
RC 21888 (98472) November 20, 2000 (Last update: January 2, 2021)
Computer Science/Mathematics

IBM Research Report

WSMP: Watson Sparse Matrix Package
Part II – direct solution of general systems
Version 20.12
http://www.research.ibm.com/projects/wsmp

Anshul Gupta

IBM T. J. Watson Research Center
1101 Kitchawan Road
Yorktown Heights, NY 10598

anshul@us.ibm.com

IBM Research

WSMP: Watson Sparse Matrix Package
Part II – direct solution of general systems

Version 20.12

Anshul Gupta

IBM T. J. Watson Research Center
1101 Kitchawan Road

Yorktown Heights, NY 10598

anshul@us.ibm.com

IBM Research Report RC 21888 (98472)

November 20, 2000

c©IBM Corporation 1997, 2020. All Rights Reserved.

1

c©IBM Corporation 1997, 2021. All Rights Reserved. 2

Contents
1 Introduction to Part II 4

2 Recent Changes and Other Important Notes 5

3 Obtaining, Linking, and Running WSMP 5
3.1 Libraries and other system requirements . 5
3.2 License file . 5
3.3 Linking on various systems . 5

3.3.1 Linux on x86 64 platforms . 6
3.3.2 Linux on Power . 7
3.3.3 Cygwin on Windows 10 . 7
3.3.4 Mac OS . 7

3.4 Controlling the number of threads . 7
3.5 The number of MPI ranks per shared-memory unit . 8

4 Overview of Functionality 8
4.1 Analysis and reordering . 8
4.2 LU factorization . 9
4.3 Back substitution . 9
4.4 Iterative refinement . 9

5 The Primary Serial/Multithreaded Subroutine: WGSMP 10
5.1 Types of matrices accepted and their input format . 10
5.2 Pivoting options . 10
5.3 Calling sequence of the WGSMP subroutine . 12

5.3.1 N (type I): matrix dimension . 13
5.3.2 IA (type I): row (column) pointers . 13
5.3.3 JA (type I): column indices . 13
5.3.4 AVALS (type I): nonzero values of the coefficient matrix . 13
5.3.5 B (type M): right-hand side vector/matrix . 13
5.3.6 LDB (type I): leading dimension of B . 14
5.3.7 NRHS (type I): number of right-hand sides . 14
5.3.8 RMISC (type O): double precision output info . 14
5.3.9 IPARM (type I, O, M, and R): integer array of parameters . 14
5.3.10 DPARM (type I, O, M, and R): double precision parameter array 23

6 Subroutines Providing a Simpler Serial/Multithreaded Interface 26
6.1 WGCALZ (analyze, CSC input) and WGRALZ (analyze, CSR input) 26
6.2 WGCLUF (factor, CSC input) and WGRLUF (factor, CSR input) . 26
6.3 WGCSLV (solve, CSC input) and WGRSLV (solve, CSR input) . 27

7 Replacing Rows or Columns and Updating Triangular FactorsS,T 27
7.1 WU ANALYZ (analysis) . 28
7.2 WU FACTOR (factor) . 28
7.3 WU UPDATE (update) . 28
7.4 WU FTRAN (forward solve) . 29
7.5 WU BTRAN (backward solve) . 29
7.6 WU UPDFTR (update followed by forward solve) . 29
7.7 WU UPDBTR (update followed by backward solve) . 29

c©IBM Corporation 1997, 2021. All Rights Reserved. 3

7.8 WU FTRUPD (forward solve followed by update) . 30
7.9 WU BTRUPD (backward solve followed by update) . 30
7.10 WU RESID (compute backward error) . 30
7.11 WU BSIZE (size of current basis) . 30
7.12 WU BASIS (return current basis) . 31

8 The Primary Message-Passing Parallel Subroutine: PWGSMP 31
8.1 Parallel data-distribution . 31
8.2 Calling sequence . 31

9 Parallel Subroutines Providing a Simpler Interface 33

10 Miscellaneous Routines 33
10.1 WS SORTINDICES I (M, N, IA, JA, INFO) S,T . 34
10.2 WS SORTINDICES D (M, N, IA, JA, AVALS, INFO) S,T . 34
10.3 WS SORTINDICES Z (M, N, IA, JA, AVALS, INFO) S,T . 34
10.4 WSETMAXTHRDS (NUMTHRDS) . 34
10.5 WSSYSTEMSCOPE and WSPROCESSSCOPE . 34
10.6 WSETMAXSTACK (FSTK) . 34
10.7 WSETLF (DLF)T,P . 35
10.8 WSETNOBIGMAL () . 35
10.9 WSMP VERSION (V, R, M) . 35
10.10WSMP INITIALIZE ()S,T and PWSMP INITIALIZE ()P . 35
10.11WSMP CLEAR ()S,T and PWSMP CLEAR ()P . 36
10.12WGFFREE ()S,T and PWGFFREE ()P . 36
10.13WGSFREE ()S,T and PWGSFREE ()P . 36
10.14WGSMATVEC (N, IA, JA, AVALS, X, B, FMT, IERR)S . 36
10.15PWGSMATVEC (Ni, IAi, JAi, AVALSi, Xi, Bi, FMT, IERR)P . 36
10.16WSETMPICOMM (INPCOMM)P . 37

11 Routines for Double Complex Data Type 37

12 Notice: Terms and Conditions for Use of WSMP 37

13 Acknowledgements 37

c©IBM Corporation 1997, 2021. All Rights Reserved. 4

1 Introduction to Part II
The Watson Sparse Matrix Package, WSMP, is a high-performance, robust, and easy to use software package for solving
large sparse systems of linear equations. It can be used as a in a shared-memory multiprocessor environment, or as a
scalable parallel solver in a message-passing environment, where each MPI process can either be serial or multithreaded.
WSMP is comprised of three parts. Part I uses direct methods for solving symmetric systems, either through LLT

factorization, or through LDLT factorization. This document describes Part II for the solution of general sparse systems
of linear equations. Part III contains preconditioned iterative solvers. Parts I and III of User’s Guide can be obtained
from http://www.research.ibm.com/projects/wsmp, along with some example programs and technical papers related to
the software. A current list of known bugs and issues is also maintained at this web site.

For solving general sparse systems, WSMP uses a modified version of the multifrontal algorithm [1, 13] for matrices
with an unsymmetric pattern of nonzeros. WSMP supports threshold partial pivoting for general matrices with a user
defined threshold. Detailed performance results of WSMP and a comparison of various general sparse solver packages
can be found in [11]. The serial and distributed-memory parallel algorithms used in WSMP for solving general sparse
systems are described by Gupta [7, 6]. In a shared-memory environment, the threads are managed through a task-parallel
engine [14] that strives to achieve load balance via work-stealing.

Unlike the symmetric solver in Part I, WSMP’s general solver does not have out-of-core capabilities and the problems
must fit in the main memory for reasonable performance.

The WSMP software is packaged into two libraries. The serial and multithreaded single-process routines are a part
of the WSMP library. This library can be used on a single core or multiple cores on a shared-memory machine. The
second library is called PWSMP and is meant to be used in the distributed-memory parallel mode. Each MPI process
can itself be multithreaded for the unsymmetric solver only with a thread-safe implementation of MPI.

The functionality and the calling sequences of the serial, multithreaded, and the message-passing parallel versions
are almost identical. This document is organized accordingly and the descriptions of most parameters for both versions
is included in the description of the combined serial and multithreaded version. The serial version supports certain
features that the current message-passing parallel version does not. Such features, options, or data structures supported
exclusively by the serial version will be annotated by a superscript S in this document. Similarly, items relevant only to
the multithreaded version appear with a superscript T and those relevant to the message-passing parallel version appear
with a superscript P .

Note 1.1 Although WSMP library contains multithreaded code, the library itself is not thread-safe. Therefore, the
calling program cannot invoke multiple instances of the routines contained in WSMP from different threads at the same
time.

Note 1.2 The message-passing parallel unsymmetric solver requires MPI THREAD MULTIPLE support. Therefore,
MPI must be initialized accordingly. If MPI THREAD MULTIPLE support is not available, then you can use only one
thread per MPI process. This can be accomplished by following the instructions in Section 10.4.

The organization of this document is as follows. Section 2 describes important recent changes in the software
that may affect the users of earlier versions. Section 3 lists the various libraries that are available and describe how
to obtain and use the libraries. Section 4 gives an overview of the functionality of WSMP for solving general sparse
systems. Section 5 gives a detailed description of the main serial/multithreaded routine that provides an advanced
single-routine interface to the entire software. This section also describes the input data structures for the serial and
multithreaded cases. In this section, the differences from the message-passing parallel version are noted, wherever
applicable. Section 6 describes user callable routines that provide a simpler interface to the serial and multithreaded
solver, but omit some of the advanced features. Section 7 describes how WSMP’s general sparse solver can be used to
update a previously performed LU factorization. Section 8 describes the input data structures for the parallel solution
and reminds users of the differences between the serial and the message-passing parallel versions, wherever applicable.
This section does not repeat the information contained in Section 5 because the two user-interfaces are quite similar.
Section 9 is the parallel analog of Section 6 and describes user callable routines that provide a simpler interface to the
message-passing parallel solver. Section 10 describes a few utility routines available to the users. Section 11 gives a

c©IBM Corporation 1997, 2021. All Rights Reserved. 5

brief description of the double-complex data type interface of WSMP’s unsymmetric direct solvers. Section 12 contains
the terms and conditions that all users of the package must adhere to.

2 Recent Changes and Other Important Notes
Versions 18 and later return the elapsed wall clock time for each call in DPARM(1) or dparm[0].

Iterative solvers preconditioned with incomplete LU factorization, with or without pivoting, are now available.
Please refer to the documentation for Part III, which can be found at http://www.research.ibm.com/projects/wsmp.

3 Obtaining, Linking, and Running WSMP

The software can be downloaded in gzipped tar files for various platforms from www.research.ibm.com/projects/wsmp.
If you need the software for a machine type or operating system other than those included in the standard distribution,

please send an e-mail to wsmp@us.ibm.com.
The WSMP software is packaged into two libraries. The multithreaded library names start with libwsmp and the

MPI based distributed-memory parallel library names start with libpwsmp.

3.1 Libraries and other system requirements

The users are expected to link with the system’s Pthread and Math libraries. In addition, the users are required to supply
their own BLAS library, which can either be provided by the hardware vendor or can be a third-party code. The user must
make sure that any BLAS code linked with WSMP runs in serial mode only. WSMP performs its own parallelization and
expects all its BLAS calls to run on a single thread. BLAS calls running in parallel can cause substantial performance
degradation. With some BLAS libraries, it may be necessary to set the environment variable OMP NUM THREADS to 1.
Many BLAS libraries have their own environment variable, such as MKL NUM THREADS or GOTO NUM THREADS,
which should be set to 1 if available.

On many systems, the user may need to increase the default limits on stack size and data size. Failure to do so
may result in a hung program or a segmentation fault due to small stack size and a segmentation fault or an error code
(IPARM(64)) of −102 due to small size of the data segment. Often the limit command can be used to increase stacksize
and datasize. When the limit command is not available, please refer to the related documentation for your specific
system. Some systems have separate hard and soft limits. Sometimes, changing the limits can be tricky and can require
root privileges. You may download the program memchk.c from www.research.ibm.com/projects/wsmp and compile and
run it as instructed at the top of the file to see how much stack and data space is available to you.

3.2 License file

The main directory of your platform contains a file wsmp.lic. This license file must be placed in the directory from
which you are running a program linked with any of the WSMP libraries. You can make multiple copies of this file
for your own personal use. Alternatively, you can place this file in a fixed location and set the environment variable
WSMPLICPATH to the path of its location. WSMP first tries to use the wsmp.lic from the current directory. If this file is
not found or is unusable, then it attempts to use wsmp.lic from the path specified by the WSMPLICPATH environment
variable. It returns with error -900 in IPARM(64) if both attempts fail.

The software also needs a small scratch space on then disk and uses the /tmp directory for that. You can override the
default by setting the environment variable TMPDIR to another location.

3.3 Linking on various systems

The following sections show how to link with WSMP and PWSMP libraries on some of the platforms on which these
libraries are commonly used. If you need the WSMP or PWSMP libraries for any other platform and can provide us an

c©IBM Corporation 1997, 2021. All Rights Reserved. 6

account on a machine with the target architecture and operating system, we may be able to compile the libraries for you.
Please send e-mail to wsmp@us.ibm.com to discuss this possibility.

3.3.1 Linux on x86 64 platforms

Many combinations of compilers and MPI are supported for Linux on x86 platforms.
The most important consideration while using the distributed-memory parallel versions of WSMP on a Linux plat-

form is that MPI library may not have the required level of thread support by default. The symmetric solver needs
MPI THREAD FUNNELED support and the unsymmetric solver needs MPI THREAD MULTIPLE support. There-
fore, MPI must be initialized accordingly. If MPI THREAD MULTIPLE support is not available, then you can use only
one thread per MPI process. This can be accomplished by following the instructions in Section 10.4.

Note 3.1 With most MPI implementations, when using more than one thread per process, the user will need to initialize
MPI using MPI INIT THREAD (Fortran) or MPI Init thread (C) and request the appropriate level of thread support.
The default level of thread support granted by using MPI INIT or MPI Init may not be sufficient, particularly for the
unsymmetric solver. You may also need to use the -mt mpi flag while linking with Intel MPI for the unsymmetric solver.

Note 3.2 There may be environment variables specific to each MPI implementation that need to be used for obtain-
ing the best performance. Examples of these include MV2 ENABLE AFFINITY with mvapich2 and I MPI PIN,
I MPI PIN MODE, I MPI PIN DOMAIN etc. with Intel MPI.

On all Linux platforms, under most circumstances, the environment variable MALLOC TRIM THRESHOLD
must be set to -1 and the environment variable MALLOC MMAP MAX must be set to 0, especially when us-
ing the serial/multithreaded library. However, when using the message passing PWSMP library, setting MAL-
LOC TRIM THRESHOLD to -1 can result in problems (including crashes) when more than one MPI process is
spawned on the same physical machine or node. Similar problems may also be noticed when multiple instances of
a program linked with the serial/multithreaded library are run concurrently on the same machine. In such situations, it
is best to set MALLOC TRIM THRESHOLD to 134217728. If only one WSMP or PWSMP process is running on one
machine/node, then MALLOC TRIM THRESHOLD = -1 will safely yield the best performance.

The WSMP libraries for Linux need to be linked with an external BLAS library. Some good choices for BLAS are
MKL from Intel, ACML from AMD, GOTO BLAS, and ATLAS. Please read Section 3.1 carefully for using the BLAS
library.

The x86 64 versions of the WSMP libraries are available that can be linked with Intel’s Fortran compiler ifort or
the GNU Fortran compiler gfortran (not g77/g90/g95). Note that for linking the MPI library, you will need to instruct
mpif90 to use the appropriate Fortran compiler. Due to many different compilers and MPI implementations available on
Linux on x86 64 platforms, the number of possible combinations for the message-passing library can be quite large. If
the combination that you need is not available in the standard distribution, please contact wsmp@us.ibm.com.

