
CHALLENGES AND OPPORTUNITIES IN
DEVELOPING CONTAINER CLOUDS:
LESSONS LEARNED FROM IBM CONTAINER SERVICE

Gosia Steinder, IBM Research

What is Docker?
Does anyone in the room need to see this slide?

Docker = Linux namespaces + cgroups + overlay file system + image format

Docker = Linux namespaces + cgroups + overlay file system + image format

Docker = Linux namespaces + cgroups + overlay file system + image format

Why Docker?
!  High Density: Because containers share the same kernel and libraries we can run more

applications on a server.

!  Fast Start up: Because containers may have several layers in common only the new layers need
to be copied, reducing build/transfer/boot/load times dramatically.

!  Portability across environments
!  Deploying a consistent production environment is hard. Even if you use tools like chef and

puppet, there are always OS and library updates that change between hosts and
environments.

!  Docker gives us the ability to snapshot the OS into a common image, and, when combined
with IBM’s patterns technology will make it easy to deploy a collection of images comprising
a given workload in another collection of Docker hosts.

!  Ecosystem: Large and rapidly growing ecosystem of devops tools radically changing the way
applications are developed, architected, packaged, and managed

Containers: High-density advantage

y = 1E+07x + 1E+09

y = 3E+07x + 1E+09

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

3.00E+09

3.50E+09

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65

M
em

or
y

U
sa

ge

Time (1s - 67s)

Docker / KVM: Serial VM Boot Memory Usage (segment: 1s - 67s)

docker

kvm

Linear(docker)

Linear(kvm)

(Russell Boden study)

Containers: Performance advantage

15.26 15.22 15.13

0

2

4

6

8

10

12

14

16

18

Bare Metal docker KVM

Se
co

nd
s

Calculate Primes Up To 20000

Bare Metal

docker

KVM 3823.3
4393.3

12881.61

3813.38
4395.92

12905.68

3428.95 3461.59

7223.23

0

2000

4000

6000

8000

10000

12000

14000

MEMCPY DUMB MCBLOCK

M
iB

/s

Memory Test

Memory Benchmark Performance

Bare Metal (MiB/s)

docker (MiB/s)

KVM (MiB/s)

Docker: Networking challenge

Bulk transfer rate measured using perf stat -a Network transfer latency measured using netperf

Docker default networking (docker bridge) introduces considerable network overheads and exhibits performance
inferior to KVM. Docker host networking matches native performance.

Alternative container networking options

Host network
(native)

Container with
Linux Bridge

Container with
OVS

VM

Mean Gbps 33.9 17.9 14.3 14.3

Measuring network throughput using file transfer in iperf

Building a container cloud: Key challenges
!  Elasticity – need to aggregate multiple hosts into system that can appear as a

single docker host and be grown and shrank elastically
!  Multi-tenancy – need for cost-effective and secure resource sharing and

isolation
!  Ecosystem – need to develop and support a large system of tools to enable

workload development, deployment, and life-cycle management
!  Hybrid – “there is no cloud but hybrid-cloud”; 70% of surveyed companies are

or planning to be hybrid cloud users by 2017
!  Visibility and control – give users what they need, let them know what they get,

don’t constrain usage for the sake of simplicity (this can always be done using
abstractions)

API choices
!  Docker API

!  just as you see it on the local host
! or as close as possible to that

!  PaaS-like interfaces
! Marathon
! Kubernetes

!  Workload-specific interfaces – e.g., Hadoop/Spark

What kinds of API?

Cloud computing conundrum:
Rigid abstraction layering constrain

simultaneous flexibility & simplicity
!  IaaS offer flexible programmable

infrastructure, while workload management
complexity is left to LoB users (e.g., virtual
system patterns)

!  SaaS & PaaS hide complexity but restricts
choices and cannot address the
heterogeneity of existing workloads (e.g.,
virtual application patterns, Cloud Foundry)

Ease	 of	 Adop+on	 and	 Extensibility	

Restric(ve	 Flexible	

Simple	

Complex	

Applica'on	 	
Pla,orm	 Services	

(PaaS)	

Where	 we	 want	 to	
be	

Infrastructure	
Services	 (IaaS)	

Tradi'onal	 	
data	 centers)	

Docker API as the base abstraction helps us offer
the flexibility and simplicity at the same time.

