CHALLENGES AND OPPORTUNITIES IN

DEVELOPING CONTAINER CLOUDS:
LESSONS LEARNED FROM IBM CONTAINER SERVICE

_ Gosia Steinder, IBM Research

What is Docker?

Does anyone in the room need to see this slide?

App B
Bins/Libs
App B
Bins/Libs

Guest OS

Docker Engine

Hypervisor

Host OS Host OS

Server Server

Virtual Machine Docker Container

Docker = Linux namespaces + cgroups + overlay file system + image format

DBck r = Linux namespaces + c%roups + overlaly fiIF system + ima%e format
ocker = Linux namespaces +Tgroups + overlay tile system + image format

Why Docker?

o High Density: Because containers share the same kernel and libraries we can run more
applications on a server.

o Fast Start up: Because containers may have several layers in common only the new layers need
to be copied, reducing build/transfer/boot/load times dramatically.

o Portability across environments

o Deploying a consistent production environment is hard. Even if you use tools like chef and
puppet, there are always OS and library updates that change between hosts and
environments.

o Docker gives us the ability to snapshot the OS into a common image, and, when combined
with IBM’ s patterns technology will make it easy to deploy a collection of images comprising
a given workload in another collection of Docker hosts.

o Ecosystem: Large and rapidly growing ecosystem of devops tools radically changing the way
applications are developed, architected, packaged, and managed

Containers: High-density advantage
T

Memory Usage

3.50E+09

3.00E+09

2.50E+09

2.00E+09

1.50E+09

1.00E+09

5.00E+08

0.00E+00

Docker / KVM: Serial VM Boot Memory Usage (segment: 1s - 67s)

y = 3E+07x +

docker

kvm

Linear(docker)

— Linear(kvm)

1

3 5 7 9 111315171921 23252729 31 333537 39 41 43 45 47 49 51 53 55 57 59 61 63 65

Time (1s - 675s)

(Russell Boden study)

Seconds

18
16
14
12
10

Containers: Performance advantage

Calculate Primes Up To 20000

15.26 15.22 1513
Bare Metal docker KVM

HBare Metal
H docker

HKVM

MiB/s

Memory Benchmark Performance

14000

12881.61

12905.68

12000

10000

8000

HBare Metal (MiB/s)

6000

38233813.38
3428

05

43934395.92

H docker (MiB/s)

4000

MEMCPY

DUMB

Memory Test

BKVM (MiB/s)

MCBLOCK

Docker: Networking challenge
T

3.5

. & Native
u Native

¥ Docker NAT & Docker NAT

- KVM KVM

Round trip latency (ps)
=N W 8 v OO N
©o ©o © © © © © ©

TCP_RR UDP_RR

Transmit Receive

Bulk transfer rate measured using perf stat -a Network transfer latency measured using netperf

Docker default networking (docker bridge) introduces considerable network overheads and exhibits performance
inferior to KVM. Docker host networking matches native performance.

Alternative container networking options
]

Measuring network throughput using file transfer in iperf

Host network Container with Conialner with | VM
(native) Linux Bridge
14.3

Mean Gbps 33.9 17.9

Building a container cloud: Key challenges
T,

O

Elasticity — need to aggregate multiple hosts into system that can appear as a
single docker host and be grown and shrank elastically

Multi-tenancy — need for cost-effective and secure resource sharing and
isolation

Ecosystem — need to develop and support a large system of tools to enable
workload development, deployment, and life-cycle management

Hybrid — “there is no cloud but hybrid-cloud”; 70% of surveyed companies are
or planning to be hybrid cloud users by 2017

Visibility and control — give users what they need, let them know what they get,
don’t constrain usage for the sake of simplicity (this can always be done using
abstractions)

APl choices

I
0 Docker API

O just as you see it on the local host
O or as close as possible to that

0 PaaS-like interfaces
0 Marathon

0 Kubernetes

0 Workload-specific interfaces — e.g., Hadoop /Spark

What kinds of API?

Cloud computing conundrum:

Rigid abstraction layering constrain
simultaneous flexibility & simplicity

o laaS offer flexible programmable
infrastructure, while workload management
complexity is left to LoB users (e.qg., virtual
system patterns)

o SaaS & PaaS hide complexity but restricts
choices and cannot address the

heterogeneity of existing workloads (e.g.,
virtual application patterns, Cloud Foundry)

Docker API as the base abstraction helps us offer

Simple

Complex

the flexibility and simplicity at the same time.

e

Appllcatlop Where we want to
Platform Services be
(PaaS)
Traditional Infrastructure

data centers)

Services (laaS)

Restrictive

Flexible

Ease of Adoption and Extensibility

Technology choices

[]
_m
PaaS PaaS laaS
Network X X v
Multi-tenancy X X v
Advanced X v v (using private
scheduling extensions)
Community™ 2 2 2

* All these technologies have strong communities but none of them is targeting Docker users specifically.