Examples of linking with WSMP using the Intel Fortran compiler (with MKL) and gfortran (with a generic BLAS)
are as follows:

ifort -o <executable> <user source or object files> -Wl,–start-group $(MKL HOME)/libmkl intel lp64.a
$(MKL HOME)/libmkl sequential.a $(MKL HOME)/libmkl core.a -Wl,–end-group -lwsmp64 -L<path of
libwsmp64.a> -lpthread

gfortran -o <executable> <user source or object files> <BLAS library> -lwsmp64 -L<path of libwsmp64.a> -
lpthread -lm -m64

An example of linking your program with the message-passing library libpwsmp64.a on a cluster with x86 64 nodes
is as follows:

mpif90 -o <executable> <user source or object files> <BLAS library> -lpwsmp64 -L<path of libpwsmp64.a> -
lpthread

Please note that use of the sequential MKL library in the first example above. The x86 64 libraries can be used on
AMD processors also. On AMD processors, ACML, GOTO, or ATLAS BLAS are recommended.

c©IBM Corporation 1997, 2021. All Rights Reserved. 7

3.3.2 Linux on Power

Linking on Power systems is very similar to that on the x86 64 platform, except that a BLAS library other than MKL is
required. The IBM ESSL (Engineering and Scientific Subroutine Library) is recommended for the best performance on
Power systems.

3.3.3 Cygwin on Windows 10

The 64-bit libraries compiled and tested in the Cygwin environment running under Windows 7 and Windows 10 are
available. An example of linking in Cygwin is as follows (very similar to what one would do on Linux):

gfortran -o <executable> <user source or object files> -L<path of libwsmp64.a> -lwsmp -lblas -lpthread -lm -m64

Please refer to Section 3.4 to ensure that BLAS functions do not use more than one thread on each MPI process.

3.3.4 Mac OS

MAC OS libraries are available for Intel and GNU compilers. The BLAS can be provided by either explicitly linking
MKL (preferred) or by using the Accelerate framework. Linking examples are as follows:

gfortran -o<executable><user source or object files> -m32 -lwsmp -L<path of libwsmp.a> -lm -lpthread -framework
Accelerate

gfortran -o <executable> <user source or object files> -m64 -lwsmp64 -L<path of libwsmp64.a> -lm -lpthread -
framework Accelerate

Once again, it is important to ensure that the BLAS library works in the single-thread mode when linked with
WSMP. This can be done by using the environment variables OMP NUM THREADS, MKL NUM THREADS, or
MKL SERIAL.

3.4 Controlling the number of threads

WSMP (or a PWSMP process) automatically spawns threads to utilize all the available cores that the process has access
to. The total number of threads used by WSMP is usually the same as the number of cores detected by WSMP. The
unsymmetric solver may occasionally spawn a few extra threads for short durations of time. In many situations, it may
be desirable for the user to control the number of threads that WSMP spawns. For example, if you are running four MPI
processes on the same node that has 16 cores, you may want each process to use only four cores in order to minimize
the overheads and still keep all cores on the node busy. If WSMP NUM THREADS or WSMP RANKS PER NODE
(Section 3.5) environment variables are not set and WSETMAXTHRDS function is not used, then, by default, each MPI
process will use 16 threads leading to thrashing and loss of performance.

Controlling the number of threads can also be useful when working on large shared global address space machines,
on which you may want to use only a fraction of the cores. In some cases, you may not want to rely on WSMP’s
automatic determination of the number of CPUs; for example, some systems with hyper-threading may report the
number of hardware threads rather than the number of physical cores to WSMP. This may result in an excessive number
of threads when it may not be optimal to use all the hardware threads.

WSMP provides two ways of controlling the number of threads that it uses. You can either use the func-
tion WSETMAXTHRDS (NUMTHRDS) described in Section 10.4 inside your program, or you can set the environ-
ment variable WSMP NUM THREADS to NUMTHRDS. If both WSETMAXTHRDS and the environment variable
WSMP NUM THREADS are used, then the environment variable overrides the value set by the routine WSETMAX-
THRDS.

c©IBM Corporation 1997, 2021. All Rights Reserved. 8

3.5 The number of MPI ranks per shared-memory unit

While it is beneficial to use fewer MPI processes than the number of cores on shared-memory nodes, it may not be
optimal to use only a single MPI process on highly parallel shared-memory nodes. Typically, the best performance
is observed with 2–8 threads per MPI processes. When multiple MPI ranks belong to each physical node, specifying
the number of ranks per node by setting the environment variable WSMP RANKS PER NODE would enable WSMP to
make optimal decisions regarding memory allocation and load-balancing. If the number of threads per process is not
explicitly specified, then WSMP RANKS PER NODE also lets WSMP figure out the appropriate number of threads to
use in each MPI process.

In addition, the way the MPI ranks are distributed among physical nodes can have a dramatic impact on performance.
The ranks must always be distributed in a block fashion, and not cyclically. For example, when using 8 ranks on four
nodes, ranks 0 and 1 must be assigned to the same node. Similarly, ranks 2 and 3, 4 and 5, and 6 and 7 must be paired
together.

Note that the WSMP RANKS PER NODE environment variable does not affect the allocation of MPI processes
to nodes; it merely informs PWSMP how the ranks are distributed. PWSMP does not check if the value of
WSMP RANKS PER NODE is correct.

4 Overview of Functionality
WGSMP and PWGSMP are the primary routines for solving general sparse systems of linear equations and are described
in detail in Sections 5 and 8, respectively. Additionally, the libraries contain some routines that provide a simpler
interface to the solver (see Sections 6 and 9 for more details).

Both the serial/multithreaded and the message-passing parallel libraries allow the users to perform any appropriate
subset of the following tasks: (1) Analysis and reordering, (2) LU factorization, (3) Back substitution, and (4) Iterative
refinement. These functions can either be performed by calls to the primary serial and parallel subroutines WGSMP and
PWGSMP (described in Sections 5 and 8, respectively), or by using the simpler serial and parallel interfaces (described
in Sections 6 and 9, respectively). When using WGSMP or PWGSMP routines, IPARM(2) and IPARM(3) control the
subset of the tasks to be performed. When using the simple interfaces, the tasks or the subsets of tasks to be performed
are determined by the name of the routine.

WSMP and PWSMP libraries perform minimal input argument error-checking and it is the user’s responsibility
to call WSMP subroutines with correct arguments and valid options and matrices. In case of an invalid input, it is not
uncommon for a routine to hang or to crash with segmentation fault. In the parallel version, on extremely rare occasions,
insufficient memory can also cause a routine to hang or crash before all the processes/threads have had a chance to return
safely with an error report. However, unlike the input argument and memory related errors, the numerical error checking
capabilities of the computational routines are quite robust.

All WSMP routines can be called from Fortran as well as C or C++ programs using a single interface described in
this document. As a matter of convention, symbols (function and variable names) are in capital letters in context of
Fortran and in small letters in context of C. Please refer to Notes 5.2, 5.3, and 10.1 for more details on using WSSMP
with Fortran or C programs.

In the following subsections, we describe the key functions and the interdependencies of the four tasks mentioned
above.

4.1 Analysis and reordering

The analysis phase generates permutations for the rows and columns of the input matrix. These permutations are
designed to minimize fill during factorization and to provide ample parallelism and load-balance during message-passing
or multithreaded parallel factorization. Additionally, this phase takes the numerical values in the matrix into account too
and uses certain heuristics to generate permutations that would minimize partial pivoting during numerical factorization.
Therefore, it is necessary to pass the entire matrix, along with the numerical values, to the analysis phase. The original
matrix is not altered at this stage; the permutations are stored and used internally.

c©IBM Corporation 1997, 2021. All Rights Reserved. 9

This phase also performs symbolic factorization based on the row and column permutations it generates and es-
timates the computational and memory requirements of the numerical phases to follow. Of course, these are only
estimates because the actual computational and memory requirement of LU factorization depends on the sequence of
pivots chosen during factorization to ensure numerical stability.

If an application involves solving several systems with coefficient matrices of identical nonzero structure but different
numerical values, then the analysis and reordering step needs to performed only for the first matrix in the sequence.
For the subsequent systems, only factorization and triangular solution (and iterative refinement, if required) need to
be performed. Although the analysis phase takes numerical values into account, the software adapts to the changing
numerical values in the matrix (as long as the structure is identical to the one used in analysis), and therefore, the
analysis phase needs to be performed only once for matrices with the same structure but different numerical values.
Please refer to the description of IPARM(27) for more details.

4.2 LU factorization

Once the analysis step has been performed, numerical factorization can be called any number of times for matrices with
identical nonzero pattern (determined by IA and JA) but possibly different numerical values in AVALS. The matrices L
and U that are produced as a result of LU factorization are stored internally and are not directly available to the user.
WSMP uses these matrices for triangular solve(s) that follow factorization.

LU factorization in WSMP uses threshold pivoting and can use either a user provided threshold or a threshold that it
generates internally depending on the degree of diagonal dominance of the input matrix. This threshold α is a double
precision value between 0.0 and 1.0. At the beginning of the i-th pivoting step, let d be the absolute value of the diagonal
entry (i.e., d = |ai,i| and r be the maximum absolute value of any entry in the i-th column below the diagonal. Let this
entry belong to row j (j ≥ i, r = |aj,i|). Now if d ≥ αr, then no row exchange is performed and the i-th row is used as
the pivot row. However, if d < αr, then row i can be exchanged with any row k (k > i), such that the absolute value s
of the k-th entry in column i is greater than or equal to αr. Note that this is somewhat different from traditional partial
pivoting, according to which, rows i and j would have been exchanged if d ≥ αr. In WSMP, we chose the pivot row
that satisfies the threshold criterion and is likely to cause the least fill-in.

4.3 Back substitution

The back substitution or the triangular solve phase generates the actual solution to the system of linear equations.
This phase uses the internally stored factors generated by a previous call to numerical factorization. The user can solve
multiple systems together by providing multiple right-hand sides, or can solve for multiple instances of single or multiple
right-hand sides one after the other. If systems with multiple right-hand sides need to be solved and all right-hand sides
are available together, then solving them all together is significantly more efficient than solving them one at a time.

WSMP keeps track of all permutations affected by the fill-reducing ordering and due to partial pivoting internally.
The user presents the RHS vector in the same order as the original row ordering of the input coefficient matrix and
obtains the solution in the same order too.

4.4 Iterative refinement

Iterative refinement can be used to improve the solution produced by the back-substitution phase. Often, it is cheaper
to specify a low pivoting threshold, which may result in a faster (but less accurate) factorization due to fewer row-
exchanges, and to recover the accuracy via iterative refinement. As a part of iterative refinement, the backward error is
also computed, which is available to the user as an output. The option of using extended precision arithmetic for iterative
refinement is available.

c©IBM Corporation 1997, 2021. All Rights Reserved. 10

5 The Primary Serial/Multithreaded Subroutine: WGSMP

This section describes the use of the WGSMP subroutine and its calling sequences in detail. There are four basic tasks
that WGSMP is capable of performing, namely, analysis and reordering, LU factorization, forward and backward solve,
and iterative refinement (see Note 5.4). The same routine can perform all or any number of these functions in sequence
depending on the options given by the user via parameter IPARM (see Section 5.3). In addition, a call to WGSMP can
be used to get the default values of the options without any of the five basic tasks being performed. See the description
of IPARM(1), IPARM(2), and IPARM(3) in Section 5.3.9 for more details.

In addition to the advanced interface that the WSMP library provides via the single subroutine WGSMP, there are a
number of other subroutines that provide a simpler interface. These subroutines are described in detail in Section 6.

5.1 Types of matrices accepted and their input format

The WGSMP routine works for any non-singular square sparse matrix. Even if the original matrix is symmetric, WGSMP
expects the entire sparse matrix as input. All floating point values must be 8-byte real numbers. All integers must be
4 bytes long unless you are using libwsmp8 8.a, which takes 8-byte integer inputs. Currently, two input formats are
supported, namely, compressed sparse rows (CSR) and compressed sparse columns (CSC). Figure 1 illustrates both
input formats; they are also explained briefly in Sections 5.3.2, 5.3.3, and 5.3.4.

WGSMP supports both C-style indexing starting from 0 and Fortran-style indexing starting from 1. Once a number-
ing style is chosen, all data structures must follow the same numbering convention which must stay consistent through
all the calls referring to a given system of equations. Please refer to the description of IPARM(5) in Section 5.3.9 for
more details.

5.2 Pivoting options

By means of IPARM(8..12), DPARM(11..12), and DPARM(22), a user can customize the way WGSMP performs row or
column interchanges and selects pivots for elimination in LU factorization. Please refer to the detailed description of
these parameters in Sections 5.3.9 and 5.3.10. Some of the commonly used scenarios are presented here:

• No pivoting: Certain systems of linear equations do not require partial pivoting and the factorization is stable
with the input sequence of rows. For such systems, IPARM(8..12) must be set to (0,0,0,0,0) to avoid the overhead
of unnecessary pivoting. If the matrix is poorly scaled, then setting IPARM(8..12) to (0,1,0,0,0) will perform
equilibration prior to factorization.

• Threshold pivoting to control growth along columns: For systems requiring partial pivoting, it is recommended
that IPARM(8..10) be set to (0,1,1). Although these options do not directly affect pivoting, together they transform
the matrix such that the magnitude of each diagonal entry is 1.0 and that of any nondiagonal entry is less than
or equal to 1.0. Such transformation has the potential to significantly reduce the cost of pivoting during factor-
ization. The recommended values of IPARM(11..12) are (1,0). The default values for IPARM(8..12) in WGSMP
are (0,1,1,1,0). These are the same as the recommended values. The user may also experiment with (1,0,1,1,0)
or (2,1,0,1,0) to see if a faster or more accurate factorization can be obtained by changing the default values in
IPARM(8..12).

The pivoting threshold, which is a double precision value greater than 0.0 and less than or equal to 1.0, must be
placed in DPARM(11). The default value of pivoting threshold DPARM(11) is 0.01.

Note 5.1 WGSMP uses several mechanisms, other than partial pivoting, to enhance the accuracy of the final
solution. These include a static permutation of rows maximize the diagonal product [2, 12, 15, 16], scaling, and
iterative refinement in double and quadruple precision. Therefore, it is recommended that the smallest pivoting
threshold that yields a solution with acceptable accuracy should be used. Minimizing row-interchanges associated
with partial pivoting saves time and memory.

c©IBM Corporation 1997, 2021. All Rights Reserved. 11

.

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

−1.

−1.

−2.

−1.

−1.

−2.−1.

−3. −4.

−1.

−1.

−3.

−1. −1.

−3.

−2. −4.

−4.

−4.

14.

14.

16.

14.

14.

16.

16.

16.

71.

−2.

−3.