Technology choices

Kubernetes Marathon Openstack

API PaaS PaaS IaaS

Network ✗ ✗ ✓

Multi-tenancy ✗ ✗ ✓

Advanced
scheduling

✗ ✓ ✓ (using private
extensions)

Community* ? ? ?

* All these technologies have strong communities but none of them is targeting Docker users specifically.

Delivery models
!  Shared container service

!  Cheap to build and operate
!  Security issues

!  Dedicated in VMs
!  Expensive to build and operate
!  Improved security

!  Shared with isolation policies
!  Cheap to build and operate (with extra cost and effort for isolation)
!  Improved security (eliminates Docker-added vulnerability risk)

Comparing Docker Security to
Virtualization Technologies

Assuming that Docker adds User Namespace support, how would it compare to VM-based systems?
"  To escape a secure Docker, an attacker in a container would need to find a privilege escalation attack on the

shared kernel. Such kernel vulnerabilities occur roughly once a year (the last was discovered in June 2014)
"  To escape a type 2 hypervisor such as KVM:

"  an attacker in a guest VM would need root in the VM, would need to find a vulnerability in QEMU, and then also find a
privilege escalation attack on the native kernel. QEMU vulnerabilities also are discovered roughly once a year (the last
was found in May 2014)

"  Statistically, over the past few years, it is roughly half as likely to find both a QEMU and Kernel vulnerability at the
same time, as just finding the kernel one, and this combination occurs roughly every 2 years

"  To escape a type 1 hypervisor, such as VMware ESX:
"  An attacker in a guest VM would need root in the VM, and would need to find a vulnerability in the VMware

hypervisor.
"  The last such vulnerability in ESX was in February 2013, and this occurs roughly once every 2 years

"  In terms of side and covert channels, there is no significant difference
"  The bottom line is that Docker has a greater risk of vulnerability, since a single kernel vulnerability is

sufficient to completely break the system
"  Since patch management will be done with delay it may not be sufficient to protect the system

Docker: User namespace isolation
"  Docker has a high risk of containment failure unless user namespaces are used to separate

root in the container from root outside
"  Docker 1.5 still does not have user namespace separation and thus is NOT secure

"  Docker is working on adding user namespace support; it is anticipated “soon”, but no specific timeline
exists. It will likely not appear until 1.7 (Q3?) at the earliest

"  All other reported vulnerabilities, to date, have been fixed and we have not discovered any new
significant ones

Linux Kernel

libcontainer

DOCKER 1.5

User namespace support
since Kernel 3.8

Unofficial patch available which adds user namespace support to
libcontainer

No support in latest Docker (1.5)

Our Point of View

#  Cloud workloads are built and run as containers
#  Focus on Hybrid Cloud Application Portability
#  Bare metal deployment, enterprise security, scale and

resiliency
#  Leap frog (and marginalize) hypervisors

“Containers are the foundation of our cloud…
and our cloud is tailored for Enterprise”

Reference architecture

Container Hub

IBM Docker
Hub

Private
Registry
Instance

Bare Metal VM

Docker Remote
API

Autorecovery
Groups API

D
ocker

Volum
es

O
ve

rla
y

N
et

w
or

ki
ng

DevOps Pipeline

Local Docker
Host

On-Prem

Docker Build
Service

Container
Engine

Shared

File as a Service

Bluemix
Request Routing

ix Services Bluemix Services

Dashboard

Logging &
Monitoring

IBM Containers

Dedicated

Key goals
!  Container Hub - Private and public registries with enterprise-ready content
!  Full lifecycle management for both a container, a composite application comprised on multiple

containers and the container runtime environment itself
!  DevOps Build Pipeline for container images and multi-container templates
!  Container Service

