reference processes that were cre-
ated for the insurance and banking domain by users who explored different modeling
styles, i.e., different ways of capturing data and control-flow at varying level of gran-
ularity. All models were available in the IBM WebSphere Business Modeler tool rep-
resented in a language that currently combines elements from UML Activity Diagrams
and the Business Process Modeling Notation (BPMN), but some of them had originally
been created in other tools first and then imported into the IBM product.

It turned out that only some of the model collections considered are useful for our
purposes. Many process models are in fact quite small, as good modeling practice sug-
gests an appropriate structuring of processes into subprocesses, and are therefore not
a challenge for our soundness-checking approaches. Others, in particular those created
in other tools, might not have been created with the appropriate notion of soundness or
might have been created by non-experts and consequently turned out to be syntactically
incomplete and therefore flawed in such a way that it made no sense to consider them
further. In the course of our experimental studies, we therefore reduced our initial test
set of approx. 3000 models to 5 libraries of 735 different models in total from the in-
surance, banking, customer relationship, as well as construction and automotive supply
chain domains. We completely anonymized the data in these models, e.g., task names
would be replaced by enumerations t1, t2, . . ., and named these libraries A, B1, B2, B3,
and C. These anonymized libraries, which have been stripped off all semantics and rep-
resent only purely structural information, were the input for the tools LoLA, Woflan,
and the SESE approach. Libraries B1, B2, and B3 partially overlap as they represent a
series of models from the same domain created over a period of two years, in which a
library changed to the next by adding more process models and refining all models with
further detail. The number of 735 different processes therefore counts only the latest
library in this series, which is B3 with 421 processes, together with the 282 processes
from library A and 32 processes from library C.

Table 1 characterizes the data from our process libraries by measuring the number of
nodes that represent tasks, subprocesses, gateways, start and end events, and the number

Table 1. Static data.

A B1 B2 B3 C

Avg. / max. number of nodes 14 / 46 17 / 69 16 / 67 18 / 83 27 / 118
Avg. / max. number of edges 33 / 127 29 / 147 31 / 202 33 / 195 33 / 145

Avg. / max. node inflow 2.52 / 13 1.76 / 15 1.90 / 69 1.86 / 27 1.84 / 4
Avg. / max. node outflow 1.03 / 8 0.94 / 13 0.99 / 15 1.05 / 30 1.83 / 4

4

of edges that represent control- and data-flow connections between nodes. The inflow
and outflow numbers capture the branching degree that occurs in the models. Note that
for libraries B1 and B2 the average outflow is smaller than 1, because many end events
occurring in these models have outflow 0.

Fig. 2. Structure of a
typical, average-sized
process model.

To illustrate such a process model, we show a typical
average-sized example from library C in Fig. 2. We split the
flow into two parts: the end of the left flow continues at the
beginning of the right flow. This process model contains 21
tasks representing elementary, not further distinguished pro-
cess steps, 16 gateways to encode XOR-splits and -merges,
and 51 edges representing data- and control-flow connections.
A task can have multiple incoming and outgoing edges that
encode implicit AND-splits and -joins of the control and data
flows. The example model also contains several cycles: There
is a large cycle that spans almost the entire process and there
are three smaller cycles within this large cycle – two of them
are nested within each other, whereas the third occurs at the
end of the process.

2.2 Translation into workflow graphs and Petri nets

Data-flow constructs in the language of the current version of
the IBM WebSphere Business Modeler are similar to UML
activity diagrams. Here, we only consider explicit data-flow
connections and no repositories, because each such connection
implies a control-flow connection. Control-flow constructs are
visualized in BPMN.

The translation of the process models into the format re-
quired by the soundness checkers focuses on the following
modeling elements: start and end events, tasks, subprocesses,
control flow, input and output sets, and gateways. Data flow
is ignored during the translation, i.e., each explicit data-flow
connection is replaced by a control-flow connection. Data flow
connections from and to repositories were not considered at all.
The current language supported by IBM WebSphere Business
Modeler contains XOR- and AND-gateways as well as an OR-
split, but no OR-join. The translation is well-known and there-
fore not repeated here; details are provided elsewhere [11].

