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1 Introduction to Part I
The Watson Sparse Matrix Package, WSMP, is a high-performance, robust, and easy to use software package for solving
large sparse systems of linear equations. It can be used as a in a shared-memory multiprocessor environment, or as a
scalable parallel solver in a message-passing environment, where each MPI process can either be serial or multithreaded.
WSMP is comprised of three parts. This document describes Part I for the direct solution of symmetric sparse systems of
linear equations, either through LLT factorization, or through LDLT factorization. Part II uses sparse LU factorization
with pivoting for numerical stability to solve general systems. Part III contains preconditioned iterative solvers. Parts
II and III of User’s Guide can be obtained from http://www.research.ibm.com/projects/wsmp, along with some example
programs and technical papers related to the software. A current list of known bugs and issues is also maintained at this
web site.

For solving symmetric positive definite systems, WSMP uses a modified version of the multifrontal algorithm [5, 16]
for sparse Cholesky factorization and a highly scalable parallel sparse Cholesky factorization algorithm [11, 7, 12]. In
a multithreaded environment, it assigns all threads to root of the elimination tree [15] (or a subtree that belongs to an
MPI process) and recursively assigns the threads of each parent to its children in the tree to coarsely balance the load.
The dense operations on the frontal matrices of tree vertices that are assigned more than one thread are also parallelized.
The threads are managed through a task-parallel engine [14] that achieves fine-grain load balance via work-stealing.
The package also uses scalable parallel sparse triangular solvers [13] and an improved and parallelized version of a
multilevel nested-dissection algorithm [8] for computing fill-reducing orderings. Some details of the implementation and
performance of WSMP for solving symmetric sparse systems are discussed by Gupta et al. [10]. For solving symmetric
indefinite systems that require pivoting, WSMP uses 1 × 1 and 2 × 2 pivot blocks, as in the algorithm by Bunch and
Kaufman [2]. The indefinite solver with pivoting is currently available only in serial and multithreaded modes.

The WSMP software is packaged into two libraries. The serial and multithreaded single-process routines are a part
of the WSMP library. This library can be used on a single core or multiple cores on a shared-memory machine. The
second library is called PWSMP and is meant to be used in the distributed-memory parallel mode. Each MPI process
can itself be multithreaded.

The WSMP library can perform any or all of the following tasks: ordering, symbolic factorization, Cholesky or
LDLT factorization, triangular solves, and iterative refinement. The MPI-parallel version does not have out-of-core
capabilities and the problems must fit in the main memory for reasonable performance.

The functionality and the calling sequences of the serial, multithreaded, and the message-passing parallel versions
are almost identical. This document is organized accordingly and the descriptions of most parameters for both versions
is included in the description of the combined serial and multithreaded version. The serial version supports certain
features that the current message-passing parallel version does not. Such features, options, or data structures supported
exclusively by the serial version will be annotated by a superscript S in this document. Similarly, items relevant only to
the multithreaded version appear with a superscript T and those relevant to the message-passing parallel version appear
with a superscript P .

Note 1.1 Although WSMP and PWSMP libraries contain multithreaded code, the libraries themselves are not thread-
safe. Therefore, the calling program cannot invoke multiple instances of the routines contained in WSMP and PWSMP
libraries from different threads at the same time.

The organization of this document is as follows. Section 2 describes important recent changes in the software that
may affect the users of earlier versions. Section 3 lists the various libraries that are available and describe how to obtain
and use the libraries. Section 4 gives an overview of the functionality of the serial and parallel routines for solving
symmetric systems and explains how various functions performed by these routines affect each other. Section 5 gives
a detailed description of the main serial/multithreaded routine that provides an advanced single-routine interface to the
entire software. This section also describes the input data structures for the serial and multithreaded cases, and the
differences from the message-passing parallel version are noted, wherever applicable. Section 6 describes the out-of-
core shared-memory parallel solver. Section 7 describes user callable routines that provide a simpler interface to the
serial and multithreaded solver, but omit some of the advanced features. Section 8 describes the two distributed modes
in which the message-passing parallel solver can be used, describes the input data structures for the parallel solution,
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and reminds users of the differences between the serial and the message-passing parallel versions, wherever applicable.
This section does not repeat the information contained in Section 5 because the two user-interfaces are quite similar.
Section 9 is the parallel analog of Section 7 and describes user callable routines that provide a simpler interface to the
message-passing parallel solver. Section 10 describes a few utility routines available to the users. Section 11 gives a
brief description of the double-complex data type interface of WSMP’s symmetric direct solvers. Section 12 contains
the terms and conditions that all users of the package must adhere to.

2 Recent Changes and Other Important Notes
Versions 18 and later return the elapsed wall clock time for each call in DPARM(1) or dparm[0].

Iterative solvers preconditioned with incomplete Choleski and LU factorization are now available. Please refer to
the documentation for Part III, which can be found at http://www.research.ibm.com/projects/wsmp.