−5. −6.

is shown in the table.

The storage of this matrix in the

A 9 X 9 general sparse matrix.

input formats accepted by WGSMP

CSC Format CSR Format
K IA(K) JA(K) AVALS(K) IA(K) JA(K) AVALS(K)

1 1 1 14.0 1 1 14.0
2 4 3 -1.0 5 3 -5.0
3 7 8 -3.0 9 7 -1.0
4 12 2 14.0 12 8 -6.0
5 15 6 -2.0 14 2 14.0
6 18 9 -1.0 17 3 -1.0
7 20 1 -5.0 22 5 -3.0
8 25 2 -1.0 24 9 -1.0
9 30 3 16.0 29 1 -1.0

10 33 8 -4.0 33 3 16.0
11 9 -2.0 7 -2.0
12 4 14.0 4 14.0
13 6 -1.0 8 -3.0
14 7 -1.0 5 14.0
15 2 -3.0 6 -1.0
16 5 14.0 9 -1.0
17 8 -3.0 2 -2.0
18 5 -1.0 4 -1.0
19 6 16.0 6 16.0
20 1 -1.0 7 -2.0
21 3 -2.0 8 -4.0
22 6 -2.0 4 -1.0
23 7 16.0 7 16.0
24 8 -4.0 1 -3.0
25 1 -6.0 3 -4.0
26 4 -3.0 5 -3.0
27 6 -4.0 7 -4.0
28 8 71.0 8 71.0
29 9 -4.0 2 -1.0
30 2 -1.0 3 -2.0
31 5 -1.0 8 -4.0
32 9 16.0 9 16.0

Figure 1: Illustration of the two input formats for the serial/multithreaded WGSMP routines.

c©IBM Corporation 1997, 2021. All Rights Reserved. 12

• Rook pivoting: The default method of pivoting in WGSMP (activated by IPARM(8..12) = (1,0,1,1,0)) chooses a
pivot row such that the diagonal element is not smaller in magnitude than the product of the pivoting threshold
and the largest element in the pivot column. The magnitude of the diagonal element is not checked with respect to
other elements in the pivot row. This method works for most sparse systems. However, in some cases, the resulting
growth along the rows may yield unacceptable accuracy. If increasing the pivoting threshold does not bring the
accuracy into an acceptable range, then the user may set IPARM(28) to 1. This limits pivot growth along both rows
and columns by selecting the diagonal pivot such that it is not smaller in magnitude than the pivoting threshold
times the magnitude of any element in that row or column. The default value of IPARM(28) is 0. Usually, in order
to make row and column pivoting effective, block-triangulation needs to be suppressed by setting IPARM(21)
to 0, so that all elements of the matrix can participate in pivot selections. To summarize, some sparse systems
are really tough to solve, and may require one or more of the following actions on part of the user in addition
to using the default pivoting options: (1) increasing the pivoting threshold DPARM(11), (2) suppressing block-
triangulation by setting IPARM(21) to 0, (3) switching to row and column pivoting from a simple row pivoting by
setting IPARM(28) to 1. All these actions have the potential of slowing down LU factorization considerably and
must be used judiciously.

Note that rook pivoting is not available in the message-passing parallel PWGSMP routine.

The modes described above are some of the common ones that a user might use, but these are not the only possible
scenarios. For example, a user may chose to use partial pivoting, but switch off all scaling and the prepermutation to a
heavy-diagonal form by setting IPARM(8..12) to (0,0,0,1,0). Similarly, one can use a combination of threshold pivoting
and perturbation by setting both IPARM(11) and IPARM(12) to 1. If a pivot is too tiny (as determined by DPARM(11)),
then a row-interchange is performed. Otherwise, for the pivots that are not too close to zero, but are still small enough (as
determined by DPARM(12)), the pivot magnitude is artificially increased (perturbed) and computation proceeds without
a row-interchange. Please refer to the description of IPARM(12) in Section 5.3.10 for more details.

5.3 Calling sequence of the WGSMP subroutine

There are four types of arguments, namely input (type I), output (type O), modifiable (type M), and reserved (type R).
The input arguments are read by WGSMP and remain unchanged upon execution, the output arguments are not read
but some useful information is returned via them, the modifiable arguments are read by WGSMP and modified to return
some information, the reserved arguments are not read but their contents may be overwritten by unpredictable values
during execution. The reserve arguments may change to one of the other types of arguments in the future serial and
parallel releases of this software.

In the remainder of this document, the “system” refers to the sparse linear system of N equations of the form
AX = B, where A is a general sparse coefficient matrix of dimension N , B is the right-hand-side vector/matrix and X
is the solution vector/matrix, whose approximation X computed by WGSMP overwrites B when WGSMP is called to
compute the solution of the system. The example program in wgsmp ex1.f at the WSMP home page illustrates the use of
the WGSMP subroutine for the matrix shown in Figure 1.

Note 5.2 Recall that WGSMP supports both C-style (starting from 0) and Fortran-style (starting from 1) numbering.
The description in this section assumes Fortran-style numbering and C users must interpreted it accordingly. For
example, IPARM(11) will actually be IPARM[10] in a C program calling WGSMP.

Note 5.3 All user-callable WSMP and PWSMP routines expect their parameters to be passed by reference. Therefore,
when calling WGSMP from a C program, the addresses of the parameters described in Section 5.3 must be passed.

The calling sequence and description of the parameters of WGSMP is as follows. When an input data structure is
not accessed in a particular call, a NULL pointer or any scalar can be passed as a place holder for that argument.

WGSMP (N, IA, JA, AVALS, B, LDB, NRHS, RMISC, IPARM, DPARM)

c©IBM Corporation 1997, 2021. All Rights Reserved. 13

void wgsmp (int *n, int ia[], int ja[], double avals[], double b[], double *ldb, int *nrhs, double rmisc[], int iparm[],
int dparm[])

5.3.1 N (type I): matrix dimension

INTEGER N
int *n

This is the number of rows and columns in the sparse matrixA or the number of equations in the sparse linear system
AX = B. It must be a nonnegative integer.

5.3.2 IA (type I): row (column) pointers

INTEGER IA (N + 1)
int ia[]

IA is an integer array of size one greater than N . IA(I) points to the first column (row) index of row (column) I in
the array JA in CSR (CSC) format. Note that empty columns (or rows) are not permitted; i.e., IA(i+ 1) must be greater
than IA(i).

Please refer to Figure 1 and description of IPARM(4) in Section 5.3.9 for more details.

5.3.3 JA (type I): column indices

INTEGER JA (*)
int ja[]

The integer array JA contains the column (row) indices of the sparse matrix A stored in CSR (CSC) format. The
column (row) indices of each row (column) must follow the indices of the previous column (row). Moreover, the column
(row) indices should sorted in increasing order. WSMP provides two utility routines to sort the indices (see Section 10
for details).

5.3.4 AVALS (type I): nonzero values of the coefficient matrix

DOUBLE PRECISION AVALS (*)
double avals[]

The array AVALS contains the actual double precision values corresponding to the indices in JA. The size of AVALS
is the same as that of JA. See Figure 1 for more details. Note that the analysis (ordering and symbolic factorization)
phase of WGSMP accesses and uses AVALS—something that most conventional sparse solvers don’t do.

5.3.5 B (type M): right-hand side vector/matrix

DOUBLE PRECISION B (LDB, NRHS)
double b[]

The N× NRHS dense matrix B (stored in an LDB × NRHS array) contains the right-hand side of the system of
equations AX = B to be solved. If the number of right-hand side vectors, NRHS, is one, then B can simply be a vector
of length N . During the solution, X overwrites B. If the solve (Task 3) and iterative refinement (Task 4) are performed
separately, then the output of the solve phase is the input for iterative refinement. B is accessed only in the triangular
solution and iterative refinement phases.

c©IBM Corporation 1997, 2021. All Rights Reserved. 14

5.3.6 LDB (type I): leading dimension of B

INTEGER LDB
int *ldb

LDB is the leading dimension of the right-hand side matrix if NRHS > 1. LDB must be greater than or equal to N .
Even if NRHS = 1, LDB must be greater than 0.

5.3.7 NRHS (type I): number of right-hand sides

INTEGER NRHS
int *nrhs

NRHS is the second dimension of B; it is the number of right-hand sides that need to be solved for. It must be a
nonnegative integer.

5.3.8 RMISC (type O): double precision output info

DOUBLE PRECISION RMISC (N, NRHS)
double rmisc[]

If IPARM(25) is 0, then RMISC is not accessed. If IPARM(25) is 1 on input, then on return from iterative refinement,
RMISC(I,J) is set to to the I-th component of the backward error while solving for the J-th RHS.

Note that the user needs to provide a valid double precision array of size N ×NRHS only if IPARM(25) is set to 1
on input; otherwise, RMISC can just be a placeholder double precision pointer. RMISC is accessed only in the triangular
solution and iterative refinement phases.

5.3.9 IPARM (type I, O, M, and R): integer array of parameters

INTEGER IPARM (64)
int iparm[64]

IPARM is an integer array of size 64 that is used to pass various optional parameters to WGSMP and to return some
useful information about the execution of a call to WGSMP. If IPARM(1) is 0, then WGSMP fills IPARM(4) through
IPARM(64) and DPARM with default values and uses them. The default initial values of IPARM and DPARM are shown
in Table 1. IPARM(1) through IPARM(3) are mandatory inputs, which must always be supplied by the user. If IPARM(1)
is 1, then WGSMP uses the user supplied entries in the arrays IPARM and DPARM. Note that some of the entries in
IPARM and DPARM are of type M or O. It is possible for a user to call WGSMP only to fill IPARM and DPARM with the
default initial values. This is useful if the user needs to change only a few parameters in IPARM and DPARM and needs
to use most of the default values. Please refer to the description of IPARM(2) and IPARM(3) for more details. Note
that there are no default values for IPARM(2) and IPARM(3) and these must always be supplied by the user, whether
IPARM(1) is 0 or 1.

Note that all reserved entries; i.e., IPARM(35:63) must be filled with 0’s on input.

• IPARM(1) or iparm[0], type I or M:

If IPARM(1) is 0, then the remainder of the IPARM array and the DPARM array are filled with default values by
WGSMP before further computation and IPARM(1) itself is set to 1. If IPARM(1) is 1 on input, then WGSMP uses
the user supplied values in IPARM and DPARM.

• IPARM(2) or iparm[1], type M:

On input, IPARM(2) must contain the number of the starting task. On output, IPARM(2) contains 1 + number
of the last task performed by WGSMP, if any. This is to facilitate users to restart processing on a problem from
where the last call to WGSMP left it. Also, if WGSMP is called to perform multiple tasks in the same call and it

c©IBM Corporation 1997, 2021. All Rights Reserved. 15

IPARM DPARM
Index Default Description Type Default Description Type

1 mandatory I/P default/user defined M - elapsed time O
2 mandatory I/P starting task M - first step O
3 mandatory I/P last task I - unused -
4 0 I/P format I - largest pivot O
5 1 numbering style I - smallest pivot O
6 3 max. # iter. refs. M 2× 10−15 back err. lim. I
7 3 residual norm type I - backward error O
8 0 max. matching use I - unused -
9 0 scaling w/o matching I - unused -
10 1 scaling w/ matching I 10−18 singularity threshold I
11 1 thresh. pivoting opt. I 0.01 pivot thresh. I
12 0 pivot perturb. opt. I 2× 10−8 small piv. thresh. I
13 - # row/col exchanges O - # supernodes O
14 - # perturbations O - # data-DAG edges O
15 25 # factorizations I - unused -
16 1 ordering option 1 I - unused -
17 0 ordering option 2 I - unused -
18 0 ordering option 3 I - unused -
19 0 ordering option 4 I - unused -
20 0 ordering option 5 I - unused -
21 1 block triangular form I - structural symmetry O
22 - # blocks in B.T.F. O 2× 10−8 small piv. repl. I
23 - actual NNZL +NNZU O - actual fact. ops. O
24 - symbolic NNZL +NNZU O - symbolic fact. ops. O
25 0 RMISC use I 5× 106 min. parallel task size I
26 - # iter. ref. steps O 1.0 supnode amalgamation I
27 0 # fact. before re-analyze I 1.0 re-analyze condition I

28S,T 0 rook pivoting I - unused -
29 0 garbage collection I - unused -
30 0 solve option I - unused -
31 1 # solves per factor I - unused -

32P 0 block size I - unused -
33 - no. of CPU’s used O - load imbalance O

34T,P 10 DAG manip. option I - unused -
35-63 0 reserved R 0.0 reserved R

64 - return err. code O - unused -

Table 1: The default initial values of the various entries in IPARM and DPARM arrays. A ’-’ indicates that the value is
not read by WGSMP. Please refer to the text for details on ordering options IPARM(16:20). (# ≡ “number of”).

c©IBM Corporation 1997, 2021. All Rights Reserved. 16

returns with an error code in IPARM(64), then the output in IPARM(2) indicates the task that failed. If WGSMP
performs no task, then, on output, IPARM(2) is set to max(IPARM(2),IPARM(3)+ 1). WGSMP can perform any
set of consecutive tasks from the following list:

Task 1: Analysis and Reordering
Task 2: LU Factorization
Task 3: Forward and Backward Substitution
Task 4: Iterative Refinement

Note 5.4 WGSMP can process only one matrix at a time. A user cannot factor one matrix, then factor a second
matrix, and then solve a system using the first factor. In other words, WGSMP can work on a system in increasing
order of task numbers. If a call to WGSMP is made with a starting task number in IPARM(2) that is less than or
equal to the number of the last task performed by WGSMP in a previous call, then the results of the previous call
are lost.

• IPARM(3) or iparm[2], type I:

IPARM(3) must contain the number of the last task to be performed by WGSMP. In a call to WGSMP, all tasks
from IPARM(2) to IPARM(3) are performed (both inclusive). If IPARM(2) > IPARM(3) or both IPARM(2) and
IPARM(3) is out of the range 1–4, then no task is performed. This can be used to fill IPARM and DPARM with
default values; e.g., by calling WGSMP with IPARM(1) = 0, IPARM(2) = 0, and IPARM(3) = 0.

• IPARM(4) or iparm[3], type I:

IPARM(4) denotes the format in which the coefficient matrix A is stored. IPARM(4) = 0 denotes CSR format and
IPARM(4) = 1 denotes CSC format. The default is CSR. Both formats are illustrated in Figure 1.

• IPARM(5) or iparm[4], type I:

If IPARM(5) = 0, then C-style numbering (starting from 0) is used; If IPARM(5) = 1, then Fortran-style numbering
(starting from 1) is used. In C-style numbering, the matrix rows and columns are numbered from 0 to N − 1 and
the indices in IA should point to entries in JA starting from 0. IPARM(5) = 1 is the default.