Delivery models
5 |
0 Shared container service
O Cheap to build and operate
O Security issues

0 Dedicated in VMs
O Expensive to build and operate
O Improved security
0 Shared with isolation policies
O Cheap to build and operate (with extra cost and effort for isolation)
O Improved security (eliminates Docker-added vulnerability risk)

Comparing Docker Security to

Virtualization Technologies
T,

Assuming that Docker adds User Namespace support, how would it compare to VM-based systems@

To escape a secure Docker, an attacker in a container would need to find a privilege escalation attack on the
shared kernel. Such kernel vulnerabilities occur roughly once a year (the last was discovered in June 2014)

To escape a type 2 hypervisor such as KVM:

= an attacker in a guest VM would need root in the VM, would need to find a vulnerability in QEMU, and then also find a
privilege escalation attack on the native kernel. QEMU vulnerabilities also are discovered roughly once a year (the last

was found in May 2014)

= Statistically, over the past few years, it is roughly half as likely to find both a QEMU and Kernel vulnerability at the
same time, as just finding the kernel one, and this combination occurs roughly every 2 years

To escape a type 1 hypervisor, such as VMware ESX:

= An attacker in a guest VM would need root in the VM, and would need to find a vulnerability in the VMware
hypervisor.

= The last such vulnerability in ESX was in February 2013, and this occurs roughly once every 2 years
In terms of side and covert channels, there is no significant difference

The bottom line is that Docker has a greater risk of vulnerability, since a single kernel vulnerability is
sufficient to completely break the system

= Since patch management will be done with delay it may not be sufficient to protect the system

Docker: User namespace isolation
T,

- Docker has a high risk of containment failure unless user namespaces are used to separate
root in the container from root outside

= Docker 1.5 still does not have user namespace separation and thus is NOT secure

Docker is working on adding user namespace support; it is anticipated “soon”, but no specific timeline
exists. It will likely not appear until 1.7 (Q3?) at the earliest

- All other reported vulnerabilities, to date, have been fixed and we have not discovered any new
significant ones

DOCKER1.5 ~ ==zl W PFe mmem meemm e
. ==—::::::IZ,T l.Jnoffici?I patch available which adds user namespace support to i
Mbcontainer . :
Linux Kernel ---==zzz22:222' User namespace support

Our Point of View

““Containers are the foundation of our cloud...
and our cloud is tailored for Enterprise’

d Cloud workloads are built and run as containers
O Focus on Hybrid Cloud Application Portability

0 Bare metal deployment, enterprise security, scale and
resiliency

O Leap frog (and marginalize) hypervisors

Local Docker
Host

Reference architecture

o S Bluemix
» DevOps Plpellni e S it Dashboard
/
7
; Docker Remote Autorecove f h
gock'er Build e ry Logging &
ervice 7| Monitoring
. J
; \ / 4)
Private o s9
q £ R =3
Fe?'s’fry EE P g,?nit,?;ner > %] » File as a Service
nstance 82 [¢] o
* oz . J
IBM Docker
Hub Ay
Bare Metal VM
Q Bluemix Services

Container Hub

IBM Containers

On-Prem

Shared

Dedicated

Key goals

O
O

Container Hub - Private and public registries with enterprise-ready content

Full lifecycle management for both a container, a composite application comprised on multiple
containers and the container runtime environment itself

DevOps Build Pipeline for container images and multi-container templates

Container Service

O Multi-tenant and single-tenant deployment plans

O Exploitation of bare metal

O Support for template model that includes multi-container single-host (MCSH) and multi-container
multi-host (MCMH) models

O Policy based resource management (placement, cleanup, movement)

Networking

o Support for private overlay network between a group of containers

O Fine grained connectivity control within tenant network via subnets and security groups
Storage

O Support for container movement between hosts without loss of core container filesystem
o Support for persistent non-brittle volume attach

Enterprise Enablement — security, performance, availability, visibility, control, content

Our initial implementation of the

Container Engine

=
Network

Provides
“~<network

connectivity for

driver

Docker virt

(hypervisor)

nova.conf:

compute_driver = docker.DockerDriver

{

docker-registry
(container)

“’éﬁf,‘é Autoscaling
Orchéstration

- Stores

Provides _.-~
Auth for

O—w

Identity

" Stores

< Docker

images in

Registry,

-
-

Networking in Openstack

Network Node Controller Node

v" Multi-host networking

\ m é) v" Private networks
public internal ublic internal

v Dynamic IP assignment
Senpvie bode 2 v" Public floating Ips

Instances

p

v Network quotas
v' Security groups

Operational visibility
]

Scenario 1: Ephemeral Instances
. Containers for App A fail shortly after provisioning. Reprovisioning automation results in the same systemic failure.