3 Obtaining, Linking, and Running WSMP

The software can be downloaded in gzipped tar files for various platforms from www.research.ibm.com/projects/wsmp.
If you need the software for a machine type or operating system other than those included in the standard distribution,

please send an e-mail to wsmp@us.ibm.com.
The WSMP software is packaged into two libraries. The multithreaded library names start with libwsmp and the

MPI based distributed-memory parallel library names start with libpwsmp.

3.1 Libraries and other system requirements

The users are expected to link with the system’s Pthread and Math libraries. In addition, the users are required to supply
their own BLAS library, which can either be provided by the hardware vendor or can be a third-party code. The user must
make sure that any BLAS code linked with WSMP runs in serial mode only. WSMP performs its own parallelization and
expects all its BLAS calls to run on a single thread. BLAS calls running in parallel can cause substantial performance
degradation. With some BLAS libraries, it may be necessary to set the environment variable OMP NUM THREADS to 1.
Many BLAS libraries have their own environment variable, such as MKL NUM THREADS or GOTO NUM THREADS,
which should be set to 1 if available.

On many systems, the user may need to increase the default limits on stack size and data size. Failure to do so
may result in a hung program or a segmentation fault due to small stack size and a segmentation fault or an error code
(IPARM(64)) of −102 due to small size of the data segment. Often the limit command can be used to increase stacksize
and datasize. When the limit command is not available, please refer to the related documentation for your specific
system. Some systems have separate hard and soft limits. Sometimes, changing the limits can be tricky and can require
root privileges. You may download the program memchk.c from www.research.ibm.com/projects/wsmp and compile and
run it as instructed at the top of the file to see how much stack and data space is available to you.

3.2 License file

The main directory of your platform contains a file wsmp.lic. This license file must be placed in the directory from
which you are running a program linked with any of the WSMP libraries. You can make multiple copies of this file
for your own personal use. Alternatively, you can place this file in a fixed location and set the environment variable
WSMPLICPATH to the path of its location. WSMP first tries to use the wsmp.lic from the current directory. If this file is
not found or is unusable, then it attempts to use wsmp.lic from the path specified by the WSMPLICPATH environment
variable. It returns with error -900 in IPARM(64) if both attempts fail.

The software also needs a small scratch space on then disk and uses the /tmp directory for that. You can override the
default by setting the environment variable TMPDIR to another location.
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3.3 Linking on various systems

The following sections show how to link with WSMP and PWSMP libraries on some of the platforms on which these
libraries are commonly used. If you need the WSMP or PWSMP libraries for any other platform and can provide us an
account on a machine with the target architecture and operating system, we may be able to compile the libraries for you.
Please send e-mail to wsmp@us.ibm.com to discuss this possibility.

3.3.1 Linux on x86 64 platforms

Many combinations of compilers and MPI are supported for Linux on x86 platforms.
The most important consideration while using the distributed-memory parallel versions of WSMP on a Linux plat-

form is that MPI library may not have the required level of thread support by default. The symmetric solver needs
MPI THREAD FUNNELED support and the unsymmetric solver needs MPI THREAD MULTIPLE support. There-
fore, MPI must be initialized accordingly. If MPI THREAD MULTIPLE support is not available, then you can use only
one thread per MPI process. This can be accomplished by following the instructions in Section 10.4.

Note 3.1 With most MPI implementations, when using more than one thread per process, the user will need to initialize
MPI using MPI INIT THREAD (Fortran) or MPI Init thread (C) and request the appropriate level of thread support.
The default level of thread support granted by using MPI INIT or MPI Init may not be sufficient, particularly for the
unsymmetric solver. You may also need to use the -mt mpi flag while linking with Intel MPI for the unsymmetric solver.

Note 3.2 There may be environment variables specific to each MPI implementation that need to be used for obtain-
ing the best performance. Examples of these include MV2 ENABLE AFFINITY with mvapich2 and I MPI PIN,
I MPI PIN MODE, I MPI PIN DOMAIN etc. with Intel MPI.

On all Linux platforms, under most circumstances, the environment variable MALLOC TRIM THRESHOLD
must be set to -1 and the environment variable MALLOC MMAP MAX must be set to 0, especially when us-
ing the serial/multithreaded library. However, when using the message passing PWSMP library, setting MAL-
LOC TRIM THRESHOLD to -1 can result in problems (including crashes) when more than one MPI process is
spawned on the same physical machine or node. Similar problems may also be noticed when multiple instances of
a program linked with the serial/multithreaded library are run concurrently on the same machine. In such situations, it
is best to set MALLOC TRIM THRESHOLD to 134217728. If only one WSMP or PWSMP process is running on one
machine/node, then MALLOC TRIM THRESHOLD = -1 will safely yield the best performance.

The WSMP libraries for Linux need to be linked with an external BLAS library. Some good choices for BLAS are
MKL from Intel, ACML from AMD, GOTO BLAS, and ATLAS. Please read Section 3.1 carefully for using the BLAS
library.

The x86 64 versions of the WSMP libraries are available that can be linked with Intel’s Fortran compiler ifort or
the GNU Fortran compiler gfortran (not g77/g90/g95). Note that for linking the MPI library, you will need to instruct
mpif90 to use the appropriate Fortran compiler. Due to many different compilers and MPI implementations available on
Linux on x86 64 platforms, the number of possible combinations for the message-passing library can be quite large. If
the combination that you need is not available in the standard distribution, please contact wsmp@us.ibm.com.