• IPARM(6) or iparm[5], type I:

On input to the iterative refinement step, IPARM(6) should be set to the maximum number of steps of iterative re-
finement to be performed. Also refer to the description of IPARM(7) and DPARM(6) for more details. DPARM(6)
provides a means of performing none or fewer than IPARM(6) steps of iterative refinement if a satisfactory level of
accuracy of the solution (in terms of backward error) has been achieved. Upon returning from iterative refinement,
IPARM(26) contains the actual number of refinement steps performed.

The default value of IPARM(6) is 3 for the unsymmetric solver.

• IPARM(7) or iparm[6], type I:

If IPARM(7) = 0, 1, 2, or 3, then the residual in iterative refinement is computed in double precision (the same
as the remainder of the computation). If IPARM(7) = 4, 5, 6, or 7, then the residual in iterative refinement is
computed in quadruple precision (which is twice the precision of the remainder of the computation). If IPARM(7)
= 0 or 4, then exactly IPARM(6) number of iterative refinement steps are performed without checking for the
backward error. Additionally, in this case, if iterative refinement is not performed at all; i.e., if IPARM(6) = 0, then
the residual is not calculated and returned in DPARM(7). If IPARM(7) = 1, 2, 3, 5, 6, or 7, then iterative refinement
is performed until the number of iterative refinement steps is equal to IPARM(6) or until the backward error given
by ‖b−Ax‖

‖b‖ falls below the input value in DPARM(6). Here A is the coefficient matrix, x is the computed solution,
and b is the right-hand side vector. If IPARM(7) = 1 or 5, then 1-norms are used in computing the backward error,
if IPARM(7) = 2 or 6, then 2-norms are used, and if IPARM(7) = 3 or 7, then infinity-norms are used. Moreover,

c©IBM Corporation 1997, 2021. All Rights Reserved. 17

if IPARM(7) = 1, 2, 3, 5, 6, or 7, then the actual backward error at the end of the last iterative refinement step is
placed in DPARM(7).

If NRHS > 1, then the maximum of the backward errors amongst the NRHS solution vectors is considered. Also
note that, if scaling is performed (based on the inputs in IPARM(9) and IPARM(10)), then the backward errors are
computed with respect to the scaled system and not the original system.

The default value of IPARM(7) is 3.

Note 5.5 Please note that the residual is computed at the end of the solution step (Step 4). Even though IPARM(7)
pertains to iterative refinement, it must be set to the appropriate value before the triangular solution step to be
effective.

Note 5.6 Computing the residual adds a small overhead to the solution. Therefore, when solving a large number
of linear systems w.r.t. the same factor without iterative refinement, IPARM(7) should be set to 0 to switch the
residual computation off. This is important in applications in which the triangular solve time dominates.

• IPARM(8) or iparm[7], type I:

WGSMP can use a maximum weight matching on the bipartite graph induced by the sparse coefficient matrix
to permute its row such that the product of the absolute values of the diagonal is maximized [2, 12, 15, 16]. By
default, indicated by IPARM(8) = 0, WSMP decides whether or not to use this matching depending on the structure
and the values of coefficient matrix. If IPARM(8) is 1, then this permutation is always performed and if IPARM(8)
is 2, then this permutation is not performed.

• IPARM(9) or iparm[8], type I:

During the analysis and reordering phase, depending on the input in IPARM(8), WGSMP may use a maximum
bipartite matching algorithm to permute the rows such that the product of the absolute values of the diagonal
entries is maximized. In addition to a row permutation, the maximum matching algorithm also produces vectors
for scaling the rows and the columns of the sparse matrix such that the magnitude of each diagonal entry of
the scaled matrix is 1.0. If a maximum matching is not performed or if IPARM(10) is set to 0, then a simple
equilibration can still be performed using IPARM(9).

Equilibration can be performed in multiple ways, and the desired equilibration method is communicated to
WGSMP by the user via IPARM(9).

If IPARM(9) is set to -1, then the equilibration is not performed. If IPARM(9) is set to 0, then WGSMP automat-
ically determines the best equilibration to apply. If IPARM(9) is set to 1, then row equilibration is performed.
If IPARM(9) is set to 2, then row equilibration is followed by column equilibration. If IPARM(9) is set to 3,
then column equilibration is performed. If IPARM(9) is set to 4, then column equilibration is followed by row
equilibration.

The default value of IPARM(9) is 0. Note that IPARM(9) is disregarded if a scaling based on maximum matching
is performed.

• IPARM(10) or iparm[9], type I:

An input of IPARM(10) = 0 during numerical factorization implies that WGSMP will not perform a scaling of
the input matrix using the vectors generated by applying the maximum bipartite matching algorithm to the input
matrix. IPARM(10) = 1, which is the default, implies that such scaling is performed in an attempt to improve the
numerical stability of factorization, if the row-permutation using the maximum bipartite matching is performed. If
the maximum bipartite matching is not performed, then IPARM(10) is ignored. If IPARM(9) > 0 and IPARM(10)
= 1, then IPARM(10) gets priority in determining how the scaling is performed.

c©IBM Corporation 1997, 2021. All Rights Reserved. 18

• IPARM(11) or iparm[10], type I:

IPARM(11) and IPARM(12) instruct WGSMP how to handle small or zero pivots. If IPARM(11) is 0, then no
row exchanges are performed during factorization. The computation will proceed unless a zero diagonal entry is
encountered, in which case, either an artificial nonzero value is placed at the diagonal depending on IPARM(12)
and DPARM(12), or the corresponding row/column number is reported in IPARM(64) and factorization stops.
Please refer to the description of IPARM(12) for more details on the actions that WGSMP might take if IPARM(11)
is 0.

If IPARM(11) = 1 upon input, then threshold pivoting is performed using a pivoting threshold α (0.0 < α ≤
1.0). The pivoting threshold α is equal to DPARM(11) if DPARM(11) > 0.0 on input (i.e., the user supplies the
threshold). If IPARM(11) = 1 and DPARM(11) = 0.0, then WGSMP choses an appropriate threshold, which is
placed in DPARM(11) as output. Threshold pivoting ensures that the pivot growth does not exceed 1/α at any
elimination step. Let d be the absolute value of the diagonal entry just before the i-th elimination step. Let r be
the maximum absolute value among all entries in the i-th column. However, if d < αr, then the i-th row can be
exchanged by any row such that the absolute value of the entry in the i-th column of that row is greater than or
equal to αr. If all entries in column i are zero (i.e., the matrix is singular), then the factorization is terminated and
i is returned in IPARM(64). A numbering from 1 to N is used to indicate this kind of failure, even if the input
uses C-style numbering.

The default value of IPARM(11) is 1.

Note 5.7 The input in IPARM(11) must be set before the analyze phase so that it knows that partial pivoting is
intended during numerical factorization. If the value in IPARM(11) is different during the analyze and factor
phases, then the program may crash or generate incorrect results.

• IPARM(12) or iparm[11], type I:

IPARM(12) = 0, which is the default, has no effect. If IPARM(12) = 1, then α and β are chosen and used as
follows:

If IPARM(11) = 1, then α is the user-defined or WGSMP-defined pivoting threshold determined by the input
DPARM(11). If IPARM(11) = 0, then α = 0.0. β is the input value in DPARM(12). Let d be the absolute value
of the diagonal entry ai,i just before the i-th elimination step. Let r be the maximum absolute value among all
entries in i-th column. If αr ≤ d < βr, then ai,i is replaced by sign(ai,i) × r × DPARM(22) and factorization
proceeds with the new value of ai,i.

• IPARM(13) or iparm[12], type O:

After factorization, IPARM(13) contains the total number of row and column interchanges performed as a result
of partial pivoting. The maximum possible value of IPARM(13) on output can be 2N − 2, because each pivot
selection, except the last one, can entail both a row and column interchange.

• IPARM(14) or iparm[13], type O:

After factorization, IPARM(13) contains the number of diagonal entries that were perturbed in order to contain
pivot growth. The perturbation, if any, is controlled by the user inputs in IPARM(12) and DPARM(12).

• IPARM(15) or iparm[14], type I:

WGSMP may invest significant effort during the analysis and symbolic phase in an attempt to optimize the subse-
quent factorization steps. While doing so, it assumes that this effort will be amortized among several factorization
steps. However, if only one (or very few) factorizations are performed with the same sparsity structure, then it may
be worthwhile to perform a fast analysis and reordering, even if the resulting factorization is somewhat inefficient.
The input IPARM(15) can be used to guide WGSMP to apportion computational resources appropriately between
the analysis and factorization steps. In IPARM(15), the user should place the approximate anticipated number of
factorizations that would be performed with matrices of the same structure but different values. If IPARM(15) is

c©IBM Corporation 1997, 2021. All Rights Reserved. 19

0, then WGSMP assumes a very large number of factorizations per analysis step. If IPARM(15) = 1 or a small
number, then WGSMP performs a faster analysis and reordering to minimize the overall run time, even though the
factorization may run somewhat slower.

The default value of IPARM(15) is 25.

Note that if IPARM(15) is 1, then WGSMP assumes that another call to factor a matrix with the same structure will
not be made before a call to the analysis step. Therefore, it may free some data structures after the factorization is
complete, and an error or a crash may result if another factorization is attempted without performing the analysis
step again.

• IPARM(16) or iparm[15], type I:

IPARM(16:20) control the ordering or the generation of the fill-reducing and load-balancing permutations for the
input matrix.

If IPARM(16) is -1, the ordering is not performed and the original ordering of columns is used. Note that the
rows may still be permuted depending on the input in IPARM(8). If IPARM(16) is -2, then reverse Cuthill-McKee
ordering [4] is performed. If IPARM(16) is a nonnegative integer, then a graph-partitioning based ordering [8] is
performed.

If IPARM(16) = 0, then all default ordering options are used and speed of 3 is chosen (see below for description
of speed). If IPARM(16) = 1, 2, or 3, then the options described below are used for IPARM(17:20) instead of the
defaults. In addition, the ordering speed and quality is determined by the integer value in IPARM(16). IPARM(16)
= 1 results in the slowest but best ordering, IPARM(16) = 3 results in fastest but worst ordering, and IPARM(16) =
2 results in an intermediate speed and quality of ordering.

The default value of IPARM(16) is 1. When performing only one or a few factorizations per ordering step, it is
advisable to change IPARM(16) to 3 or 2.

• IPARM(17) or iparm[16], type I:

WSMP uses graph-partitioning based ordering algorithms [10] to minimize fill during factorization. IPARM(17)
specifies the maximum number of nodes that a subgraph must have before it is ordered by using a minimum local
fill algorithm without further subpartition. The user can obtain a pure minimum local fill ordering by specifying
IPARM(17) greater than N. A value of 0 in this field lets the ordering routine chose its own default. Typically,
it is best to use the default, but advanced users may experiment with this parameter to find out what best suits
their application. Sometimes a value larger than the default, which is between 50 and 200, may result in a faster
ordering without a big compromise in quality. The default value for IPARM(17) is 0.

• IPARM(18) or iparm[17], type I:

The default value of 0 in IPARM(18) has no effect. IPARM(18) = 1 forces the ordering routine to compute a
minimum local fill ordering in addition to the ordering based on recursive graph bisection. It then computes the
amount of fill-in that each ordering would generate during factorization and returns the permutation corresponding
to the better ordering. The use of this option increases the ordering time (in most cases the increase is not
significant), but is useful when one ordering is used for multiple factorizations. Note that using this option
produces the best ordering it can with the resources available to it. If graph partitioning fails due to lack of
memory, it still returns the minimum local fill ordering.

Note that in the message-passing parallel routine PWSMP, IPARM(18) is ignored and the minimum local fill
ordering is not performed because it may hamper parallelism in factorization.

• IPARM(19) or iparm[18], type I:

On input, IPARM(19) contains a random number seed. One can use different values of the seed to force the
ordering routine to generate a different initial permutation of the graph. This is useful if one needs to generate a
few different orderings of the same sparse matrix (perhaps to chose the best) without having to change the input.

c©IBM Corporation 1997, 2021. All Rights Reserved. 20

• IPARM(20) or iparm[19], type I:

The input IPARM(20) lets the user communicate some known characteristics of the sparse matrix to WGSMP to
aid it in choosing appropriate values of some internal parameters and to chose appropriate algorithms in various
stages of ordering. If the user has no information about the type of sparse matrix or if the matrix does not fall into
one of the categories below, then the default value 0 should be used.

Certain sparse matrices have a very irregular structure and have a few rows/columns that are much denser than
most of the rows/columns. For such matrices, the quality and the speed of ordering can usually be improved by
setting IPARM(20) to 1.

Sometimes, sparse matrices arise from finite-element graphs in which many or most vertices have more than one
degree of freedom. In such graphs, there are a many small groups of nodes that share the same adjacency structure.
If the sparse matrix comes from a problem like this, then a value of 2 should be used in IPARM(20). This instructs
WGSMP to construct a compressed graph before proceeding with the ordering, which then runs much faster as it
runs on the smaller compressed graph rather than the original larger graph.

• IPARM(21) or iparm[20], type I:

If IPARM(21) = 1, which is the default, then WGSMP attempts to reorder the coefficient matrix into a block-
triangular form during the analysis and reordering phase. For certain sparse systems, especially those that are
highly unsymmetric in structure, this can lead to significant savings in factorization time and memory. Setting
IPARM(21) = 0 suppresses block triangulation. Suppressing block triangulation may improve accuracy in rare
cases by allowing all elements of the matrix to participate in partial pivoting.

• IPARM(22) or iparm[21], type I or M:

If block triangulation is attempted, then IPARM(22), upon return from the analysis and reordering phase, contains
the number of diagonal blocks of reasonable size that were detected by WGSMP. A return value of 1 indicates
that reduction to block triangular form did not succeed because only one block (equivalent to the original matrix)
was found.

• IPARM(23) or iparm[22], type O:

Upon return from factorization, IPARM(23) contains the total number of nonzeros stored in the factors L and U
in thousands. Both L and U contain the diagonal, though the diagonal of L implicitly contains all ones. WGSMP
uses relaxed supernodes to maximize the use of level-3 BLAS in factorization; i.e., it often artificially introduces
explicitly stored zeros in order to obtain thick chunks of contiguous rows and columns with the same structure.
This causes additional fill-in and increases the number of nonzeros stored in L and U . The output in IPARM(23)
includes these extra entries that are introduced to increase the size of supernodes.

Note that, due to round-off errors, the value of IPARM(23) may not be very accurate for very small matrices.

• IPARM(24) or iparm[23], type O:

In IPARM(24), the analysis phase returns the anticipated number of nonzeros required to store L and U in thou-
sands, provided that there are no row interchanges during factorization. Just like IPARM(23), the output in
IPARM(24) includes the extra factor entries that are introduced to increase the size of supernodes.

Note that, due to round-off errors, the value of IPARM(24) may not be very accurate for very small matrices.

• IPARM(25) or iparm[24], type I:

IPARM(25) = 0, which is the default, has no effect. If IPARM(25) = 1 during iterative refinement, then the
component-wise backward error is returned in RMISC. If IPARM(25) = 1, then RMISC must point to a valid
user-supplied double precision array of size N .