A task can have multiple incoming and outgoing edges (in-
puts and outputs) that can be grouped into sets. Input and out-
put sets of tasks are translated into gateway logic as illustrated
in Fig. 3. In Fig. 3, task A has inputs a, b grouped into one set
and inputs c, d, e grouped into another set with the meaning
that A can execute if it either receives a and b as input or c,
d, and e. The output (sets) of task A are f , g, h and i, j, k. The
presence of an input or output is expressed by placing a token

5

on an edge between two nodes. Tokens move through the process as a task or gateway
executes, taking the process from one state to another state in the usual way.

f
g
h

j
i

k

a
b
c
d
e

A A

f

g

h

i

k

a

b
c

d

e

j

a

A

e

...

in 1

in 2

fout 1

out 2

g

h

i

j

k

b

d

c

Fig. 3. Translation of a task with disjoint input and output sets (left) into the corresponding work-
flow graph (center) and Petri net patterns (right).

In the center of Fig. 3, we see the translation into a workflow graph [2, 5], which
is a control-flow graph containing only gateways and tasks. To the right, we see the
resulting Petri net. In general, input and output sets can overlap, which would lead
to non-free-choice Petri nets as a result of the translation [12]. However, none of the
syntactically valid process models contained in our test set used overlapping inputs or
output sets, i.e., the translation will only return free-choice nets in our case study. This
makes it possible to benefit from fast analysis techniques for free-choice Petri nets, see
for example Sect. 4. Furthermore, users of the tool can specify which input set activates
which output set, but this information was not provided in any of the models. For the
translation, we therefore assumed that each input set can potentially activate each output
set. Two different translations into workflow graphs and Petri nets were implemented,
although the Petri nets could also be directly obtained from the workflow graphs by a
well-known construction [2].

2.3 Soundness

Figure 4 shows a workflow graph without any tasks as it occurs in the middle part of the
process in Fig. 2 and to which we added a start and an end event. This process model
contains a lack of synchronization error as well as a local deadlock, which are not so
easy to spot in the first place.

F1

J1

M1

M2

Fig. 4. Workflow graph with deadlock and lack of synchronization errors.

A local deadlock is a reachable state s of the process that has a token on an incom-
ing edge e of an AND-join such that each state that is in turn reachable from s also
contains a token on e, i.e., the token is ‘stuck’ on e. A deadlock arises for example,

6

if two alternative paths are merged by an AND-join or if an AND-join occurs as an
entry to a cycle. In the example in Fig. 4, a deadlock occurs when a token travels the
Yes edge leaving the XOR-split D1. Eventually, this token will reach the AND-join J1
via the upper incoming branch. However, no other token will ever arrive at the lower
incoming branch of J1.

A reachable state s contains a lack of synchronization if there is an edge that has
more than one token in s. If such an edge contained a task, it would be executed twice.
A lack of synchronization arises for example, if two parallel paths are merged by an
XOR-merge or if the exit of a cycle is an AND-split. In the example in Fig. 4, a lack
of synchronization occurs when a token travels the No edge leaving the XOR-split D1.
This token will activate the AND-split F1, which leads to a token reaching the XOR-
merge M2 and another token traveling the cycle D2,M1,D1, F1. This can result in
multiple tokens on the edge from F1 to M2.

A process model that has neither a lack of synchronization nor a local deadlock is
said to be sound. This definition of soundness is equivalent to the classical definition
of soundness in free-choice Petri nets [3]. There are other equivalent characterizations
that are exploited by some of the tools used in our case study, see for example Sect. 5.
Their formal treatment can be found elsewhere [2, 3, 13, 5].

Table 2 summarizes the results of our analysis for the libraries. On average, only
46% of all process models are sound ranging from 37% for library B1 to 53% for
library A. The table also shows the degree of concurrency that can be found in a process
model, i.e., the maximum number of tokens that occur in a single reachable non-error
state of the process. Row 5 shows the number of processes with more than one million
reachable states, which include error states, and processes that have infinitely many
reachable states such as the process shown in Fig. 4. To exclude those, we measured the
size of the state space of each sound process, which is always finite, which still returned
a few processes with more than one million states. The average values, however, suggest
that such processes are rare.

Table 2. Dynamic data.