Examples of linking with WSMP using the Intel Fortran compiler (with MKL) and gfortran (with a generic BLAS)
are as follows:

ifort -o <executable> <user source or object files> -Wl,–start-group $(MKL HOME)/libmkl intel lp64.a
$(MKL HOME)/libmkl sequential.a $(MKL HOME)/libmkl core.a -Wl,–end-group -lwsmp64 -L<path of
libwsmp64.a> -lpthread

gfortran -o <executable> <user source or object files> <BLAS library> -lwsmp64 -L<path of libwsmp64.a> -
lpthread -lm -m64

An example of linking your program with the message-passing library libpwsmp64.a on a cluster with x86 64 nodes
is as follows:
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mpif90 -o <executable> <user source or object files> <BLAS library> -lpwsmp64 -L<path of libpwsmp64.a> -
lpthread

Please note that use of the sequential MKL library in the first example above. The x86 64 libraries can be used on
AMD processors also. On AMD processors, ACML, GOTO, or ATLAS BLAS are recommended.

3.3.2 Linux on Power

Linking on Power systems is very similar to that on the x86 64 platform, except that a BLAS library other than MKL is
required. The IBM ESSL (Engineering and Scientific Subroutine Library) is recommended for the best performance on
Power systems.

3.3.3 Cygwin on Windows 10

The 64-bit libraries compiled and tested in the Cygwin environment running under Windows 7 and Windows 10 are
available. An example of linking in Cygwin is as follows (very similar to what one would do on Linux):

gfortran -o <executable> <user source or object files> -L<path of libwsmp64.a> -lwsmp -lblas -lpthread -lm -m64

Please refer to Section 3.4 to ensure that BLAS functions do not use more than one thread on each MPI process.

3.3.4 Mac OS

MAC OS libraries are available for Intel and GNU compilers. The BLAS can be provided by either explicitly linking
MKL (preferred) or by using the Accelerate framework. Linking examples are as follows:

gfortran -o <executable><user source or object files> -m32 -lwsmp -L<path of libwsmp.a> -lm -lpthread -framework
Accelerate

gfortran -o <executable> <user source or object files> -m64 -lwsmp64 -L<path of libwsmp64.a> -lm -lpthread -
framework Accelerate

Once again, it is important to ensure that the BLAS library works in the single-thread mode when linked with
WSMP. This can be done by using the environment variables OMP NUM THREADS, MKL NUM THREADS, or
MKL SERIAL.

3.4 Controlling the number of threads

WSMP (or a PWSMP process) automatically spawns threads to utilize all the available cores that the process has access
to. The total number of threads used by WSMP is usually the same as the number of cores detected by WSMP. The
unsymmetric solver may occasionally spawn a few extra threads for short durations of time. In many situations, it may
be desirable for the user to control the number of threads that WSMP spawns. For example, if you are running four MPI
processes on the same node that has 16 cores, you may want each process to use only four cores in order to minimize
the overheads and still keep all cores on the node busy. If WSMP NUM THREADS or WSMP RANKS PER NODE
(Section 3.5) environment variables are not set and WSETMAXTHRDS function is not used, then, by default, each MPI
process will use 16 threads leading to thrashing and loss of performance.

Controlling the number of threads can also be useful when working on large shared global address space machines,
on which you may want to use only a fraction of the cores. In some cases, you may not want to rely on WSMP’s
automatic determination of the number of CPUs; for example, some systems with hyper-threading may report the
number of hardware threads rather than the number of physical cores to WSMP. This may result in an excessive number
of threads when it may not be optimal to use all the hardware threads.

WSMP provides two ways of controlling the number of threads that it uses. You can either use the func-
tion WSETMAXTHRDS (NUMTHRDS) described in Section 10.4 inside your program, or you can set the environ-
ment variable WSMP NUM THREADS to NUMTHRDS. If both WSETMAXTHRDS and the environment variable
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WSMP NUM THREADS are used, then the environment variable overrides the value set by the routine WSETMAX-
THRDS.

3.5 The number of MPI ranks per shared-memory unit

While it is beneficial to use fewer MPI processes than the number of cores on shared-memory nodes, it may not be
optimal to use only a single MPI process on highly parallel shared-memory nodes. Typically, the best performance
is observed with 2–8 threads per MPI processes. When multiple MPI ranks belong to each physical node, specifying
the number of ranks per node by setting the environment variable WSMP RANKS PER NODE would enable WSMP to
make optimal decisions regarding memory allocation and load-balancing. If the number of threads per process is not
explicitly specified, then WSMP RANKS PER NODE also lets WSMP figure out the appropriate number of threads to
use in each MPI process.

In addition, the way the MPI ranks are distributed among physical nodes can have a dramatic impact on performance.
The ranks must always be distributed in a block fashion, and not cyclically. For example, when using 8 ranks on four
nodes, ranks 0 and 1 must be assigned to the same node. Similarly, ranks 2 and 3, 4 and 5, and 6 and 7 must be paired
together.