• IPARM(26) or iparm[25], type O:

IPARM(26), upon return from iterative refinement, contains the number of refinement steps performed.

c©IBM Corporation 1997, 2021. All Rights Reserved. 21

• IPARM(27) or iparm[26], type I:

As mentioned earlier, by default, WGSMP passes the coefficient matrix through a step of row permutation and
scaling in order to maximize the product of the magnitudes of its diagonal entries. If a number of factorizations
with matrices of the same structure but different numerical values is performed, then WGSMP does not re-evaluate
this row permutation in each factorization step, but does so only occasionally. If IPARM(27) is set to 0 (which
is the default), then WGSMP determines automatically when to re-evaluate the row permutation and scaling.
However, if the user sets IPARM(27) to a positive integer, then a re-evaluation of the row permutation and scaling
vectors is performed at least after every IPARM(27) factorization steps.

• IPARM(28)S,T or iparm[27], type I:

The default value of IPARM(28) is 0, which results in the default pivoting method of WSMP that chooses a pivot
row such that the diagonal element is not smaller in magnitude than the product of the pivoting threshold and the
largest element in the pivot column. The magnitude of the diagonal element is not checked with respect to other
elements in the pivot row. This method works for most sparse systems. However, in some cases, the resulting
growth along the rows may yield unacceptable accuracy. If increasing the pivoting threshold does not bring the
accuracy into an acceptable range, then the user may set IPARM(28) to 1. This ensures that the diagonal pivot is
not smaller in magnitude than the pivoting threshold times the magnitude of any element in that row or column.
This is known as rook pivoting and should be used only when absolutely necessary, because it has the potential to
slow down the factorization considerably.

Usually, in order to make rook pivoting effective, the user may have to suppress decomposition into a bock-
triangular form by setting IPARM(21) to 0.

Note that rook pivoting is not available in the message-passing parallel PWGSMP routine.

• IPARM(29) or iparm[28], type I:

During factorization, WGSMP may end up with data structures that it allocates but does not fully use due to
changes in the predicted structure of the factors due to partial pivoting. Only if WGSMP runs short of memory
during factorization, it goes through a garbage-collection step to reclaim the unused allocated space. As a result,
after factorization, more memory may be tied up than the size of the factors. This situation would be harmless in
most circumstances, especially is the user uses the -bmaxdata option while linking to use more virtual memory
than the real memory on the machine. This is the reason why, by default, WGSMP does not spend time in
reclaiming this memory unless absolutely needed. By setting IPARM(29) to 1, the user can force WGSMP to
always return with only as much memory allocated as needed to store the factors.

If an application requires several solve steps for each factorization step, then compaction of the factors resulting
from garbage-collection may actually result in a slight increase in the performance of the solve steps and may be
worthwhile.

• IPARM(30) or iparm[29], type I:

The default value of IPARM(30) is 0 and acceptable input values are 0, 1, 2, 4, 5, 6. If A is the coefficient
matrix that is factored into lower-triangular L and upper-triangular U such that A = LU and b is the right-hand
side vector or matrix, then depending on the value of IPARM(30), the following systems are solved (and B is
overwritten by the solution x, as usual).

– IPARM(30) = 0: x = A−1b

– IPARM(30) = 1: x = L−1b

– IPARM(30) = 2: x = U−1b

– IPARM(30) = 4: x = (AT)−1b

– IPARM(30) = 5: x = (UT)−1b

– IPARM(30) = 6: x = (LT)−1b

c©IBM Corporation 1997, 2021. All Rights Reserved. 22

Note that two consecutive calls to WGSMP with IPARM(1) = IPARM(2) = 3, the first with IPARM(30) = 1 and the
second with IPARM(30) = 2 is equivalent to a single call with IPARM(1) = IPARM(2) = 3 and IPARM(30) = 0.
Also, using IPARM(4) = 1 and IPARM(30) = 4, 5, or 6 is mathematically equivalent to using IPARM(4) = 0 and
IPARM(30) = 0, 1, or 2.

If the lower- and upper-triangular solves are performed separately using a value of IPARM(30) other than 0 or 4,
then iterative refinement is switched off and backward error is not available as output. Another restriction with
the use of separate lower- and upper-triangular solves is that they work correctly only when the option not to
reduce the coefficient matrix to a block-triangular form is chosen by setting IPARM(21) = 0. This can cause the
factorization time to increase.

• IPARM(31) or iparm[30], type I:

The user can set IPARM(31) (before the analysis step) to the expected number of triangular solve steps that would
be performed for each factorization. This can help WGSMP in making some optimization decisions. By default,
IPARM(31) is 1; i.e., it is assumed that each factorization will be followed by one call to the solve phase. Note
that IPARM(31) is not the expected value of NRHS but the number of times the user expects to invoke the solution
phase of WGSMP after each factorization step.

• IPARM(32)P or iparm[31], type I:

This parameter is relevant only in the message-passing parallel version and specifies the block size that the internal
dense matrix computations use for the two dimensional decomposition of the frontal and update matrices. If it is
0, then the parallel solver chooses an appropriate value; otherwise, it uses the largest power of 2 less than or equal
to IPARM(32).

• IPARM(33) or iparm[32], type O:

On output, IPARM(33) is set to the number of cores that were used by the process in SMP mode. Please refer to
Section 3.4 for details on controlling the number of threads usd by WSMP.

In PWGSMP, the output in IPARM(33) is local to each MPI process.

• IPARM(34)T,P or iparm[33], type I:

This parameter allows the user to affect the load-imbalance and communication and synchronization overhead
versus fill-in trade-off to some extent. Depending on the number of CPUs being used, it attempts to manipulate
the data-dependency graph to reduce load-imbalance and communication overhead at the cost of additional fill
during factorization. IPARM(34), whose default value is 10, controls the extent of reorganization of the data-
dependency graph. Any integer value between 0 and log2(P), where P is the number of CPUs, is a valid input. If
IPARM(34)> log2(P), then log2(P) is used. The reorganization of the data-dependency graph can be completely
switched off by setting IPARM(34) to 0.

• IPARM(35:63) or iparm[34:62], type R:

These are reserved for future use.

• IPARM(64) or iparm[63], type O:

In the event of a successful return from WGSMP or PWGSMP, IPARM(64) is set to 0 on output. A nonzero value
of IPARM(64) upon output is and error code and indicates that WGSMP/PWGSMP did not complete execution
and detected an error condition. There are two types of error codes—negative and positive. In PWGSMP, the
error code returned on all MPI processes is identical. The three least significant decimal digits indicate the error
code and the remaining most significant digits indicate the MPI process number that was the first to encounter
the error. For example, an error code of −700 indicates that process 0 detected error −700, and an error code of
−2102 indicates that process 2 encountered error−102. The value of IPARM(64) will be set to−700 and−2102,
respectively, upon return on all the processes.

c©IBM Corporation 1997, 2021. All Rights Reserved. 23

Negative Error Codes: A two-digit negative error code indicates an invalid input argument. If an input argument
error is detected, then IPARM(64) is set to a negative integer whose absolute value is the number of the erroneous
input argument. Only minimal input argument checking is performed and a non-negative value of IPARM(64)
does not guarantee that all input arguments have been verified to be correct. An error in the input arguments can
easily go undetected and cause the program to crash or hang.

A three-digit negative error code indicates a non-numerical run-time error.

If dynamic memory allocation by WGSMP fails, then IPARM(64) is set to−102 on return. This is one of the most
common error codes encountered by the users. Please refer to Section 3.1 if you get this error in your program.

An output value of −200 for IPARM(64) in the message-passing parallel version indicates that the problem is too
small for the given number of processes and must be attempted on fewer processes. Please refer to the description
of DPARM(25) for ways of avoiding this error. The −200 error code is also returned if MPI is not initialized
before a call to a PWSMP routine.

An error code of −300 is returned if the current operation is invalid because it depends on the successful comple-
tion of another operation, which failed or was not performed by the user. For example, if LU factorization fails
and you call WSMP to perform backsolves after the failed call for factorization, you can expect error −300.

An output value of −700 for IPARM(64) indicates an internal error and should be reported to wsmp@us.ibm.com.
Sometimes, error -700 is generated for very large matrices if the size of the factor exceeds 231, as a result of which,
its indices cannot be stored using 4-byte integers. On some platforms, a special library libwsmp8 8.a is available.
This library uses 8-byte integers and will solve the problem. Please make sure that all integer parameters that are
passed to WSMP routines are of type integer*8 (either declared explicitly, or by using the appropriate compiler
option to promote all integers to 8-byte size) when using libwsmp8 8.a.

An error code of −900 is returned if the license is expired, invalid, or missing.

Positive Error Codes: A positive integer value of IPARM(64) between 1 and N on output indicates a compu-
tational error. In this case, IPARM(64) is the index of the first pivot that was equal to zero. A zero pivot can
occur even for a non-singular matrix if the user opts for no pivoting or static pivoting. If WGSMP is instructed to
perform threshold partial pivoting, then a zero pivot can occur for singular or nearly singular coefficient matrices.
If C-style (0-based) indexing is used and IPARM(64) > 0, then IPARM(64) is 1 + the index of the bad pivot.

Note 5.8 Note that in case of an out-of-memory error in the distributed-memory parallel solver, one or more of
the input data arrays may be corrupted.

5.3.10 DPARM (type I, O, M, and R): double precision parameter array

DOUBLE PRECISION DPARM (64)
double dparm[64]

The entries DPARM(35) through DPARM(64) are reserved. Unlike IPARM, only some of the first 34 entries of
DPARM are used. The description of only the relevant entries of DPARM is given below. Note that all reserved entries,
DPARM(35:63), must contain 0.0.

• DPARM(1) or dparm[0], type O:

Returns the total wall clock time in seconds spent in an WGSMP or PWGSMP call. Since this is the elapsed time,
it can vary depending on the load on the machine and several other factors.

• DPARM(2) or dparm[1], type O:

This output is set to -1.0 if nothing was done during the call, to 1.0 if analysis was the first step performed, to 2.0
if factorization was the first step performed, to 3.0 if back substitution was the first step performed, and to 4.0 if
iterative refinement was the first step performed during the call.

c©IBM Corporation 1997, 2021. All Rights Reserved. 24

In most applications, if the structure of the matrix stays unchanged and the values change only slightly from one
factorization to the next, it is not necessary to repeat the analysis step. However, WGSMP and PWGSMP monitor
the condition nnumber estimates and fill-in due to pivoting, and trigger a re-analysis if it is expected to improve
the overall run time or accuracy. In this situation, DPARM(2) may return a 1.0 even if IPARM(2) was set to 2.

The inputs in IPARM(2) and IPARM(3) indicate the tasks that the user expects WGSMP or PWGSMP to perform.
The ouputs in IPARM(2) and DPARM(2) indicate the tasks that were succesfully performed.

• DPARM(4) or dparm[3], type O:

This is an output of step 2 (LU factorization) and contains the diagonal element of the factor with the largest
magnitude.

• DPARM(5) or dparm[4], type O:

This is an output of step 2 (LU factorization) and contains the diagonal element of the factor with the smallest
magnitude.

• DPARM(6) or dparm[5], type I:

DPARM(6) provides a means of performing none or fewer than IPARM(6) steps of iterative refinement if a satis-
factory level of accuracy of the solution has been achieved. Iterative refinement is stopped if IPARM(7) > 0 and
the backward error becomes less than DPARM(6). DPARM(6) is not used if IPARM(7) = 0.

• DPARM(7) or dparm[6], type O:

If a triangular solve or iterative refinement step is performed, then DPARM(7) contains the backward error ‖b−Ax‖
‖b‖

on output. The type of norm is determined by IPARM(7). If NRHS > 1, then the this field contains the maximum
of the backward errors amongst the NRHS right-hand side vectors.

• DPARM(10) or dparm[9], type I:

The input in DPARM(10) is used as the threshold for determining if a matrix is singular. If a leading row or column
is encountered in the unfactored part of the matrix such that all its entries are less than or equal to DPARM(10),
then the matrix is deemed singular and this condition is reported in IPARM(64). The default value of DPARM(10)
is 10−18. The default value of DPARM(10) is appropriate only if the matrix is scaled. If the matrix is not scaled,
then the user must specify an appropriate threshold in DPARM(10) to detect singularity.

• DPARM(11) or dparm[10], type I or M:

DPARM(11) is ignored if IPARM(11) = 0; else if DPARM(11) is > 0.0, then it is used as the threshold for
pivoting. The default value of DPARM(11) is 0.01; however, for most problems, the performance of the solver
can be improved by reducing it to 0.001 or 0.0001 without any noticeable impact on accuracy.

If IPARM(11) = 1 and DPARM(11) = 0.0 on input, then WGSMP chooses and appropriate pivoting threshold,
and puts it in DPARM(11). Please refer to the description of IPARM(11) for more details. DPARM(11) must be
non-negative.

• DPARM(12) or dparm[11], type I:

DPARM(12) is also used to provide user some control over pivoting. See the description of IPARM(12) for more
details. DPARM(12) must be non-negative.

• DPARM(13) or dparm[12], type O:

After the analysis step, DPARM(13) contains the number of supernodes detected. A small number of supernodes
relative to the size of the coefficient matrix indicates larger supernodes and hence, higher potential performance
in the numerical steps.

Please see Note 5.9P at the end of this section.

c©IBM Corporation 1997, 2021. All Rights Reserved. 25

• DPARM(14) or dparm[13], type O:

After the analysis step, DPARM(14) contains the number of edges in the data-dependency graph of the LU factor-
ization. If DPARM(14) is less than or equal to DPARM(13)− 1, then this graph is a tree or a forest of trees. A large
value of DPARM(14) relative to DPARM(13) is indicative of higher potential overhead due to synchronization and
data-copying.

Please see Note 5.9P at the end of this section.

• DPARM(21) or dparm[20], type O:

DPARM(21) returns the structural symmetry of the matrix (after various permutations of the original coefficient
matrix) that is factored. This is a value between 0.0 and 1.0, where 1.0 indicates perfect structural symmetry and
0.0 indicates that there is no off-diagonal correspondence between the matrix and its transpose.

Please see Note 5.9P at the end of this section.

• DPARM(22) or dparm[21], type I:

DPARM(22) is used to perturb a diagonal entry if doing so avoids a row-interchange and the perturbation option
is turned on by the user by setting IPARM(12) = 1. Please refer to the description of IPARM(12) for more details.
DPARM(22) must be non-negative.

• DPARM(23) or dparm[22], type O:

This contains the actual number of floating point operations performed during LU factorization. The output in
DPARM(23) includes the extra operations that are introduced to increase the size of supernodes.

• DPARM(24) or dparm[23], type O:

This contains the number of floating point operations that the analysis phases anticipates numerical factorization
to perform if no row-interchanges are performed. The output in DPARM(24) includes the extra operations that are
introduced to increase the size of supernodes.