A B1 B2 B3 C

Processes in library 282 288 363 421 32
sound 152 107 161 207 15
unsound 130 181 202 214 17

Avg. / max. concurrency 2 / 13 8 / 14 16 / 66 14 / 33 2 / 4

Processes with >1000000 states 26 19 29 38 7
Processes with >1000000 states (only sound) 0 1 4 4 0

Avg. number of states (only sound, <1000000 states) 26 71 322 4911 680
Max. number of states (only sound, <1000000 states) 213 2363 28641 588507 8370

3 State Space Verification with LoLA

LoLA [4] is a tool that decides numerous properties by an inspection of the state space
of a given Petri net. For making state-space inspection feasible, it offers several state-
space reduction techniques. The experiments were carried out with the current version
of LoLA 1.11 [14].

7

Soundness as a model-checking problem. The process models have to be translated
into Petri nets prior to the verification as sketched in Sect. 2.2. To verify soundness,
LoLA works in two runs on the resulting Petri nets. In the first run, it checks for local
deadlocks and in the second run for lack of synchronization.

A process has no deadlock iff a final state can be reached from every reachable
state; a state is final iff each token has reached an end node. The latter can easily be
expressed as a state predicate in LoLA. The former can be expressed as a CTL formula
over this predicate and checked by LoLA directly. LoLA checks the property on-the-fly,
i.e., while the state space is being generated. As soon as LoLA detects a violation, it
stops and returns the violating state. Once an error state has been found, a reachability
check is used to produce a trace to the error state.

LoLA has a switch that causes state-space generation to be stopped if an unsafe state
is generated. A state is unsafe if a single place contains more than one token, which
indicates a lack of synchronization in the original process model. This simultaneous
check for lack of synchronization in the first run prevents that LoLA tries to generate an
infinite state space and also optimizes performance for finite state spaces. If an unsafe
state is found, a trace leading to it is returned immediately. However, the test for unsafe
states cannot detect all lack of synchronization errors. Therefore, if no error has been
detected during the first run, LoLA is invoked a second time on each net, this time
explicitly checking for lack of synchronization.

Lack of synchronization, i.e., unsafeness of states, can be expressed in LoLA as the
state predicate

∨
p∈P m(p) > 1, where P is the set of places of the Petri net. As this

set can become very large, e.g., on our test data, a maximum of 275 places occurred,
we simplified this predicate to optimize performance. We can assert by construction for
several places in the Petri net that they cannot obtain more than one token unless a pre-
ceding place is also able to do so. In essence, only places that represent an XOR-merge
or an exit of a cycle need to be considered. The resulting state predicate is checked for
reachability by LoLA. If the predicate is satisfied, a lack of synchronization is identified
and LoLA produces a trace to the error state.

We used partial order reduction [15] for the results of this paper. This technique
suppresses insignificant orderings of concurrently enabled events. LoLA ensures that
the property to be checked is preserved by the reduction.

For the example depicted in Fig. 2, LoLA detects a lack of synchronization in the
first run, concludes that the net is unsound, and returns an error trace consisting of 36
states.

Experimental setup. After translating the process models into Petri nets with our com-
piler [11, 16], we performed the two checks explained above. We ran the experiments on
a notebook with a 2.16 GHz processor and 2 GB RAM. We set a bound of one million
states for each net and classified a net as intractable if this bound was reached.

Experimental results. Compared with the original models, the Petri nets that we ob-
tained have about 5.5 times as many nodes and edges, see Table 1, which is due to the
more fine-grained representation of the process logic in Petri nets as illustrated by Fig. 3.

8

Table 3. Analysis statistics for LoLA.

A B1 B2 B3 C

Intractable processes (no partial order reduction) 0 2 5 4 0

Avg. number of explored states (partial order reduction) 50.42 40.60 37.52 60.76 127.28
Max. number of explored states (partial order reduction) 187 1591 1591 6467 1469

Avg. length of error trace (partial order reduction) 30.24 10.81 12.12 11.21 53.17
Max. length of error trace (partial order reduction) 67 110 75 103 120

Analysis time for library (partial order reduction) [ms] 2680 2356 3184 3878 305
Analysis time for library (struct. reduced, partial order reduction) [ms] 2523 2192 3025 3575 275

The largest net results from a process model in library C and has 558 nodes and 607
edges.