Note that the WSMP RANKS PER NODE environment variable does not affect the allocation of MPI processes
to nodes; it merely informs PWSMP how the ranks are distributed. PWSMP does not check if the value of
WSMP RANKS PER NODE is correct.

4 Overview of Functionality
WSSMP and PWSSMP are the primary routines for solving symmetric sparse systems of linear equations. Both the
serial/multithreaded and the message-passing parallel libraries allow the users to perform any appropriate subset of the
following tasks: (1) Ordering, (2) Symbolic factorization, (3) Numerical factorization, (4) Back substitution, and (5)
Iterative refinement. These functions can either be performed by calls to the primary serial and parallel subroutines
WSSMP and PWSSMP (described in Sections 5 and 8, respectively), or by using the simpler serial and parallel interfaces
(described in Sections 7 and 9, respectively). When using WSSMP or PWSSMP routines, IPARM(2) and IPARM(3)
control the subset of the tasks to be performed (see Section 5 for more details). When using the simple interfaces, the
tasks or the subsets of tasks to be performed are determined by the name of the routine. Note that users can supply their
own ordering and skip WSSMP’s or PWSSMP’s ordering phase. Please see Section 4.1 for more details.

An any time during the process of solution of a sparse symmetric system of linear equations, the corresponding
context is stored internally. For example, when a call to WSSMP or PWSSMP for back substitution is made, the soft-
ware uses information generated and internally stored during the ordering, symbolic, and numerical factorization of the
coefficient matrix to correctly solve the system of equations. A call to ordering or symbolic factorization with a valid
input in PERM and INVP automatically signals the beginning of work on a new system and discards the old context.
Therefore, by default, WSSMP and PWSSMP work on one system of equations at a time. However, there is a provision
of storing and recalling a given context, thereby providing a mechanism for WSSMP and PWSSMP to work on multiple
systems of equations together. Up to 64 different contexts can be stored, which can correspond to 64 different sparse
linear systems in possibly different stages of solution. This mechanism is provided by WSTOREMAT, PWSTOREMAT,
WRECALLMAT, and PWRECALLMAT routines, which are described in detail in Section 10. At a given time, only one
context is active, and unless specifically mentioned, the functions of all the routines described in this document are
confined to the sparse matrix/system whose context is currently active.

The WSSMP and PWSSMP routines perform minimal input argument error-checking and it is the user’s responsibility
to call WSMP subroutines with correct arguments and valid options and symmetric matrices. In case of an invalid input,
it is not uncommon for a routine to hang or to crash with segmentation fault. In the message-passing parallel version,
on rare occasions, insufficient memory can also cause a routine to hang or crash before all the processes/threads have
had a chance to return safely with an error report. However, unlike the input argument and memory related errors, the
numerical error checking capabilities of the computational routines are quite robust.
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All WSMP routines can be called from Fortran as well as C or C++ programs using a single interface described in
this document. As a matter of convention, symbols (function and variable names) are in capital letters in context of
Fortran and in small letters in context of C. Please refer to Notes 5.3, 5.4, and 10.1 for more details on using WSSMP
with Fortran or C programs.

In the following subsections, we describe the key functions and the interdependencies of the five tasks mentioned
above. These functions and dependencies are valid for both interfaces—the WSSMP interface and the simple interface.

4.1 Ordering

The ordering routines take the indices of the matrix and some control integers as input and generate a symmetric per-
mutation of the input matrix. This permutation is designed to minimize fill during factorization and to provide ample
parallelism and load-balance during message-passing or multithreaded parallel factorization. For LDLT factorization
with diagonal pivoting, the ordering routines, in addition to the structure, examine the values of the coefficients as well in
order to determine a symmetric permutation that balances fill reduction with numerical stability. Multiple factorizations
with the same ordering can still be performed with different values. The original matrix is not altered; the permutation is
stored in the vectors PERM and INVP. Please refer to Sections 5.2.6 and 5.2.7 for a detailed description of these vectors.

If pivoting is not to be performed during factorization, then the user may use a permutation from another source
and need not use the WSMP libraries to generate the permutation. However, valid permutation vectors PERM and INVP
must be passed on to symbolic factorization. If PERM and INVP vectors contain a valid ordering/permutation, then the
WSMP’s ordering step can be skipped and the computation can start with the symbolic factorization step.

In the message-passing case, valid entries in PERM and INVP vectors are produced by the ordering phase and
consumed by the symbolic factorization phase on process 0 only. If an external ordering/permutation is being supplied,
then PERM and INVP vectors on process 0 must contain the entire valid permutation before the call for symbolic
factorization.

4.2 Symbolic factorization

Symbolic factorization sets up the internal data structures to be used by the subsequent numerical factorization and solve
phases. Most of the work performed by symbolic is invisible to the user, except some output information on the memory
and computational requirements of the numerical phases to follow.