• DPARM(25) or dparm[24], type I:

DPARM(25), whose default value is 5 million, is the minimum number of expected floating point operations in a
task for it to be assigned to more than 1 CPU. This checks the granularity of parallelism and attempts to prevent
the run time from increasing with the number of CPUs when the problem if not large enough to be effectively
parallelized on the given number of CPUs. Although it is highly recommended that a value of 5 million or
more be used, sometimes, for debugging or testing purposes, a user may want to solve a very small problem in
parallel. In such situations, a smaller value of DPARM(25) (minimum 1) can be used to avoid error code −200

(see IPARM(64)). However, for obtaining the best performance, DPARM(25) must be set to the default or a higher
value.

• DPARM(26) or dparm[25], type I:

This input controls the degree of supernode amalgamation performed by WGSMP. In addition to groups of rows-
column pairs with the same nonzero structure in the LU factors, WGSMP often combines consecutive rows and
columns whose nonzero structure closely matches but is not identical. This is done to enhance the efficiency
and parallelism of the BLAS routines by increasing the sizes of the supernodes that these routines are called to
work on. The default level of aggressiveness with which such supernode amalgamation is performed in WGSMP
corresponds to the default value of 1.0 for DPARM(26). Increasing DPARM(26) will increase the number of
floating-point operations, but may also increase the factorization Megaflops rate. Reducing DPARM(26) below
1.0 will have the opposite effect. The user may experiment with nearby values, such as 1.2 and 0.8 to see if
increasing or decreasing the degree of amalgamation improves the overall performance on the application at hand.

• DPARM(27) or dparm[26], type I:

c©IBM Corporation 1997, 2021. All Rights Reserved. 26

As mentioned earlier, by default, WGSMP passes the coefficient matrix through a step of row permutation and
scaling in order to maximize the product of the magnitudes of its diagonal entries. If a number of factorizations
with matrices of the same structure but different numerical values is performed, then WGSMP does not re-evaluate
this row permutation in each factorization step, but does so only occasionally. If IPARM(27) is set to 0 (which
is the default), then WGSMP determines determines automatically when to re-evaluate the row permutation and
scaling. This determination is based on the relative speed of factorization and the maximum matching algorithm
for evaluating the row permutation, the rate of deterioration of factorization time as factorizations proceed with the
old row permutation and the rate of deterioration of the condition number estimate as factorizations proceed with
the old scaling vectors. By using DPARM(27), the users can exert some control over how much of a deterioration
in the condition number is tolerated before re-evaluating the row permutation and scaling vectors. The default
value of DPARM(27) is 1.0. Lowering this value lowers the tolerance to a deterioration in the condition number
estimate (thus, usually prompting more frequent re-evaluation of the row permutation and the scaling vectors).
Increasing DPARM(27) has the opposite effect.

• DPARM(33)P or dparm[32], type O:

At the end of the analysis phase, the output in DPARM(33) gives a rough indication of the fraction of the execution
time that is expected to be the load-imbalance overhead (0.0 ≤ DPARM(33) < 1.0).

Note 5.9 Some IPARM and DPARM outputs in the message-passing parallel version of the software are fragile and
are valid only if the number of block-triangular blocks is 1; i.e., either IPARM(21) is 0 on input or IPARM(22) is 1 on
output. Currently, DPARM(13), DPARM(14), DPARM(21), and DPARM(33) are fragile outputs.

6 Subroutines Providing a Simpler Serial/Multithreaded Interface
In this section, we describe a simpler interface to WGSMP. This interface accepts the input in both CSR and CSC formats
and expects a Fortran-style indexing starting from 1. The shape, size, attributes, and meaning of all data structures is
the same as in the calling sequence of the WGSMP routine described in Section 5. The WSMP home page contains an
example driver program wgsmp ex2.f that uses the simple interface.

6.1 WGCALZ (analyze, CSC input) and WGRALZ (analyze, CSR input)

WGCALZ (N, IA, JA, AVALS, NNZ, OPC, INFO)
void wgcalz (int *n, int *ia, int *ja, double *avals, int *nnz, double *opc, int *info)

WGRALZ (N, IA, JA, AVALS, NNZ, OPC, INFO)
void wgralz (int *n, int *ia, int *ja, double *avals, int *nnz, double *opc, int *info)

These routines perform both ordering and symbolic factorization; i.e., all the preprocessing that is required prior
to numerical factorization. After the completions of this preprocessing (also known as the analyze phase) any number
of calls to numerical factorization and triangular solve can be made as long as the nonzero structure of the coefficient
matrices does not change. The descriptions of N , IA, JA, and AVALS are the same as in Section 5.3. NNZ is an
integer output containing the number of nonzeros in the LU factors in thousands. OPC is a double precision output that
contains the number of floating point operations required for factorization. INFO is an integer output that is identical to
IPARM(64) as described in Section 5.3.9.

6.2 WGCLUF (factor, CSC input) and WGRLUF (factor, CSR input)

WGCLUF (N, IA, JA, AVALS, THRESH, INFO)
void wgcluf (int *n, int *ia, int *ja, double *avals, double *thresh, int *info)

c©IBM Corporation 1997, 2021. All Rights Reserved. 27

WGRLUF (N, IA, JA, AVALS, THRESH, INFO)
void wgrluf (int *n, int *ia, int *ja, double *avals, double *thresh, int *info)

These routines perform LU factorization. The descriptions of N , IA, JA, and AVALS are the same as in Section 5.3.
THRESH is a double precision input that must contain the pivoting threshold, a double precision value between 0.0 and
1.0 (both inclusive). If THRESH is 0.0, then partial pivoting is not performed. A value of 0.01 is recommended and
yields fast and accurate results for most sparse systems. INFO is an integer output that is identical to IPARM(64) as
described in Section 5.3.9.

6.3 WGCSLV (solve, CSC input) and WGRSLV (solve, CSR input)

WGCSLV (N, IA, JA, AVALS, B, LDB, NRHS, NITER, BERR, INFO)
void wgcslv (int *n, int *ia, int *ja, double *avals, double *b, int *ldb, int *nrhs, int *niter, double *berr, int *info)

WGRSLV (N, IA, JA, AVALS, B, LDB, NRHS, NITER, BERR, INFO)
void wgrslv (int *n, int *ia, int *ja, double *avals, double *b, int *ldb, int *nrhs, int *niter, double *berr, int *info)

These routines solve the lower and upper triangular systems given a LU factorization and the right-hand side vec-
tor/matrix B. The descriptions of N , IA, JA, AVALS, B, LDB, NRHS are the same as in Section 5.3. NITER is an integer
input by means of which the user can specify the maximum number of iterative refinement steps to be performed. If
NITER is set to 0 on input, then iterative refinement is not performed. BERR is a double precision output containing the
maximum relative backward error; i.e., ‖b−Ax‖∞

‖b‖∞ . INFO is an integer output that is identical to IPARM(64) as described
in Section 5.3.9.

7 Replacing Rows or Columns and Updating Triangular FactorsS,T

This section is relevant only for the serial/multithreaded library. The functions described in this section are not imple-
mented in the message-passing library. Just like other WSMP routines, these can be called from a C program by passing
the arguments by reference (Note 5.3).

In this section, we discuss how WSMP’s general sparse solver can be used to update an LU factorization. This
has applications in some Operations Research algorithms, particularly the Simplex algorithm. We use the well-known
Forrest-Tomlin [3] method to implement the row or column updates in WSMP. If WSMP is used in an application that
requires updating the factors, then only the routines described in this section should be used. These routines allow the
user to perform the analysis (WU ANALYZ) and LU factorization (WU FACTOR) steps on an n × n sparse matrix A,
compute A−1b (WU FTRAN) and (AT)−1b (WU BTRAN), and update the factors (WU UPDATE) such that the new
factors represent the factorization of a matrix A′ in which all columns are the same as in A except column q, which is
replaced by a sparse vector aq . All triangular solves using WU FTRAN and WU BTRAN routines are performed with
respect to the last updated factors. After several updates, it may be necessary to refactor the new basis (current version
of the coefficient matrix after the updates) because the speed and the accuracy of the triangular solves may decline
slightly with each update. However, in addition to speed and accuracy considerations, WSMP imposes a hard limit of
n on the maximum number of updates that can be performed before a refactorization with calls to WU ANALYZ and
WU FACTOR routines is necessary. The output INFO will return −700 if more than n updates are attempted without
refactoring the basis.

Note 7.1 Note that the routines in this section are geared only towards replacing columns of the sparse input matrix A.
However, row-replacement can easily be emulated by the reversing the RC parameter in WU ANALYZ and reversing
the roles of WU FTRAN and WU BTRAN.

Note 7.2 At the present time, the factor-updating facility described in this section is planned only for the serial and
shared-memory parallel version of WSMP.

c©IBM Corporation 1997, 2021. All Rights Reserved. 28

We now describe the routines and their calling sequences in greater detail.

7.1 WU ANALYZ (analysis)

WU ANALYZ (RC, NUMB, N, IA, JA, AVALS, INFO)

WU ANALYZ performs fill-reducing ordering and symbolic factorization.

• RC (integer input): If the input matrix is in the compressed sparse row (CSR) format, then RC should be 0 and if
the input matrix is in the compressed sparse column (CSC) format, then RC should be 1.

• NUMB (integer input): NUMB = 0 indicates C-style numbering and indexing convention starting from 0 and
NUMB = 1 indicates the Fortran convention of indices starting from 1 in IA and JA.

• N (integer input): N is the number of rows and columns in the matrix.

• IA (integer input array of size N): See Section 5.3.2.

• JA (integer input array of size IA(N+NUMB)−NUMB): See Section 5.3.3.

• AVALS (double precision array of size IA(N+NUMB)−NUMB): See Section 5.3.4.

• INFO (integer output): Identical to IPARM(64) described in Section 5.3.9.

7.2 WU FACTOR (factor)

WU FACTOR (IA, JA, AVALS, THRESH, RCOND, INFO)

WU FACTOR factors the N ×N sparse basis stored in IA, JA, and AVALS, where N is the same as in the most recent
call to WU ANALYZ. The numbering and format of IA, JA, and AVALS should also be the same as in WU ANALYZ that
precedes the call to this routine. All parameters have the same description as in WU ANALYZ except THRESH and
RCOND. THRESH is a double precision input and determines the pivoting threshold to be used during LU factorization.
Valid values of THRESH are from 0.0 to 1.0, both inclusive. We recommend using a value around 0.1 as the THRESH
input. RCOND is a double precision output that contains the inverse of a crude condition number estimate of the
coefficient matrix. A very small value of RCOND implies a large condition number, which may suggest that the solutions
from the factorization may contain large errors.

7.3 WU UPDATE (update)

WU UPDATE (Q, NZQ, AQINDX, AQVALS, ACC, INFO)

WU UPDATE updates a previously performed factorization by replacing the original column Q by the new sparse
column stored in AQINDX and AQVALS.

• Q (integer input): Q is the column number that is to be replaced. The range of valid values for Q is NUMB to
N − 1 + NUMB, where N and NUMB are the same that were used in the most recent call to WU ANALYZ.

• NZQ (integer input): NZQ is the number of nonzeros in the new column Q that replaces the existing column Q.

• AQINDX (integer input array of size NZQ): AQINDX contains the indices of all the rows that have a nonzero in
the new column Q. The indices must be sorted in increasing order.

c©IBM Corporation 1997, 2021. All Rights Reserved. 29

• AQVALS (double precision input array of size NZQ): AQVALS contains the values in the incoming column Q
corresponding to the row-indices in AQINDX.

• ACC (double precision input and output): Although Forrest-Tomlin update does not perform numerical pivoting,
it has been shown to be quite accurate in practice. As explained in [3] (Equation 4.1), the Forrest-Tomlin method
also provides a mechanism to check the accuracy of the update so that the user can refactor the basis if the
accuracy falls below (or the double precision output ACC rises above) a certain threshold. The accuracy check
involves comparing two quantities αq

q and αquq,q described in [3] (q is the index of the column that was last
updated). The routine WU UPDATE returns the following double precision value in ACC if and only if ACC is
set to 0.0 on input:

ACC =
|αq

q − αquq,q|
max(|αq

q|, |αquq,q|)
The accuracy check increases the update time by about 50%. Therefore, it is not performed if ACC has a nonzero
input value, in which case, ACC remains unchanged.

The subroutine WU RESID (Section 7.10) can be used as an alternative to using ACC for determining the accuracy
of the solution.

• INFO (integer output): Identical to IPARM(64) described in Section 5.3.9.

7.4 WU FTRAN (forward solve)

WU FTRAN (B, LDB, X, LDX, NRHS, INFO)

WU FTRAN computes x = A−1b, where the N× NRHS matrix b is stored in the LDB × NRHS input array B and
the N× NRHS matrix x is stored in the LDX × NRHS output array X . LDB, the leading dimension of B and LDX, the
leading dimension of X , must be greater than or equal to N . Any error condition encountered is reported in the output
INFO, whose description is the same as that of IPARM(64) in Section 5.3.9.

7.5 WU BTRAN (backward solve)

WU BTRAN (B, LDB, X, LDX, NRHS, INFO)

WU BTRAN computes x = (AT)−1b. Its calling sequence and parameter description is same as that of WU FTRAN.

7.6 WU UPDFTR (update followed by forward solve)

WU UPDFTR (Q, NZQ, AQINDX, AQVALS, ACC, B, LDB, X, LDX, NRHS, INFO)

WU UPDFTR is semantically equivalent to a call to WU UPDATE immediately followed by a call to WU FTRAN;
however it is faster than making the two calls separately. The description of all parameters is the same as in Sections 7.3
and 7.4.

7.7 WU UPDBTR (update followed by backward solve)

WU UPDBTR (Q, NZQ, AQINDX, AQVALS, ACC, B, LDB, X, LDX, NRHS, INFO)

WU UPDBTR is semantically equivalent to a call to WU UPDATE immediately followed by a call to WU BTRAN;
however it is faster than making the two calls separately. The description of all parameters is the same as in Sections 7.3
and 7.5.

c©IBM Corporation 1997, 2021. All Rights Reserved. 30

7.8 WU FTRUPD (forward solve followed by update)

WU FTRUPD (B, LDB, X, LDX, NRHS, Q, NZQ, AQINDX, AQVALS, ACC, INFO)

WU FTRUPD is semantically equivalent to a call to WU UPDATE immediately following a call to WU FTRAN;
however it is faster than making the two calls separately. The description of all parameters is the same as in Sections 7.3
and 7.4.

7.9 WU BTRUPD (backward solve followed by update)

WU BTRUPD (B, LDB, X, LDX, NRHS, Q, NZQ, AQINDX, AQVALS, ACC, INFO)

WU BTRUPD is semantically equivalent to a call to WU UPDATE immediately following a call to WU BTRAN;
however it is faster than making the two calls separately. The description of all parameters is the same as in Sections 7.3
and 7.5.