Without partial order reduction, not all nets could be analyzed, see row 1 of Table 3.
When partial order reduction is used, there is no intractable process. In fact, the largest
state space explored consists of only 6467 states. Only around 100 states need to be
explored on average. During the experiments, LoLA never consumed more than 2 MB
of memory, which allows for an unobtrusive verification process, which was not clear
in advance. Table 3 summarizes the results.

In a variant of the experiment, we also applied structural Petri net reduction rules
[17] to each Petri net before checking it with LoLA. These rules reduce the size of
the net, while preserving soundness. The last row of Table 3 shows that structural net
reduction hardly has any effect on the runtime. Note that these runtimes do not contain
the time needed for structural reduction.

The longest error trace contains 120 Petri net states. When mapped to the original
process model, this trace corresponds to a sequence of 40 tasks.

4 Soundness Verification with Woflan

Woflan [3] is a tool for verifying the soundness of business processes modeled as Petri
nets. It poses syntactic restrictions on the Petri nets it can analyze, most notably, that
each net must have a unique terminal place. Such a net is called a workflow net.

Preparing the input for Woflan. Only a few process models from our libraries have
a unique terminal node, hence only a few of the resulting Petri nets would have a sin-
gle terminal place and thus be workflow nets. However, a multi-terminal net N can be
extended to a workflow net N′ using the algorithm of Kiepuszewski et al. [13, Proof of
Theorem 5.1]. This algorithm adds new edges to N that cause every terminal place of
N to be marked in every run. It then synchronizes all terminal places of N by a final
transition, which produces a token on a new unique terminal place. Kiepuszewski et
al. [13] show that soundness is preserved by the extension assuming that the original
net N is a free-choice Petri net. As we discussed in Section 2, our data set meets this
assumption. It is also easy to see that the extension preserves unsoundness. Extending
N only requires a depth-first search in N for each of its terminal places.

9

The tool Woflan. Woflan implements a complex algorithm [3] to check soundness.
It uses various techniques from Petri net structure theory as well as state space explo-
ration. If the workflow net is a free-choice net, which is the case in our experiments,
Woflan’s algorithm reduces to the following procedure (recall also Fig. 1):

(1) First, soundness-preserving structural reduction rules from Petri net theory [17]
reduce the size of the input. If the resulting net is trivial, i.e., it has only one transition,
Woflan immediately concludes that it is sound. (2) Otherwise, Woflan checks the S-
coverability of the net [3] to exploit the following properties: (2a) A free-choice Petri
net that is not S-coverable is unsound, and Woflan quits; the unsoundness can be caused
by a deadlock or a lack of synchronization. (2b) A Petri net that is S-coverable has no
lack of synchronization, but may contain a local deadlock [3]. (3) If step (2b) applies,
Woflan searches for local deadlocks–in Petri net terms a dead or a non-live transition–by
state space exploration, i.e., by constructing the net’s coverability graph. The techniques
underlying steps (2) and (3) have exponential worst-case complexity in the size of the
net.

Woflan provides two kinds of diagnostic information in this setting: If step (2a) ap-
plies, it returns a list of places that are not S-coverable, i.e., that contribute to a deadlock
or a lack of synchronization. If Woflan detects a deadlock in step (3), it returns a list of
dead and non-live transitions that create this deadlock.

Experimental setup. We verified the workflow nets resulting from the translation with
a command-line version of Woflan in a batch on a notebook with a 1.66 GHz processor
and 2 GB RAM. We ran the experiments twice, the first time without applying structural
reduction, the second time with. Aiming at instantaneous verification, we interrupted
Woflan if the verification time exceeded 5000 ms. In these cases, we classified the pro-
cess as intractable for the analysis.

Experimental results. Table 4 summarizes the results of our Woflan experiments. Our
first analysis on the unreduced workflow nets was intractable for 46% of library A and
for 19%-28% of libraries B1 to B3. The size of these nets corresponds to the numbers
presented for LoLA in Sect. 3. Surprisingly, the analysis became intractable mostly
when Woflan checked S-coverability–the technique’s exponential worst-case complex-
ity explains this observation. If S-coverability completed successfully, proving absence
of deadlocks by state space exploration was tractable in all but 11 cases. Library C was
analyzed completely and fairly quickly, see Table 4, row 4. The structure of its models
seems to be more suitable for Woflan. We observed that without capping analysis after
5000 ms, Woflan’s analysis frequently required between 15 min to more than 1 h per
process.