A notable side-effect of the symbolic phase is that it makes alterations to PERM and INVP and in the message-
passing case, distributes the altered PERM and INVP to all the participating processes. In other words, PERM and INVP
(generated either by (P)WSSMP’s ordering phase, or from an external source) are input for symbolic factorization and
are modified. The PERM and INVP vectors that are produced as the output of symbolic factorization must be passed
unaltered to all subsequent numerical factorization, solve, and iterative refinement steps.

4.3 Numerical factorization

The numerical factorization performs either LLT or LDLT factorization on the input matrix. LDLT factorization can
be performed with or without diagonal pivoting. A symbolic factorization step must have been performed for a matrix
with identical nonzero pattern before the first call to numerical factorization. Once a symbolic factorization step has
been performed, numerical factorization can be called any number of times for matrices with identical nonzero pattern
but possibly different numerical values. The input matrix that is stored in IA, JA, and AVALS and passed to numerical
factorization can either be the original matrix as is, or the permuted matrix generated by applying the PERM and INVP
output of symbolic factorization to the original matrix. This is controlled by IPARM(8), as described in Section 5.2.14.

Once a symbolic factorization step has been performed, numerical factorization can be called any number of times
for matrices with identical nonzero pattern (determined by IA and JA) but possibly different numerical values in AVALS.



c©IBM Corporation 1997, 2021. All Rights Reserved. 11

4.4 Back substitution

The back substitution or the triangular solve phase generates the actual solution to the system of linear equations. This
phase requires the factors generated by a previous call to numerical factorization. After the coefficient matrix has been
factored, the user can solve multiple systems together by providing multiple right-hand sides, or can solve for multiple
instances of single or multiple right-hand sides one after the other. If systems with multiple right-hand sides need to be
solved and all right-hand sides are available together, then solving them all together is significantly more efficient than
solving them one at a time.

4.5 Iterative refinement

Iterative refinement can be used to improve the solution produced by the back-substitution phase. The option of using
extended precision arithmetic for iterative refinement is available. For many problems, this step is not necessary.

5 The Primary Serial/Multithreaded Subroutine: WSSMP

This section describes the use of the WSSMP subroutine and its calling sequences in detail. There are five basic tasks
that WSSMP is capable of performing, namely, ordering, symbolic factorization, LLT or LDLT factorization, forward
and backward solve, and iterative refinement. The same routine can perform all or any number of these functions in
sequence depending on the options given by the user via parameter IPARM (see Section 5.2). In addition, a call to
WSSMP can be used to get the default values of the options without any of the five basic tasks being performed. See the
description of IPARM(1), IPARM(2), and IPARM(3) in Section 5.2.14 for more details.

In addition to the advanced interface that the WSMP library provides via the single subroutine WSSMP, there are a
number of other subroutines that provide a simpler interface. These subroutines are described in detail in Section 7.

5.1 Types of matrices accepted and their input format

The WSSMP routine works for symmetric positive-definite, quasi-definite, and indefinite matrices, with or without
diagonal pivoting. For certain kinds of indefinite systems, special ordering techniques can be used (see Section 7.1 for
more details) to avoid pivoting. WSSMP can also handle semi-definite matrices without pivoting via appropriate use of
the options provided by IPARM(11:13), and DPARM(11,12,21,22).

If diagonal pivoting is necessary, then the user can choose pivoting threshold DPARM(11) and set IPARM(31) to
trigger the use of the Bunch-Kaufman algorithm [2]. A full implementation of this option is not available in the message-
passing version, although a highly effective partial implementation is available.

Note 5.1 It is extremely important that all rows/columns of the coefficient matrix have a diagonal entry. If the diagonal
entry in a certain row/column is zero (as the case may be in an indefinite or semi-definite system), there should be an
explicit zero at the diagonal location.

All floating point values must be 8-byte real numbers. All integers must be 4 bytes long unless you are using
libwsmp8 8.a, which takes 8-byte integer inputs.

Since the input matrix is symmetric, only a triangular part is accepted as input. Currently, two input formats are
supported. In the first format, the input is the upper triangular part, including the diagonal, in compressed sparse row
(CSR-UT) or the lower triangular part in the compressed sparse column (CSC-LT) format. The second format is modified
compressed sparse row/column (MSR or MSC). The performance of WSSMP and PWSSMP is slightly better with the
CSR/CSC format than with the MSR/MSC format. Figure 1 illustrates both input formats; they are also explained briefly
in Sections 5.2.2, 5.2.3, 5.2.4, and 5.2.5.

Note 5.2 The symmetric solver handles complex Hermitian matrices, although, technically they are not symmetric. In
order to process Hermitian matrices correctly, they must be input in CSC-LT or MSC-LT formats only.
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is shown in the table.

input formats accepted by WSSMP

The storage of this matrix in the

A 9 X 9 symmetric sparse matrix.