7.10 WU RESID (compute backward error)

WU RESID (B, LDB, X, LDX, NRHS, RESID, LDR, BERR, FERR, INFO)

WU RESID computes the residual Ax − b or ATx − b and reports it in the LDR × NRHS double precision output
array RESID. It also computes the sparse backward error ‖b−Ax‖

‖b‖ and reports it in the output double precision scalar
BERR. The latest updated version of the matrix A is used. The LDB × NRHS input array B contains the right-hand side
matrix b and the LDX × NRHS input array X contains the solution matrix x, which must have been computed by an
earlier call to WU FTRAN, WU BTRAN, WU UPDFTR, or WU UPDBTR. The residual and the backward error cannot
be computed after a solution obtained by routines WU FTRUPD and WU BTRUPD. The residual obtained in RESID
can be used to implement iterative refinement [5].

The double precision output FERR contains an estimation of the forward error; i.e., the distance of the obtained
solution from the actual solution. FERR computation is slightly expensive, and therefore, is performed only if FERR
is set to 0.0 on input. If FERR is not 0.0 on input, then it is returned unchanged and forward error estimation is not
performed. FERR computation, if desired, needs to performed only once after a factorization or an update. Unlike
BERR, FERR is independent of B.

Besides iterative refinement, this routine can also be used as an alternative to computing ACC output of the update
routines for accuracy determination. The user, however, must distinguish between the interpretation of BERR, FERR and
ACC. ACC determines the accuracy of the update only. For an accurate update of an ill-conditioned matrix, ACC will be
small, but BERR, and particularly FERR, could be large. Therefore, large values of BERR and FERR alone should not
be used to judge the accuracy of the updates and hence for determining whether or not to refactor the basis. An increase
in BERR over the previous iteration may point to a loss of accuracy in the update.

7.11 WU BSIZE (size of current basis)

WU BSIZE (BSIZE, NUPDATES)

This routine returns the number of nonzeros in the basis after the most recent update in the integer output parameter
BSIZE. It returns the number of updates performed since the last factorization in the integer output NUPDATES. This
routine is useful if the user wishes to use WS BASIS (Section 7.12) to return the current basis for possible refactorization.

c©IBM Corporation 1997, 2021. All Rights Reserved. 31

7.12 WU BASIS (return current basis)

WU BASIS (IA, JA, AVALS, INFO)

WU BASIS returns the current basis in the same format in which the original basis was made available to
WU ANALYZ and WU FACTOR earlier (i.e., same values of RC and NUMB apply). All parameters in WU BASIS are
output parameters. The user must provide an integer array of size N + 1 in IA, an integer array of size BSIZE in JA and
a double precision array of size BSIZE in AVALS, where N is the dimension of the basis that was used in the most recent
call to WU ANALYZ and BSIZE is the number of nonzeros in the basis obtained by a call to WS BASIS (Section 7.11).

8 The Primary Message-Passing Parallel Subroutine: PWGSMP

The calling sequence for the parallel routine PWGSMP is identical to that of the serial/multithreaded routine WGSMP
and the arguments have similar meanings. However, certain distinctions need to be made and the sizes of the arrays may
need to be redefined. These distinctions are detailed in the following subsections.

Note that PWGSMP requires a thread-safe version of MPI if using more than one thread per process. As a result,
when used with MPICH, the number of computational threads should be set to 1. Please refer to Section 3.4 for details
on controlling the number of threads usd by WSMP.

8.1 Parallel data-distribution

If the parallel program is running on p MPI processes, we shall name the processes P0, P1, . . . , Pp−1. In general, Pi

initially owns Ni rows (CSR) or columns (CSC) of the coefficient matrix A and Ni rows of the right-hand side B. The
dimension of the system of equations is N = Σp−1

i=0Ni. There is no restriction on the relative amount of data on any of
the processes; the permitted values of allNis are from 0 toN . Figure 2 illustrates the input data structures for the matrix
A for p = 3, N0 = 3, N1 = 3, and N2 = 3 for the matrix shown in Figure 1 earlier. Note that it is not necessary for all
processes to start with the same number of rows or columns of the matrix. However, consecutive processes must contain
consecutive portions of the matrix A (and also the right-hand side B). In other words, if l is the last row/column on
process Pi, then the first row/column on process Pi+1 must be l+1. In addition, the indices and the values corresponding
to consecutive rows/columns must appear in consecutive order, just as in the serial/multithreaded version.

8.2 Calling sequence

The message-passing parallel routine PWGSMP must be called on all the processes. The calling sequence on process Pi

is as follows (0 ≤ i < p):

PWGSMP (Ni, IAi, JAi, AVALSi, Bi, LDBi, NRHS, RMSICi, IPARM, DPARM)

void pwgsmp (int *ni, int iai[], int jai[], double avalsi[], double bi[], int *ldbi, int *nrhs, double rmisci[], int iparm[],
double dparm[])

In the message-passing parallel version, an argument can be either local or global. A global array or variable must
have the same size and contents on all processes. The size and contents of a local variable or array vary among the
processes. In the context of PWGSMP, global does not mean globally shared, but refers to data that is replicated on all
processes. In the above calling sequence, all arguments with a subscript are local.

Following is a brief description of the arguments. A more detailed description can be found in Section 5.3; this sec-
tion is intended to highlight the differences between the serial/multithreaded and the message-passing versions, wherever
applicable.

• Ni: The number of columns/rows of the matrix A and the number of rows of the right-hand side B residing on
process Pi. The total size N of system of equations is Σp−1

i=0Ni, where p is the number of processes being used.

c©IBM Corporation 1997, 2021. All Rights Reserved. 32

.

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

−1.

−1.

processes is shown in the table.

−2.

−1.

−1.

−2.−1.

−3. −4.

−1.

−1.

−3.

−1. −1.

−3.

−2. −4.

−4.

−4.

14.

14.

16.

14.

14.

16.

16.

16.

71.

−2.

−3.

−5. −6.

A 9 X 9 general sparse matrix.

The storage of this matrix in the input

formats accepted by PWGSMP on 3

CSC Format CSR Format
Node# K IA(K) JA(K) AVALS(K) IA(K) JA(K) AVALS(K)

1 1 1 14.0 1 1 14.0
2 4 3 -1.0 5 3 -5.0
3 7 8 -3.0 9 7 -1.0
4 12 2 14.0 12 8 -6.0
5 6 -2.0 2 14.0

P0 6 9 -1.0 3 -1.0
7 1 -5.0 5 -3.0
8 2 -1.0 9 -1.0
9 3 16.0 1 -1.0

10 8 -4.0 3 16.0
11 9 -2.0 7 -2.0
1 1 4 14.0 1 4 14.0
2 4 6 -1.0 3 8 -3.0
3 7 7 -1.0 6 5 14.0
4 9 2 -3.0 11 6 -1.0

P1 5 5 14.0 9 -1.0
6 8 -3.0 2 -2.0
7 5 -1.0 4 -1.0
8 6 16.0 6 16.0
9 7 -2.0

10 8 -4.0
1 1 1 -1.0 1 4 -1.0
2 6 3 -2.0 3 7 16.0
3 11 6 -2.0 8 1 -3.0
4 14 7 16.0 12 3 -4.0
5 8 -4.0 5 -3.0
6 1 -6.0 7 -4.0

P2 7 4 -3.0 8 71.0
8 6 -4.0 2 -1.0
9 8 71.0 3 -2.0

10 9 -4.0 8 -4.0
11 2 -1.0 9 16.0
12 5 -1.0
13 9 16.0

Figure 2: A sample distribution of the coefficient matrix in two input formats for the distributed-memory parallel
PWGSMP routines on three processes.

c©IBM Corporation 1997, 2021. All Rights Reserved. 33

Note that, the distribution chosen for a given matrix, cannot be changed between different phases of the solution
process. In other words, the Ni’s must remain the same on each process for each call made to PWSSMP in the
context of the same system of equations.

• IAi: Integer array of size Ni + 1. This array provides pointers into the array of indices JA. See Figure 2 for more
details. Note that if Ni = 0, then IAi must be a single integer with a value of 0 (with C-style numbering) or 1 (with
Fortran-style numbering) to be consistent with the definition of IAi.

• JAi: Integer array of size IAi(Ni + IPARM(5)) - IPARM(5) that contains the global column (row) indices of each
row (column) on process Pi. If Ni = 0, then this parameter can be a NULL pointer.

• AVALSi: Double precision array of size IAi(Ni + IPARM(5)) - IPARM(5) that contains the numerical values
corresponding to the indices in JAi. If Ni = 0, then this parameter can be a NULL pointer.

• Bi, LDBi, and NRHS: B is a double precision array of size LDBi× NRHS, where LDBi ≥ Ni. If Ni = 0, then B
can be a NULL pointer. The number of right-hand sides, NRHS, must be the same on all processes.

• RMISCi: Double precision array of size LDBi× NRHS. The output contains component-wise backward error
corresponding to Bi.

• IPARM and DPARM: The description of IPARM and DPARM is contained in Sections 5.3.9 and 5.3.10, respec-
tively. For the message-passing parallel version, all input parameters in these arrays must be identical on each
process.

In the message-passing parallel version, IPARM(28) is ignored. IPARM(32) is used only in the message-passing
version. Also, please refer to Note 5.9.

9 Parallel Subroutines Providing a Simpler Interface
In this section, we list the routines that provide a simpler interface to PWGSMP. This interface is analogous to the simple
interface to WGSMP described in Section 6. Parallel routines PWGxALZ, PWGxLUF, and PWGSLV are available to the
users, where x is C for the CSC input format and R for the CSR input format. The function and the calling sequence of
these routines are identical to the serial/multithreaded routines WGxALZ, WGxLUF, and WGSLV, respectively described
in Section 6. The meaning of the various parameters is the same as in the calling sequence of the PWGSMP routine
described in Section 8.

Note 9.1 The calls to the WGSMP/PWGSMP routines should not be mixed with those to the routines in the simple
interface described here and in Section 6. The user must choose to use either the WGSMP/PWGSMP routines or the
simple interface for a given application, and stick to the chosen interface.

10 Miscellaneous Routines
In this section, we describe some optional routines available to the users for managing memory allocation, data distri-
bution, and some other miscellaneous tasks. Just like other WSMP routines, these can be called from a C program by
passing the arguments by reference (Note 5.3).

Note 10.1 Some routines in this section have underscores in their names, and due to different mangling conventions
followed by different compilers, you may get an “undefined symbol” error while using one of these routines. Placing an
explicit underscore at the end of the routine name usually fixes the problem. For example, if WS SORTINDICES I does
not work, then try using WS SORTINDICES I .

c©IBM Corporation 1997, 2021. All Rights Reserved. 34

10.1 WS SORTINDICES I (M, N, IA, JA, INFO) S,T

This routine can be used to sort the row indices of each column or the column indices or each row (depending on the
type of storage) of an M × N sparse matrix. The size of IA is M + 1 and the range of indices in JA is 0 to N − 1

or 1 to N . Only JA is modified upon successful completion, which is indicated by a return value of 0 in INFO. The
descriptions of IA and JA are similar to those in Section 5.3. The description of INFO is similar to that of IPARM(64).

Please read Note 10.1 at the beginning of this section.

10.2 WS SORTINDICES D (M, N, IA, JA, AVALS, INFO) S,T

This routine is similar to WS SORTINDICES I, except that it also moves the double precision values in AVALS according
to the sorting of indices in JA. The descriptions of IA, JA, and AVALS are similar to those in Section 5.3. The description
of INFO is similar to that of IPARM(64).

Please read Note 10.1 at the beginning of this section.

10.3 WS SORTINDICES Z (M, N, IA, JA, AVALS, INFO) S,T

This routine is similar to WS SORTINDICES D, except that the values in AVALS are of type double complex.
Please read Note 10.1 at the beginning of this section.

10.4 WSETMAXTHRDS (NUMTHRDS)

A call to WSETMAXTHRDS can be used to control the number of threads that WSMP spawns by means of the inte-
ger argument NUMTHRDS. Controlling the number of threads may be useful in many circumstances, as discussed in
Section 3.4. As with all other WSMP functions, when calling from C, a pointer to the integer containing the value of
NUMTHRDS must be passed. The integer value NUMTHRDS is interpreted by WSMP as follows:

If NUMTHRDS > 0, then WSMP uses exactly NUMTHRDS threads. If NUMTHRDS is 0, then WSMP tries to use
as many cores as are available in the hardware. This is the default mode.

Note that if this routine is used, it must be called before the first call to any WSMP or PWSMP computational
routine or the initialization routines (Section 10.10). Once WSMP/PWSMP is initialized, the number of threads cannot
be changed for a given run.

The environment variable WSMP NUM THREADS can also be used to control the number of threads (Section 3.4)
and has precedence over WSETMAXTHRDS.

10.5 WSSYSTEMSCOPE and WSPROCESSSCOPE

A call to WSSYSTEMSCOPE can be used to set the contention scope of threads to PTHREAD SCOPE SYSTEM. Sim-
ilarly, WSPROCESSSCOPE can be called to set the contention scope of threads to PTHREAD SCOPE PROCESS.
If these routines are used, they must be called before the first call to any WSMP or PWSMP computational
routine or the initialization routines (Section 10.10). Currently, the default contention scope of the threads is
PTHREAD SCOPE SYSTEM.

10.6 WSETMAXSTACK (FSTK)

All threads spawned by WSMP are, by default, assigned a 1 Mbyte stack in 32-bit mode and 4 Mbytes in 64-bit mode.
In rare case, for very large matrices, this may not be enough for one or more threads. The user can increase or decrease
the default stack size by calling WSETMAXSTACK prior to any computational or initialization routine of WSMP. The
double precision input parameter FSTK determines the factor by which the default stack size of each thread is changed;
e.g., if FSTK is 2.d0, then each thread is spawned with a 2 Mbyte stack in 32-bit mode and 8 Mbyte stack in 64-bit
mode. If this routine is used, it must be called before the first call to any WSMP or PWSMP computational routine or the

c©IBM Corporation 1997, 2021. All Rights Reserved. 35

initialization routines (Section 10.10). In the distributed-memory parallel version, this routine, if used, must be called
by all processes (it is effective on only those processes on which it is called).

Note that this routine does not affect the stack size of the main thread, which, on AIX, can be controlled by the
-bmaxstack option during linking. Also note that when calling from a C program, a pointer to a double precision value
must be passed.

On some systems, the user may need to increase the default system limits for stack size and data size to accommodate
the stack requirements of the threads.

10.7 WSETLF (DLF)T,P

The WSETLF routine can be used to indicate the load factor of a workstation to WSMP to better manage parallelism and
distribution of work. The double precision input DLF is a value between 0.d0 and 1.d0 (0.0 and 1.0, passed by reference
in C). The default value of zero (which is used if WSETLF is not called) indicates that the entire machine is available to
WSMP; i.e., the load factor of the machine without the application using WSMP is 0. An input value of one indicates
that the machine is fully loaded even without the WSMP application. For example, if a 2-way parallel job is already
running on a 4-CPU machine, then the input DLF should be 0.5 and if four serial, or two 2-way parallel, or one 4-way
parallel job is already running on such a machine, then the input DLF should be 1.0.