In the second experiment, we let Woflan apply structural Petri net reduction rules
prior to analysis, which on average reduced nets in size by a factor 5. The largest net,
which resulted from a process in library B3, has 74 nodes and 232 edges. About a third
of all models were reduced to the trivial workflow net, see Table 4, row 5. Thus, struc-
tural reduction alone identified 53% (libraries A and C) to 80% (libraries B) of all sound
processes. Woflan classified about two thirds of the remaining nets as unsound by prov-
ing that a net is not S-coverable and free-choice. These nets constitute almost 100% of

10

Table 4. Analysis statistics for Woflan.

A B1 B2 B3 C

1) Without structural reduction
Intractable processes 129 54 77 119 0

due to S-coverability 129 53 74 112 0
due to state space exploration 0 1 3 7 0

Analysis time [ms] 860812 288218 429343 755875 2375

2) With structural reduction - no intractable processes
Sound by structural reduction 81 79 134 162 8
Unsound by S-coverability 130 176 197 210 11

Processes that required state space exploration 71 32 32 49 8
Max. number of explored states 8 7 8 8 12

Analysis time per library [ms] 1120 1305 1795 2315 165
per process [ms], avg. / max. 3.97 / 20 4.55 / 40 4.94 / 91 5.50 / 1142 6.11 / 90

all unsound models. For example as Table 2 shows, library B3 has 213 unsound pro-
cesses, out of which 210 are not S-coverable. Only for the remaining nets–between 9%
(library B2) and 25% (libraries A and C) of the processes–was a state space of at most
12 states explored to complete the analysis. Woflan checks soundness of a process in
about 4 to 6 ms on average, with a maximum runtime of less than 90 ms. The one excep-
tion in library B3 ran into the exponential worst-case complexity of the S-coverability
check, see Table 4, row 10.

Interpreting Woflan’s diagnostic information on the original process model is not
trivial. For instance, in the workflow net that corresponds to the model of Fig. 4, Woflan
reports all places to be not S-coverable, hiding the concrete source or location of the
error.

We conclude that S-coverability checking alone does not sufficiently speed up the
analysis for instantaneous verification of free-choice Petri nets. However, this technique
becomes very powerful in combination with Petri net reduction rules. For up to 91% of
our examples, soundness or unsoundness was proven alone by these two techniques.
Only in the remaining cases, was a fairly simple state space exploration required.

5 The SESE Decomposition Approach

The SESE approach structurally decomposes a business process model into smaller
fragments, for which soundness is analyzed by heuristics and state space exploration.
If each fragment is sound, then the entire process is sound. The analysis is done on
a workflow graph, which is obtained from the original process model as sketched in
Sect. 2.2. The SESE approach combines the following three techniques.

State space exploration with SESE. The base technique for the SESE approach is
state space exploration. Soundness of a workflow graph can be decided by checking that
no explored state has more than one token on a single edge (lack of synchronization) and
that each non-terminal state has a successor state (global deadlock). If a workflow graph
has no lack of synchronization, then every local deadlock manifests itself eventually in
a global deadlock in each execution. The workflow graph’s state space is explored by

11

depth-first search. The analysis terminates upon the first state that violates one of these
two properties and returns a trace leading to this state. If there is no error, the entire
state space must be explored.

SESE decomposition. To mitigate the state space explosion problem, we use a parsing
technique called the Refined Process Structure Tree (RPST) [18]. The RPST decom-
poses a workflow graph into a hierarchy of fragments with a single entry and single
exit (SESE) of control. A SESE fragment of a workflow graph is a subgraph that has a
single entry node and a single exit node. Fig. 5 shows an example of a workflow graph
that is decomposed into such fragments. Multiple end nodes can be handled by adding
a unique dummy end node as shown in Fig. 5. Soundness is compositional with respect
to SESE fragments, i.e., each fragment can be checked in isolation [5]. To verify the
soundness of a fragment, each child fragment can be treated as a task (node) of the
workflow graph.