CSC-LT Format MSC-LT Format
K IA(K) JA(K) AVALS(K) IA(K) JA(K) AVALS(K) DIAG(K)

1 1 1 14.0 1 3 -1.0 14.0
2 5 3 -1.0 4 7 -1.0 14.0
3 9 7 -1.0 7 8 -3.0 16.0
4 13 8 -3.0 10 3 -1.0 14.0
5 17 2 14.0 13 8 -3.0 14.0
6 21 3 -1.0 16 9 -1.0 16.0
7 25 8 -3.0 19 7 -2.0 16.0
8 27 9 -1.0 20 8 -4.0 71.0
9 29 3 16.0 21 9 -2.0 16.0

10 30 7 -2.0 21 6 -1.0
11 8 -4.0 7 -1.0
12 9 -2.0 8 -3.0
13 4 14.0 6 -1.0
14 6 -1.0 8 -3.0
15 7 -1.0 9 -1.0
16 8 -3.0 7 -2.0
17 5 14.0 8 -4.0
18 6 -1.0 9 -2.0
19 8 -3.0 8 -4.0
20 9 -1.0 9 -4.0
21 6 16.0
22 7 -2.0
23 8 -4.0
24 9 -2.0
25 7 16.0
26 8 -4.0
27 8 71.0
28 9 -4.0
29 9 16.0

Figure 1: Illustration of the two input formats for the serial/multithreaded WSSMP routines.

WSSMP supports both C-style indexing starting from 0 and Fortran-style indexing starting from 1. Once a numbering
style is chosen, all data structures must follow the same numbering convention which must stay consistent through all
the calls referring to a given system of equations. Please refer to the description of IPARM(5) in Section 5.2.14 for more
details.

5.2 Calling sequence of the WSSMP subroutine

There are five types of arguments, namely input (type I), output (type O), modifiable (type M), temporary (type T),
and reserved (type R). The input arguments are read by WSSMP and remain unchanged upon execution, the output
arguments are not read but some useful information is returned via them, the modifiable arguments are read by WSSMP
and modified to return some information, the temporary arguments are not read but their contents are overwritten by
unpredictable values during execution, and the reserve arguments are just like temporary arguments which may change
to one of the other types of arguments in the future serial and parallel releases of this software.

In the remainder of this document, the “system” refers to the sparse linear system of N equations of the form
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AX = B, where A is a sparse symmetric coefficient matrix of dimension N , B is the right-hand-side vector/matrix and
X is the solution vector/matrix, whose approximation X computed by WSSMP overwrites B when WSSMP is called to
compute the solution of the system.

Note 5.3 Recall that WSSMP supports both C-style (starting from 0) and Fortran-style (starting from 1) numbering. The
description in this section assumes Fortran-style numbering and C users must interpreted it accordingly. For example,
IPARM(11) will actually be IPARM[10] in a C program calling WSSMP.

Note 5.4 All user-callable WSMP and PWSMP routines expect their parameters to be passed by reference. Therefore,
when calling WSSMP from a C program, the addresses of the parameters described in Section 5.2 must be passed.

The calling sequence and descriptions of the parameters of WSSMP are as follows. Note that all arguments are not
accessed in all phases of the solution process. The descriptions that follow indicate when a particular argument is not
accessed. When an argument is not accessed, a NULL pointer or any scalar can be passed as a place holder for that
argument. The example program wssmp ex1.f at the WSMP home page illustrates the use of the WSSMP subroutine for
the matrix shown in Figure 1.

WSSMP ( N, IA, JA, AVALS, DIAG, PERM, INVP, B, LDB, NRHS, AUX, NAUX, MRP, IPARM, DPARM )

void wssmp (int *n, int ia[], int ja[], double avals[], double diag[], int perm[], int invp[], double b[], double *ldb, int
*nrhs, double *aux, int *naux, int mrp[], int iparm[], double dparm[] )

5.2.1 N (type I): matrix dimension

INTEGER N
int *n

This is the number of rows and columns in the sparse matrix A or the number of equations in the sparse linear system
AX = B. It must be a nonnegative integer.

5.2.2 IA (type I or M): row pointers

INTEGER IA (N + 1)
int ia[]

IA is an integer array of size one greater than N . IA(I) points to the first column index of row I in the array JA. Note
that empty columns (or rows) are not permitted; i.e., IA(i + 1) must be greater than IA(i).

Please refer to Figure 1 and description of IPARM(4) in Section 5.2.14 for more details. Section 8.2 contains more
details for the requirements on IA in the distributed-memory parallel case.

5.2.3 JA (type I or M): column indices

INTEGER JA ( * )
int ja[]

The integer array JA contains the column (row) indices of the upper (lower) triangular part of the symmetric sparse
matrix A. The indices of a column (row) are stored in consecutive locations. In addition, these consecutive column
(row) indices of a row (column) must be sorted in increasing order upon input. WSMP provides two utility routines to
sort the indices (see Section 10 for details). If CSR/CSC format is used, then the size of array JA is the total number of
nonzeros in a triangular portion of the symmetric matrix A (including the diagonal). If the MSR input format is used,
then the size of JA is the number of nonzeros in a strictly triangular portion of A excluding the diagonal.

Please refer to Note 5.1 in Section 5.1. As a result, in CSR and CSC formats, N is a lower bound on the size of JA.
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5.2.4 AVALS (type I or M): nonzero values of the coefficient matrix

DOUBLE PRECISION AVALS ( * )
double avals[]

The array AVALS contains the actual double precision values corresponding to the indices in JA. The size of AVALS
is the same as that of JA. See Figure 1 for more details. Also, please refer to Note 5.1 in Section 5.1. As a result, in CSR
and CSC formats, N is a lower bound on the size of AVALS.