- How to root cause the issue when containers keep dying before we can access them?
- How to avoid cascading failures?

Scenario 2: Unresponsive Systems
. My app stopped responding. Access to the Docker instance fails, and all my in-app monitors went completely silent.

- In-band monitoring solutions fail at the exact moment we need them the most.
- How can we provide a better, always-on solution for health, monitoring, compliance, etc.?

Scenario 3: Agent Updates across Entire Inventory

. Transitioning from shiny tool S to shinier tool E for operational monitoring. Need to reprovision each of our 1000
instances with the new runtime component.

- DevOps and CD surely helps; but still, how fun:)
- Is the risk worth the effort2 How often can we do these (we have baggage)

Seamless monitoring with Docker crawlers
.

. Analytics:
. - Failure notification
L - Healthcheck
Eahicsahieahiie) N 0 . - Resource Usage
= £~E i - Application Insight
~~~~~~~~~~~~ <C Lo T Di
----- metadata X KB e i - Topo Discovery
Docker HOStS 5 > - é g . - Drift Detection
= 0] i - Container Sprawl
— )/ System confg and ops data| 8— - Depl. Vali daﬁon
from Docker containers | ) \ J ' - Config analytics

- Compliance Svc
- Vulnerablllty Scan

Our Approach:
- Seamlessly “crawl” the cloud like we crawl the web
- Query /mine the cloud like we query/mine the web



Docker crawler data

- System state: Persistent (file system) + Volatile (OS memory context)

- Features:

- OS, Disk, Process, Metric, Connection, Package, File, Config

Containers

2)

¢ )

)
7

1) —»- D]
3N
|
Crawler prooess>

' From Container

- OS Info

- Processes

- Disk Info

- Network Metrics
- Connection Info

- Packages
- Files

' - Docker metadata i
! (docker inspect) |
i - CPU metrics |
i (/cgroup/cpuacct/) i
i - Memory metrics :
' (/cgroup/memory) !



What it looks like?

Deploy your app the way ; Il o

you want Il
- 1 i

Choose the right infrastructure for each project. CLOUD FOUNDRY IBM CONTAINERS VIRTUAL MACHINES
Click an option to learn more and get started.




What it looks like?

% Create A Container
—_

Select an image from your registry:

Your Image Registry URL:

registry-ice.ng.bluemix.net/gosiaregistry

Name Tag ID Created
ibmliberty latest dc9b60d3-2c48-44d6-a2d7-272ecdfb31ae 3 days ago
ibmnode latest 7fd09f11-c834-41cb-945a-2c32b119f37f 3 days ago
gosiaregistry/hellonode latest 1120db94-cd2c-4062-9f83-70229a33bb37 2 weeks ago
gosiaregistry/ubuntu latest a2558596-8407-436b-ac41-a63c68573687 2 weeks ago
gosiaregistry/webapp latest 2dd13e5d-45ec-4bdc-95e4-fdec34e6f4ed 2 weeks ago

. . ) Size Memory VCPUs Disk Usage
Container Sizes Available
The free Beta plan for Containers includes 2 GB m1.tiny 256 1CPU 1GB
of memory and up to 2 Public IP Addresses.
v andup mi.small 512 2CPU 2GB
m1.medium 1024 4 CPU 10GB
m1.large 2048 8 CPU 10 GB

VIEW DOCS || TERMS

Container Settings

Name your container or group:

Selected image:

Container size:

m1.tiny j

Scale and Network Settings

Deployment method:

Deploy as a single container j

Public IP Address: (2 of 2 requested)

Al of your public IP addresses are
currently bound to other containers. To
make them available, you must first
unbind them. View the docs for more
information.

Public Ports: ( Separate ports by commas

Optional SSH Key:



What it looks like?

mytrade

Lo dJ Routes: N/A | Private IP: 172.16.38.91 Public IP: 129.41.252.17 | Ports: N/A
Volumes: N/A | Image: gosiaregistry/trade:latest

MEMORY UTILIZATION

INSTANCES: CONTAINER HEALTH

‘ Your container is running
MEMORY

GOSIAREGIST...  ope MB

SIZE: tiny

Bind Bluemix Services from your existing Cloud Foundry Apps at Launch. View to learn more about
service binding to containers.




What it looks like?

> ice run --help
usage: ice run [-h] [--name NAME] [--memory MEMORY] [--env ENV]
[--publish PORT] [--volume VOL] [--bind APP] [--ssh SSHKEY]

IMAGE [CMD [CMD ...]] > ice --help
usage: ice [-h] [--verbose] [--cloud | --local]
positional arguments:
IMAGE image to run {logs, ip, images, rmi, login, help, ps, pause, group, namespace, start, version,