A
B

C E F

G

Fig. 5. Decomposition of a workflow graph us-
ing the Refined Process Structure Tree.

The soundness of a SESE fragment
can be checked using plain state space ex-
ploration. Because fragments are usually
considerably smaller than the entire work-
flow graph, the input to the state space ex-
ploration is smaller, in turn resulting in
smaller state spaces to be explored. The
decomposition is done in linear time and
the number of fragments is at most lin-
ear in the size of the workflow graph. The
time to analyze an entire workflow graph
is then dominated by the size of its largest
fragment.

The diagnostic information returned is a fragment showing the error as a trace rela-
tive to the fragment. This shows an error inside a smaller scope and shortens the error
trace. Moreover, the checker can detect multiple errors at once, up to one per fragment.
This includes ‘unreachable’ errors, such as a lack of synchronization in a fragment,
e.g., in fragment G in Fig. 5, that cannot be reached by plain state space exploration be-
cause this fragment is obstructed by another deadlock earlier in the process, e.g., frag-
ment A in Fig. 5.

Heuristics. In practice, many fragments have a simple structure that can be recognized
as sound or unsound in linear time using structural heuristics [5]. For example, if a
fragment contains only XOR-gateways, it is purely sequential and therefore sound. If
a fragment contains at least one XOR-split, but no XOR-join it must be unsound. In
this case, the XOR-split can be highlighted inside the highlighted fragment as diagnos-
tic information. We implemented 14 heuristics, all of which can be evaluated based on
a single count of the gateway types within a fragment. Only a fragment that does not
match any of the heuristics becomes the subject of state space exploration; such a frag-
ment is said to be complex. Therefore, heuristics are expected to speed up the analysis
by bypassing the state space exploration.

12

Experimental setup. The SESE approach is implemented as part of the IBM Web-
Sphere Business Modeler, in which we also conducted the experiments collecting re-
sults from the debugging console. The analysis time reported also includes the produc-
tion of the regular error report in the tool.

We conducted three experiments to measure the impact of the SESE decomposition
and the heuristics: First, we used plain state space exploration only. Second, we decom-
posed each process into its SESE fragments, and all fragments were then analyzed by
state space exploration. In the third experiment, we used decomposition in combination
with heuristics and state space exploration, i.e., state space exploration was applied only
to complex fragments.

The analysis time is computed as an average over five runs. The overhead for load-
ing the process models from the hard drive into memory was measured separately and
factored out from the analysis time. The SESE experiment was conducted on a notebook
with a 2 GHz processor and 3 GB RAM.

A process is intractable if more than 100000 states have to be explored. This thresh-
old value is based on the experience that the time needed would otherwise exceed a
value that is acceptable in the use case of instantaneous verification as described in
Sect. 1.

Experimental results. Table 5 shows the results for the three experiments described
above. For plain state space exploration, we observe that at most 6 out of 363 processes
(all contained in library B2) are intractable, i.e., less than 2 percent. Analyzing library A,
which contains no intractable process, only requires 490 ms.

When using the decomposition into fragments, we observe that there no longer is
an intractable process. However, the analysis time of library B2 is dominated by one
particular process which took 25 sec to be analyzed. All other processes took less than
1 sec each. SESE decomposition reduces the size of the input to state space exploration
by an average factor between 1.5 and 4. The number of states that are explored for
a particular process is the sum of the number of states explored for each fragment of
the process. Table 5 shows that the number of states that have to be explored for a
process on average reduces by up to a factor of 13.8 with respect to experiment 1. After
decomposition, there is still a fragment that has 16403 states.

Library A shows that computing the decomposition does not always pay off: This
library is analyzed faster without decomposition. The analyses of the other libraries,
however, clearly benefit from the decomposition: Decomposition reduces the analysis
time by a factor between 5 and 67 with respect to plain state space exploration.

In addition, we recorded the length of the error trace in both experiments. Error
traces are notably smaller when they relate only to a fragment, rather than to the entire
workflow graph. The error trace lengths were reduced by a factor of 4.7 on average.
Note that the error trace using the decomposition into fragments starts at the start node
of the fragment and not at the start node of the workflow graph. The decomposition
allows us to detect multiple errors per process, at most one per fragment. For library B2,
we measured an average of 1.55 and a maximum of 7 unsound fragments per unsound
process.