If this routine is used, then it must be called before the first call to any WSMP or PWSMP computational routine or
the initialization routines (Section 10.10).

10.8 WSETNOBIGMAL ()

On most platforms, WSMP attempts to allocate as large a chunk of memory as possible and frees it immediately without
accessing this memory. This gives WSMP an estimate of the amount of memory that it can dynamically allocate, and on
some systems, speeds up the subsequent allocation of many small pieces of memory. However, this sometimes confuses
certain tools for monitoring program resource usage into believing that an extraordinarily large amount of memory was
used by WSMP. This large malloc can be switched off by calling the routine WSETNOBIGMAL before initializing or
calling any computational routine of WSMP or PWSMP.

10.9 WSMP VERSION (V, R, M)

This routine returns the version, release, and modification number of of the WSMP or PWSMP library being used in the
integer variables V , R, and M , respectively.

Please read Note 10.1 at the beginning of this section.

10.10 WSMP INITIALIZE ()S,T and PWSMP INITIALIZE ()P

These routines are used to initialize WSMP and PWSMP, respectively. Their use is optional, but if used, a call to one
of them must precede any computational routine. However, if any of WSETMAXTHRDS (Section 10.4), WSSYSTEM-
SCOPE, WSPROCESSSCOPE (Section 10.5), WSETMAXSTACK (Section 10.6), WSETLF (Section 10.7), and WSET-
NOBIGMAL (Section 10.8) routines are used, they must be called before WSMP INITIALIZE or PWSMP INITIALIZE.
PWSMP INITIALIZE, if used, must be called on all nodes in the message-passing parallel mode. WSMP and PWSMP
perform self initialization when the first call to any user-callable routine is made.

PWSMP INITIALIZE also performs a global communication using its current communicator, which is
MPI COMM WORLD by default, unless it has been set to something else using the WSETMPICOMM routine. There-
fore, PWSMP INITIALIZE must be called on all the nodes associated with the currently active communicator in
PWSSMP.

Please read Note 10.1 at the beginning of this section.

c©IBM Corporation 1997, 2021. All Rights Reserved. 36

10.11 WSMP CLEAR ()S,T and PWSMP CLEAR ()P

Both the serial and the parallel versions of the solver have the context stored internally, which enables it to perform
a desired task using the information from tasks performed earlier. For example, several calls to LU factorization,
triangular solves, and iterative refinement can be made with different data in AVALS and B (but the same indices in
IA and JA) after one step of symbolic factorization. The solvers are able to perform these operations because they
remember the results of the last symbolic factorization. Similarly, they remember the factor for any number of solves
and iterative refinement steps until a new factorization or symbolic factorization is performed to replace the previously
stored information. As a result, the solver routines occupy storage to remember all the information that might be needed
for a future call to perform any legal task. The user can call WSMP CLEAR() or PWSMP CLEAR() to free this storage if
required. This routine can also be used with the simple interfaces described in Section 6. After a call to WSMP CLEAR()
or PWSMP CLEAR(), the solver does not remember any context and the next call, if any, must be for performing the
analysis step.

WSMP CLEAR and PWSMP CLEAR() also undo the effects of WSMP INITIALIZE and PWSMP INITIALIZE, re-
spectively.

Please read Note 10.1 at the beginning of this section.

10.12 WGFFREE ()S,T and PWGFFREE ()P

Many applications perform ordering and symbolic factorizations only once for several iterations of factorization and
solution. WGSMP allocates memory for factorization on the first call that performs factorization. This space is not
released after factorization or even after subsequent triangular solves because the user can potentially make further calls
for solution with the same factorization. However, the user can free this space by calling WGFFREE () or PWGFFREE
() to use this space for tasks requiring memory allocation between factorizations. Remember, however, that this space is
reallocated in the next call to factorization and can only be temporarily reclaimed.

10.13 WGSFREE ()S,T and PWGSFREE ()P

The routines WGFFREE and PWGFFREE described in Sections 10.12 release the memory occupied by the factors of the
coefficient matrix, but retain all other data-structures to facilitate subsequent factorizations of matrices of the same size
and nonzero pattern. WGSFREE and PWGSFREE release all the memory allocated by WSMP in the context of solving
unsymmetric systems via direct factorization. If you need to solve more unsymmetric systems after call to WGSFREE
or PWGSFREE, then you must start with the analysis step.

10.14 WGSMATVEC (N, IA, JA, AVALS, X, B, FMT, IERR)S

This routine multiplies the vector X with the N -dimensional general sparse matrix stored in IA, JA, AVALS and returns
the result in the vector B. The description of N, IA, JA, and AVALS is the same as in Section 5.3. FMT is an integer
input; an input value of 1 is used to indicate that the matrix is stored in the CSR format and an input value of 2 is used to
indicate that the matrix is stored in the CSC format. IERR is equivalent to IPARM(64), described in Section 8.2.9. Both
C and Fortran style numbering convention is supported.

Note that this routine is neither multithreaded, nor optimized for performance. A multithreaded and optimized
version of sparse matrix vector multiplication is a part of the recently released iterative solver package [9].

10.15 PWGSMATVEC (Ni, IAi, JAi, AVALSi, Xi, Bi, FMT, IERR)P

This routine multiplies the vector X with the general sparse matrix stored in IA, JA, AVALS and returns the result in the
vector B. Here Ni is the local number of rows/columns on Process i and the local number of entries of the distributed
vectors X and B stored on it. The matrix as well as both the vectors are expected to be stored in a distributed fashion,
similar to the distribution illustrated in Figure 2. The description of Ni, IAi, JAi, and AVALSi is the same as in Section 8.2.
FMT is an integer input; an input value of 1 is used to indicate that the matrix is stored in the CSR format and an input

c©IBM Corporation 1997, 2021. All Rights Reserved. 37

value of 2 is used to indicate that the matrix is stored in the CSC format. IERR is equivalent to IPARM(64), described in
Section 8.2.9. Both C and Fortran style numbering convention is supported.

10.16 WSETMPICOMM (INPCOMM)P

The message-passing parallel library PWSMP uses MPI COMM WORLD as the default communicator. The default
communicator can be changed to INPCOMM by calling this routine.

WSETMPICOMM can be called any time and PWSMP will use INPCOMM as the communicator for all MPI calls
after the call to WSETMPICOMM, until the default communicator is changed again by another call to WSETMPICOMM.
Although, WSETMPICOMM can be called at any time, it must be used judiciously. The communicator can be changed
only after you are completely done with one linear system and are moving on to another. You cannot factor a matrix
with one communicator and do the backsolves with another, unless both communicators define the same process group
over the same set of nodes.

Note 10.2 INPCOMM must be a communicator generated by MPI’s Fortran interface. If you are using the PWSMP
library from a C/C++ program and using a communicator other than MPI COMM WORLD, then you would need to
use MPI Comm c2f to obtain the equivalent Fortran communicator, or write a small Fortran routine that would generate
a communicator over the same processes as your C communicator.

11 Routines for Double Complex Data Type
The double complex (complex*16) version of the unsymmetric/general solver can be accessed via routines ZGSMP,
ZGRALZ, ZGCALZ, ZGRLUF, ZGCLUF, ZGRSLV, ZGCSLV, and ZGSMATVEC for the serial/multithreaded version and
PZGSMP, PZGRALZ, PZGCALZ, PZGRLUF, PZGCLUF, PZGRSLV, PZGCSLV, and PZGSMATVEC for the message-
passing version. These routines are identical to their double precision real counterparts described in Sections 5 and 6,
except that the data type of AVALS, B, and RMISC in these routines is double complex or complex*16. The WSMP web
page at http://www.research.ibm.com/projects/wsmp has an example program zgsmp ex1.f that solves a system of linear
equations with complex coefficients and solution and RHS vectors.

Note that it is wasteful to use the unsymmetric solver for Hermitian matrices. The symmetric solver is equipped to
handle these (please refer to the documentation for the symmetric solver).

12 Notice: Terms and Conditions for Use of WSMP

Please read the license agreement in the HTML file of the appropriate language in the license directory before installing
and using the software. The 90-day free trial license is meant for educational, research, and benchmarking purposes by
non-profit academic institutions. Commercial organizations may use the software for internal evaluation or testing with
the trial license. Any commercial use of the software requires a commercial license.

13 Acknowledgements
The author would like to thank Haim Avron, Thomas George, Rogeli Grima, Mahesh Joshi, Prabhanjan Kambadur,
Felix Kwok, Chen Li, and Lexing Ying for their contributions to this project.

References
[1] Timothy A. Davis and Iain S. Duff. An unsymmetric-pattern multifrontal method for sparse LU factorization.

Technical Report TR-93-018, Computer and Information Sciences Department, University of Florida, Gainesville,
FL, 1993.

c©IBM Corporation 1997, 2021. All Rights Reserved. 38

[2] Iain S. Duff and Jacko Koster. On algorithms for permuting large entries to the diagonal of a sparse matrix. SIAM
Journal on Matrix Analysis and Applications, 22(4):973–996, 2001.

[3] John J. Forrest and John A. Tomlin. Updated triangular factors of the basis to maintain sparsity in the product form
simplex method. Mathematical Programming, 2:263–278, 1972.

[4] Alan George and Joseph W.-H. Liu. Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall,
NJ, 1981.

[5] Gene H. Golub and Charles Van Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore,
MD, 1996.

[6] Anshul Gupta. Improved symbolic and numerical factorization algorithms for unsymmetric sparse matrices. SIAM
Journal on Matrix Analysis and Applications, 24(2):529–552, 2002.

[7] Anshul Gupta. A shared- and distributed-memory parallel general sparse direct solver. Applicable Algebra in
Engineering, Communication, and Computing, 18(3):263–277, 2007.

[8] Anshul Gupta. Fast and effective algorithms for graph partitioning and sparse matrix ordering. IBM Journal of
Research and Development, 41(1/2):171–183, January/March, 1997.

[9] Anshul Gupta. WSMP: Watson sparse matrix package (Part-III: Iterative solution of sparse systems). Tech-
nical Report RC 24398, IBM T. J. Watson Research Center, Yorktown Heights, NY, November 2007.
http://www.research.ibm.com/projects/wsmp.

[10] Anshul Gupta. Graph partitioning based sparse matrix ordering algorithms for finite-element and optimization
problems. In Proceedings of the Second SIAM Conference on Sparse Matrices, October 1996.

[11] Anshul Gupta. Recent advances in direct methods for solving unsymmetric sparse systems of linear equations.
ACM Transactions on Mathematical Software, 28(3):301–324, September 2002.

[12] Anshul Gupta and Lexing Ying. On algorithms for finding maximum matchings in bipartite graphs. Technical
Report RC 21576, IBM T. J. Watson Research Center, Yorktown Heights, NY, October 1999.

[13] Steven M. Hadfield. On the LU Factorization of Sequences of Identically Structured Sparse Matrices within a
Distributed Memory Environment. PhD thesis, University of Florida, Gainsville, FL, 1994.

[14] Prabhanjan Kambadur, Anshul Gupta, Amol Ghoting, Haim Avron, and Andrew Lumsdaine. Modern task paral-
lelism for modern high performance computing. In SC09 (International Conference for High Performance Com-
puting, Networking, Storage and Analysis), 2009.

[15] Xiaoye S. Li and James W. Demmel. Making sparse Gaussian elimination scalable by static pivoting. In SC98
Proceedings, 1998.

[16] Markus Olschowka and Arnold Neumaier. A new pivoting strategy for Gaussian elimination. Linear Algebra and
its Applications, 240:131–151, 1996.

	Introduction to Part II
	Recent Changes and Other Important Notes
	Obtaining, Linking, and Running WSMP
	Libraries and other system requirements
	License file
	Linking on various systems
	Linux on x86_64 platforms
	Linux on Power
	Cygwin on Windows 10
	Mac OS

	Controlling the number of threads
	The number of MPI ranks per shared-memory unit

	Overview of Functionality
	Analysis and reordering
	LU factorization
	Back substitution
	Iterative refinement

	The Primary Serial/Multithreaded Subroutine: WGSMP
	Types of matrices accepted and their input format
	Pivoting options
	Calling sequence of the WGSMP subroutine
	N (type I): matrix dimension
	IA (type I): row (column) pointers
	JA (type I): column indices
	AVALS (type I): nonzero values of the coefficient matrix
	B (type M): right-hand side vector/matrix
	LDB (type I): leading dimension of B
	NRHS (type I): number of right-hand sides
	RMISC (type O): double precision output info
	IPARM (type I, O, M, and R): integer array of parameters
	DPARM (type I, O, M, and R): double precision parameter array

	Subroutines Providing a Simpler Serial/Multithreaded Interface
	WGCALZ (analyze, CSC input) and WGRALZ (analyze, CSR input)
	WGCLUF (factor, CSC input) and WGRLUF (factor, CSR input)
	WGCSLV (solve, CSC input) and WGRSLV (solve, CSR input)

	Replacing Rows or Columns and Updating Triangular FactorsS,T
	WU_ANALYZ (analysis)
	WU_FACTOR (factor)
	WU_UPDATE (update)
	WU_FTRAN (forward solve)
	WU_BTRAN (backward solve)
	WU_UPDFTR (update followed by forward solve)
	WU_UPDBTR (update followed by backward solve)
	WU_FTRUPD (forward solve followed by update)
	WU_BTRUPD (backward solve followed by update)
	WU_RESID (compute backward error)
	WU_BSIZE (size of current basis)
	WU_BASIS (return current basis)

	The Primary Message-Passing Parallel Subroutine: PWGSMP
	Parallel data-distribution
	Calling sequence

	Parallel Subroutines Providing a Simpler Interface
	Miscellaneous Routines
	WS_SORTINDICES_I (M, N, IA, JA, INFO) S,T
	WS_SORTINDICES_D (M, N, IA, JA, AVALS, INFO) S,T
	WS_SORTINDICES_Z (M, N, IA, JA, AVALS, INFO) S,T
	WSETMAXTHRDS (NUMTHRDS)
	WSSYSTEMSCOPE and WSPROCESSSCOPE
	WSETMAXSTACK (FSTK)
	WSETLF (DLF)T,P
	WSETNOBIGMAL ()
	WSMP_VERSION (V, R, M)
	WSMP_INITIALIZE ()S,T and PWSMP_INITIALIZE ()P
	WSMP_CLEAR ()S,T and PWSMP_CLEAR ()P
	WGFFREE ()S,T and PWGFFREE ()P
	WGSFREE ()S,T and PWGSFREE ()P
	WGSMATVEC (N, IA, JA, AVALS, X, B, FMT, IERR)S
	PWGSMATVEC (Ni, IAi, JAi, AVALSi, Xi, Bi, FMT, IERR)P
	WSETMPICOMM (INPCOMM)P

	Routines for Double Complex Data Type
	Notice: Terms and Conditions for Use of WSMP
	Acknowledgements