CMD command & args passed to container fo execute build, rm, unpause, run, inspect, stop, volume, restart, info, search, route, login}

optional arguments:

-h, --help show this help message and exit

--name NAME, -n NAME assign a name to the container

--memory MEMORY, -m MEMORY
memory limit in MB, default is 256

--env ENV, -e ENV  set environment variable, ENV is key=value pair

--publish PORT, -p PORT
expose PORT

--volume VOL, -v VOL mount volume, VOL is Volumeld:ContainerPath[:ro],
specifying ro makes the volume read-only instead of
the default read-write

--bind APP, -b APP  bind to Bluemix app

--ssh SSHKEY, -k SSHKEY
ssh key to be injected in container




What was accomplished?

[ Run containers on-prem

Local
Docker Host

IBM Containers

» . . BI i
» DevOps Pipeline vemix ) Dashboard
Reauest Routina
¢ Define domain name for
your containers and route . .
. 4 Monitor container r
Integrated Docker build HTTP requests
_ Docker Remote ) esource usage
Build AP| I~ s AP ) Loggin Integrated OOTB
Service IBM Containers ’ Monito )
Extensions (ice) CLI /
. VAl o\ Pu
Private
Reai R Contai Create/delete/mount ddocker vo
By - > on. ainer lumes in priate file system
Engine
[ Private hosted registry nce
Bind Public IP addresses
IBM Docker PriYaie coniuiner-to.-coniu
Hub iner communication 2
. \3
Container Hub

J

Shared SoftLayer Infrastructure

A |

{ Deploy to bare metal ]

Integrate with existing
Bluemix services




Lessons learned: Container-first approach
R hummsmmmmeeeenseeheeeesesssee,

0  We opted to Docker native APls and stay as close to them as we can rather than a Paa$S platform
O Supports any workload (that fits in our container sizes!) — we see many types running
O Easy to port workloads between local machine and our cloud
O Easy to understand for anyone who knows Docker
0  Conclusion: focus on container as a service and Docker compatibility is the right approach
o Composite abstractions (such as POD, groups) can be built next or on top of this model

O Extend community Docker CLI to work directly with our API (allow tenant tokens to be passed



Lessons learned: networking model
I
0 We opted for every container-as-an-IP-host model

0 Nice:
o Gives appearance of a single host in a multi-host system
o Full network as a service control: security groups, private networks, public IPs
0 More secure than host communication, more performant than Docker bridge
0 Bad:
O Costly — it takes time to allocate and configure a routable IP address

O Limited scalability — each port has to be secured; IP table rules are costly



The cost of security groups
T

A comparison of VM startup times
80 T T T T T

T 1
1 tenant +

70 L 4 tenants ><4.+ .
-

-

60 .

++ *
+

New VM Deployment time (seconds)

Measured with VMs, each VM with one port, all VMs share a default security group.
Startup time grows linearly with the number of endpoints on the same network.



Lessons learned: networking model
T,

0 Needed networking models:
o IP host — for all workloads that require IP presence (not currently supported by docker)
o Docker bridge — for all workloads that require only outbound connectivity
o Network namespace shared with another container — for sidecars, replicated processes
o No network — e.g., data containers
0  Approach:
O Experiment with alternatives to Nova+Docker driver, e.g., Docker swarm
o Continue using Openstack Neutron
O Prototype network extension for IP host capability leveraging leveraging Powerstrip

O  Work with community to re-architect Docker to allow pluggable Network Drivers (ongoing effort)



Next steps?

T
0 Continuous delivery, continuous delivery, ...

O No challenge or difficulty outlined in this talk is as important and
challenging as continuous delivery of the stack

0 Continuous operations — we cannot be a beta service forever

0 Lots of ideas for new features

O Observe usage, learn from user feedback, prioritize ...
o Hybrid

O Hybrid-cloud scenarios will be our top priority



- Thank youl

Contact: steinder@us.ibm.com