13

Table 5. Experimental results for the SESE decomposition approach.

A B1 B2 B3 C

1) State space exploration - reference

Explored states per process (avg.) 42.8 826.4 1879.3 1508.1 149.7
Explored states per process (max.) 241 17176 28684 28688 2517
Intractable processes 0 2 6 5 0

Analysis time [ms] library 490 30019 197670 135178 30019
process (max.) 16 13186 76700 24624 62

2) Using the decomposition - no intractable processes

Size reduction (workflow graph / largest fragment) (avg.) 4.1 3.8 3.9 4.7 2.7

Explored states

process (avg.) 52.4 31.6 86.7 38.4 61.7
reduction w.r.t. exp. 1 per process (avg.) 1.0 13.8 13.4 10.2 1.5
process (max.) 201 268 16534 311 356
fragment (max.) 53 117 16403 68 120

Analysis time [ms] library 1587 1359 35495 2446 447
process (max.) 16 16 25286 32 32

3) Using the heuristics - no intractable processes

Portion of fragments analyzed by heuristics 97% 97% 98% 98% 99%

Explored states

process (avg.) 6.0 2.3 3.2 2.5 10.1
reduction w.r.t. exp. 2 per process (avg.) 28.3 22.9 78.4 29.6 34.1
process (max.) 53 36 165 24 120
fragment (max.) 53 36 165 20 120

Analysis time [ms] library 1247 1390 1681 2303 318
process (max.) 16 31 16 31 62

The third experiment shows that the heuristics speed up the analysis further. For
all libraries, more than 97 percent of the fragments match some heuristic and only
the remaining ones have to go into state space exploration. We noted that a process
usually contains not more than one complex fragment, out of an average of 16 fragments
per process. Only the largest process, which has 122 fragments, contains two complex
fragments; no process contained more. The small number of complex fragments results
in a reduction factor of up to 78.4 for the average number of states that were explored
to analyze a process. The use of the heuristics reduces the analysis time of library B2
by a factor 21 with respect to experiment 2. For the other libraries, the differences in the
analysis times is not significant. The maximum analysis times per process range from
10 to 62 ms.

6 Conclusion

We showed that different techniques can be used to check the soundness of industrial
business process models reliably in fractions of a second.

For the state space approach using LoLA, we found that partial order reduction and
on-the-fly verification are the essential factors for success. Although many processes
could have been verified on a brute force state space, some state spaces exploded with-
out the use of partial order reduction. While it was difficult to handle full state spaces,
the exploration of erroneous state spaces up to the first error was efficient. Surprisingly,

14

the prior application of structural Petri net reduction has only a minor impact on per-
formance. This may be because many of the existing reduction rules address situations
that also partial order reduction on the state space is dealing with.

In the structural approach using Woflan, we saw that the original models can easily
be translated into the more restrictive notion of workflow nets with just one terminal
node. Another observation was that the performance of Woflan can mainly be attributed
to the structural Petri net techniques. In the few cases where Woflan had to explore a
state space, this state space was rather small because of prior application of structural
reduction. Here, structural reduction turned out to be beneficial as Woflan does not
provide partial order reduction.

In the decomposition approach using SESE fragments, we learned that the approach
did not suffer from severe state space explosion as the state space is only computed lo-
cally for a typically small fragment of the process model. Moreover, structural heuristics
are sufficient to handle most of the fragments, which allows one to bypass state space
exploration altogether.

While being similar in their performance, the three approaches chosen vary with
respect to the diagnostic information they provide. The state space approach used by
LoLA is able to return an error trace of manageable size that can be simulated or ani-
mated. The SESE approach can detect multiple errors in one analysis run and localizes
each error in a particular, typically small, fragment of the original model. This also re-
duces the length of the error trace by a factor of 4.7 on average. Moreover, the approach
can provide additional information depending on the heuristics applied. Woflan returns
some Petri-net specific information that needs to be interpreted carefully before it can
be shown to a business user.