!  Multi-tenant and single-tenant deployment plans
!  Exploitation of bare metal
!  Support for template model that includes multi-container single-host (MCSH) and multi-container

multi-host (MCMH) models
!  Policy based resource management (placement, cleanup, movement)

!  Networking
!  Support for private overlay network between a group of containers
!  Fine grained connectivity control within tenant network via subnets and security groups

!  Storage
!  Support for container movement between hosts without loss of core container filesystem
!  Support for persistent non-brittle volume attach

!  Enterprise Enablement – security, performance, availability, visibility, control, content

Our initial implementation of the
Container Engine

Compute Image Docker
Registry

Network

Identity

Orchestration

Provides
Auth for

Stores
images in

Stores
images in

Provides
network
connectivity for

Orchestrates

Autoscaling
Service

Networking in Openstack
Network Node

ETH0 ETH1

br-tun br-ex

br-int

Router
DHCP

L3 Agent
DHCP
Agent

manages

L2 Agent

Compute Node 1

ETH0 ETH1

br-tun

br-int

NOVA
COMPUTE

L2 Agent

Instances
(VMs/containers)

public internal

Compute Node 2

ETH0 ETH1

br-tun

br-int

NOVA
COMPUTE

L2 Agent

Instances
(VMs/containers)

Controller Node

ETH0 ETH1
public internal

Neutron Server

Nova Scheduler, API,
etc.

Glance

Keystone $  Multi-host networking
$  Private networks
$  Dynamic IP assignment
$  Public floating Ips
$  Network quotas
$  Security groups

Operational visibility
Scenario 1: Ephemeral Instances

•  Containers for App A fail shortly after provisioning. Reprovisioning automation results in the same systemic failure.
 - How to root cause the issue when containers keep dying before we can access them?
 - How to avoid cascading failures?

Scenario 2: Unresponsive Systems

•  My app stopped responding. Access to the Docker instance fails, and all my in-app monitors went completely silent.
 - In-band monitoring solutions fail at the exact moment we need them the most.
 - How can we provide a better, always-on solution for health, monitoring, compliance, etc.?

Scenario 3: Agent Updates across Entire Inventory

•  Transitioning from shiny tool S to shinier tool E for operational monitoring. Need to reprovision each of our 1000
instances with the new runtime component.
 - DevOps and CD surely helps; but still, how fun:)

 - Is the risk worth the effort? How often can we do these (we have baggage)

Seamless monitoring with Docker crawlers

System confg and ops data
from Docker containers

Container Cloud

Infra and container
metadata

S
ea

rc
h,

qu

er
y

A
PI

s

Analytics:
- Failure notification
- Healthcheck
- Resource Usage
- Application Insight
- Topo Discovery
- Drift Detection
- Container Sprawl
- Depl. Validation
- Config analytics
- Compliance Svc
- Vulnerability Scan
 :

KB
Docker Hosts

App

Cont.

App

Cont.

App

Cont.

App

Cont.

Docker Hosts

App

Cont.

App

Cont.

App

Cont.

App

Cont.

Docker Hosts

App

Cont.

App

Cont.

App

Cont.

App

Cont.

In
de

xe
r

Our Approach:
 - Seamlessly “crawl” the cloud like we crawl the web
 - Query/mine the cloud like we query/mine the web

Docker crawler data
•  System state: Persistent (file system) + Volatile (OS memory context)
•  Features:
 - OS, Disk, Process, Metric, Connection, Package, File, Config

- OS Info
- Processes
- Disk Info
- Network Metrics
- Connection Info
- Packages
- Files
- Config Info

From Container

- Docker metadata
 (docker inspect)
- CPU metrics
 (/cgroup/cpuacct/)
- Memory metrics
 (/cgroup/memory)

From Docker Host

What it looks like?

What it looks like?

What it looks like?

What it looks like?