The input AVALS may be modified if scaling is performed (by setting IPARM(10) appropriately) and if IPARM(8) is
not 0. If scaling is performed, then the values of the input matrix in AVALS are changed if the input format is not MSR
and if the matrix is either already permuted or is permuted on output; i.e., if IPARM(4) is 0 and IPARM(8) is 1 or 2. If
MSR input format is used or if IPARM(8) is 0, only an internal copy is scaled and the input matrix remains unchanged.

5.2.5 DIAG (type I, O, or M): diagonal of coefficient or factor matrix

DOUBLE PRECISION DIAG ( N )
double diag[]

If the MSR input format is used, then DIAG(I) contains the I-th diagonal element of the coefficient matrix. If
CSR/CSC format is used for input, then DIAG is not referenced and need not be a double precision array of size N ; it
can simply be a placeholder (e.g., a NULL can be passed in C).

If IPARM(32) is 1, then DIAG contains the diagonal of the factor upon output. Please refer to the description of
IPARM(32) for more details, including Note 5.15.

DIAG is accessed only in the factorization phase if either IPARM(4) is 1 or if IPARM(32) is 1 and the factorization
is being performed without pivoting. For LDLT factorization with pivoting, DIAG is a read-only array when the input
format is MSR.

5.2.6 PERM (type I or O): permutation vector

INTEGER PERM ( N )
int perm[]

PERM is the permutation vector, as defined in Sparspak [3]. If J = PERM(I), then the J-th row and column of the
original matrix become the I-th row and column in the permuted matrix to be factored. If ordering is one of the steps
that the call to WSSMP is made to perform, the PERM is an output parameter. If WSSMP is called to perform a task or
a set of tasks other than ordering, then PERM is an input parameter if either the matrix A of the right-hand side B is not
permuted already. If both A and B are already permuted when passed in to WSSMP, then PERM is not referenced. See
Section 5.2.14 for more details.

Note 5.5 If ordering and symbolic factorization are performed in different calls, or an external non-WSMP ordering is
used, then, in general, the contents of PERM and INVP are altered during symbolic factorization. This permutation
produced at the end of the symbolic phase is the actual permutation that is used in the factor and solve stages. It is
different (but similar in properties) to the permutation on P0 at the beginning of symbolic factorization.

5.2.7 INVP (type I or O): inverse permutation vector

INTEGER INVP ( N )
int invp[]

INVP is the inverse permutation vector, as defined in Sparspak [3]. If J = INVP(I), then the I-th row and column
of the original matrix become the J-th row and column in the permuted matrix to be factored. If ordering is one of the
steps that the call to WSSMP is made to perform, the INVP is an output parameter. If WSSMP is called to perform a task
or a set of tasks other than ordering, then INVP is an input parameter if either the matrix A of the right-hand side B is
not permuted already. If both A and B are already permuted when passed in to WSSMP, then INVP is not referenced.
See Section 5.2.14 for more details. Also refer to Note 5.5.
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5.2.8 B (type M): right-hand side vector/matrix

DOUBLE PRECISION B ( LDB, NRHS )
double b[]

The N× NRHS dense matrix B contains the right-hand side of the system of equations AX = B to be solved. If
the number of right-hand side vectors, NRHS, is one, then B can simply be a vector of length N . During the solution,
X overwrites B. If the solve (Task 4) and iterative refinement (Task 5) are performed separately, then the output of the
solve phase is the input for iterative refinement. B is accessed only in the triangular solution and iterative refinement
phases.

5.2.9 LDB (type I): leading dimension of B

INTEGER LDB
int *ldb

LDB is the leading dimension of the right-hand side matrix if NRHS > 1. When used, LDB must be greater than or
equal to N . Even if NRHS = 1, LDB must be greater than 0.

5.2.10 NRHS (type I): number of right-hand sides

INTEGER NRHS
int *nrhs

NRHS is the second dimension of B; it is the number of right-hand sides that need to be solved for. It must be a
nonnegative integer.

5.2.11 AUX (type O, I, or T): auxiliary storage

DOUBLE PRECISION AUX ( NAUX )
double *aux

This argument is obsolete and will be deleted in the near future. Currently, its only purpose is backward compatibil-
ity. A dummy argument or a NULL pointer may be passed.

5.2.12 NAUX (type M): size of user supplied auxiliary storage

INTEGER NAUX
int *naux

This argument is obsolete and will be deleted in the near future. Currently, its only purpose is backward compatibil-
ity. A dummy argument or a NULL pointer may be passed.

5.2.13 MRP (type O): pivot info

INTEGER MRP ( N )
int mrp[]

MRP is accessed for real matrices only, if IPARM(11) = 2. MRP is not used for complex matrices.
For factorization without pivoting, if IPARM(11) is 2 on input, then on return from factorization, MRP(I) is set

to IPARM(13) if the I-th pivot was less than or equal to DPARM(10) during factorization. Otherwise, MRP(I) is not
touched. Please refer to the description of IPARM(11) for more details.