Another notable difference between the three approaches is that Woflan is specifi-
cally built for checking soundness and the SESE approach is specifically designed to
check soundness instantaneously, whereas LoLA is a generic model checker for Petri
nets that could more easily be adapted to check other temporal properties of business
processes.

We would like to point out that there are other promising algorithms to check sound-
ness, especially polynomial-time algorithms exploiting the free-choice property [12].
We could not include those in our case study because we are not aware of available
implementations.

Finally, note also that the various techniques could easily be combined in differ-
ent ways. For example, one could apply SESE decomposition to break the model into
smaller fragments, then use heuristics and structural Petri net reduction to quickly sort
out sound fragments that have a simple structure, and then finally check the remain-
ing fragments with state space exploration based on partial order reduction to obtain
detailed localized error information.

Acknowledgements We would like to thank Eric Verbeek for his substantial support in provid-
ing a Woflan version for our experiments. Dirk Fahland is funded by the DFG-Graduiertenkolleg
“METRIK” (1324). Niels Lohmann and Karsten Wolf are supported by the DFG project “Op-
erating Guidelines for Services” (WO 1466/8-1). Jana Koehler and Hagen Völzer were partially

15

supported by the SUPER project (http://www.ip-super.org) under the EU 6th Framework
Programme Information Society Technologies Objective (contract no. FP6-026850).

References

1. Mendling, J.: Empirical Studies in Process Model Verification. Trans. Petri Nets and Other
Models of Concurrency (ToPNoC) 2 (2009) 208–224

2. van der Aalst, W.M.P., Hirnschall, A., Verbeek, H.M.W.E.: An alternative way to analyze
workflow graphs. In: CAiSE. Volume 2348 of LNCS, Springer (2002) 535–552

3. Verbeek, H.M.W.E., Basten, T., van der Aalst, W.M.P.: Diagnosing Workflow Processes
using Woflan. Comput. J. 44(4) (2001) 246–279

4. Wolf, K.: Generating Petri net state spaces. In: PETRI NETS 2007. Volume 4546 of LNCS,
Springer (2007) 29–42

5. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow analysis for
business process models through SESE decomposition. In: ICSOC 2007. Volume 4749 of
LNCS, Springer (2007) 43–55

6. van Dongen, B.F., Jansen-Vullers, M., Verbeek, H.M.W.E., van der Aalst, W.M.P.: Verifica-
tion of the SAP reference models using EPC reduction, state-space analysis, and invariants.
Comput. Ind. 58(6) (2007) 578–601

7. Mendling, J., Neumann, G., van der Aalst, W.M.P.: Understanding the occurrence of errors
in process models based on metrics. In: OTM 2007: CoopIS, DOA, ODBASE, GADA, and
IS. Volume 4803 of LNCS, Springer (Nov. 2007) 113–130

8. Mendling, J.: Detection and Prediction of Errors in EPC Business Process Models. PhD
thesis, Vienna University of Economics and Business Administration (May 2007)

9. Mendling, J., Verbeek, H.M.W.E., van Dongen, B.F., van der Aalst, W.M.P., Neumann, G.:
Detection and prediction of errors in EPCs of the SAP reference model. Data Knowl. Eng.
64(1) (2008) 312–329

10. Wynn, M., Verbeek, H.M.W.E., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Business
process verification: Finally a reality! Business Process Management Journal 15(1) (2009)
74–92

11. Fahland, D.: Translating UML2 activity diagrams to Petri nets. Informatik-Berichte 226,
Humboldt-Universität zu Berlin, Berlin, Germany (2008)

12. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press, New York, NY,
USA (1995)

13. Kiepuszewski, B., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Fundamentals of control
flow in workflows. Acta Inf. 39(3) (2003) 143–209

14. LoLA v1.11 available at http://service-technology.org/lola
15. Valmari, A.: Stubborn sets for reduced state space generation. In: Applications and Theory

of Petri Nets. Volume 483 of LNCS, Springer (1989) 491–515
16. UML2oWFN compiler available at http://service-technology.org/uml2owfn
17. Murata, T.: Petri nets: Properties, analysis and applications. Proc. of the IEEE 77(4) (1989)

541–580
18. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. In: Business Process

Management. Volume 5240 of LNCS, Springer (2008) 100–115

16