> ice run --help
usage: ice run [-h] [--name NAME] [--memory MEMORY] [--env ENV]
 [--publish PORT] [--volume VOL] [--bind APP] [--ssh SSHKEY]
 IMAGE [CMD [CMD ...]]

positional arguments:
 IMAGE image to run
 CMD command & args passed to container to execute

optional arguments:
 -h, --help show this help message and exit
 --name NAME, -n NAME assign a name to the container
 --memory MEMORY, -m MEMORY
 memory limit in MB, default is 256
 --env ENV, -e ENV set environment variable, ENV is key=value pair
 --publish PORT, -p PORT
 expose PORT
 --volume VOL, -v VOL mount volume, VOL is VolumeId:ContainerPath[:ro],
 specifying ro makes the volume read-only instead of
 the default read-write
 --bind APP, -b APP bind to Bluemix app
 --ssh SSHKEY, -k SSHKEY
 ssh key to be injected in container

> ice --help
usage: ice [-h] [--verbose] [--cloud | --local]

 {logs, ip, images, rmi, login, help, ps, pause, group, namespace, start, version,
build, rm, unpause, run, inspect, stop, volume, restart, info, search, route, login}
 ...

What was accomplished?

Container Hub

IBM Docker
Hub

Private
Registry
Instance

Bare Metal VM

Docker Remote
API

Autorecovery
Groups API

D
ocker

Volum
es

O
ve

rla
y

N
et

w
or

ki
n

g

DevOps Pipeline

Local
Docker Host

Docker
Build
Service

Container
Engine

Shared SoftLayer Infrastructure

SoftLayer
Consistent
Performance

Bluemix
Request Routing

ix Services Bluemix Services

Dashboard

Logging &
Monitoring

IBM Containers

Deploy to bare metal

Run containers on-prem

Private hosted registry

Monitor container r
esource usage

Integrated OOTB

Integrate with existing
Bluemix services

IBM Containers
Extensions (ice) CLI

Bind Public IP addresses
Private container-to-conta

iner communication

Create/delete/mount ddocker vo
lumes in priate file system

Define domain name for
your containers and route

 HTTP requests Integrated Docker build

Lessons learned: Container-first approach

!  We opted to Docker native APIs and stay as close to them as we can rather than a PaaS platform

!  Supports any workload (that fits in our container sizes!) – we see many types running

!  Easy to port workloads between local machine and our cloud

!  Easy to understand for anyone who knows Docker

!  Conclusion: focus on container as a service and Docker compatibility is the right approach

!  Composite abstractions (such as POD, groups) can be built next or on top of this model

!  Extend community Docker CLI to work directly with our API (allow tenant tokens to be passed

Lessons learned: networking model
!  We opted for every container-as-an-IP-host model

!  Nice:
!  Gives appearance of a single host in a multi-host system

!  Full network as a service control: security groups, private networks, public IPs

!  More secure than host communication, more performant than Docker bridge

!  Bad:
!  Costly – it takes time to allocate and configure a routable IP address

!  Limited scalability – each port has to be secured; IP table rules are costly

The cost of security groups

Measured with VMs, each VM with one port, all VMs share a default security group.
Startup time grows linearly with the number of endpoints on the same network.

Lessons learned: networking model
!  Needed networking models:

!  IP host – for all workloads that require IP presence (not currently supported by docker)

!  Docker bridge – for all workloads that require only outbound connectivity

!  Network namespace shared with another container – for sidecars, replicated processes

!  No network – e.g., data containers

!  Approach:

!  Experiment with alternatives to Nova+Docker driver, e.g., Docker swarm

!  Continue using Openstack Neutron

!  Prototype network extension for IP host capability leveraging leveraging Powerstrip

!  Work with community to re-architect Docker to allow pluggable Network Drivers (ongoing effort)

Next steps?
!  Continuous delivery, continuous delivery, …

!  No challenge or difficulty outlined in this talk is as important and
challenging as continuous delivery of the stack

!  Continuous operations – we cannot be a beta service forever

!  Lots of ideas for new features
!  Observe usage, learn from user feedback, prioritize …

!  Hybrid
!  Hybrid-cloud scenarios will be our top priority

Contact: steinder@us.ibm.com

Thank you!