For LDLT factorization with pivoting, the role of MRP is similar. In this case, all entries of MRP are overwritten
during ordering. The entries corresponding to rows and columns all whose entries were less than or equal to DPARM(10)
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during factorization contain a negative integer on output. The remaining entries contain nonnegative integers. Thus, if
the rank M of the N × N matrix is less than N , then M − N entries in MRP corresponding to a set of rows and
columns linearly dependent on a subset of the remaining M rows and columns is marked by negative integers, while the
remaining entries in MRP contain non-negative integers. Note that IPARM(21) returns M−N if the user sets IPARM(11)
to 1 or 2, where M is the rank of the matrix. Structural singularity is usually detected during ordering and numerical
singularity during numerical factorization. After ordering, IPARM(21) returns M − N corresponding to the structural
rank M , which may be further reduced during numerical factorization.

5.2.14 IPARM (type I, O, M, and R): integer array of parameters

INTEGER IPARM ( 64 )
int iparm[64]

IPARM is an integer array of size 64 that is used to pass various optional parameters to WSSMP and to return some
useful information about the execution of a call to WSSMP. If IPARM(1) is 0, then WSSMP fills IPARM(4) through
IPARM(64) and DPARM with default values and uses them. The default initial values of IPARM and DPARM are shown
in Table 1. IPARM(1) through IPARM(3) are mandatory inputs, which must always be supplied by the user. If IPARM(1)
is 1, then WSSMP uses the user supplied entries in the arrays IPARM and DPARM. Note that some of the entries in
IPARM and DPARM are of type M or O. It is possible for a user to call WSSMP only to fill IPARM and DPARM with the
default initial values. This is useful if the user needs to change only a few parameters in IPARM and DPARM and needs
to use most of the default values. Please refer to the description of IPARM(2) and IPARM(3) for more details. Note
that there are no default values for IPARM(2) and IPARM(3) and these must always be supplied by the user, whether
IPARM(1) is 0 or 1.

Note that all reserved entries; i.e., IPARM(36:63) must be filled with 0’s.

• IPARM(1) or iparm[0], type I or M:

If IPARM(1) is 0, then the remainder of the IPARM array and the DPARM array are filled with default values by
WSSMP before further computation and IPARM(1) itself is set to 1. If IPARM(1) is 1 on input, then WSSMP uses
the user supplied values in IPARM and DPARM.

• IPARM(2) or iparm[1], type M:

On input, IPARM(2) must contain the number of the starting task. On output, IPARM(2) contains 1 + number
of the last task performed by WSSMP, if any. This is to facilitate users to restart processing on a problem from
where the last call to WSSMP left it. Also, if WSSMP is called to perform multiple tasks in the same call and it
returns with an error code in IPARM(64), then the output in IPARM(2) indicates the task that failed. If WSSMP
performs no task, then, on output, IPARM(2) is set to max(IPARM(2),IPARM(3)+ 1). WSSMP can perform any set
of consecutive tasks from the following list:

Task 1: Ordering
Task 2: Symbolic Factorization
Task 3: Cholesky or LDLT Factorization
Task 4: Forward and Backward Elimination
Task 5: Iterative Refinement

• IPARM(3) or iparm[2], type I:

IPARM(3) must contain the number of the last task to be performed by WSSMP. In a call to WSSMP, all tasks
from IPARM(2) to IPARM(3) are performed (both inclusive). If IPARM(2) > IPARM(3) or both IPARM(2) and
IPARM(3) is out of the range 1–5, then no task is performed. This can be used to fill IPARM and DPARM with
default values; e.g., by calling WSSMP with IPARM(1) = 0, IPARM(2) = 0, and IPARM(3) = 0.
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IPARM DPARM
Index Default Description Type Default Description Type

1 mandatory I/P default/user defined M - Elapsed time O
2 mandatory I/P starting task M - matrix normS,T O
3 mandatory I/P last task I - mat. inv. normS,T O
4 0 I/P format I - max. fact. diag. O
5 1 numbering style I - min. fact. diag. O
6 1 max # of iter. ref. M 2× 10−15 rel. err. lim. I
7 3 residual norm type I - rel. resid. norm O
8 0 mat. permut. option I - unused -
9 0 RHS permut. option I - unused -

10 0 scaling option I 10−18 singularity threshold I
11 0 bad pivot handling I 0.001 pivot threshold I
12 0 small piv. handling I 4× 10−16 small piv. thresh. M
13 0 bad pivot flag/# perturbs. I/O - no. of supernodes O
14 0 AVALS reuse opt. M - unused -
15 0 ordering restriction I 0.0 reordering flag M
16 1 ordering option 1 I - unused -
17 0 ordering option 2 I - unused -
18 1 ordering option 3 I - unused -
19 0 ordering option 4 I - unused -
20 0 ordering option 5 I - unused -
21 - bad pivot count O 10200 bad pivot subst. I
22 - -ve eigenvalue count O 2× 10−8 small piv. subst. I
23 - factor memory O - actual factor ops. O
24 - factor nonzeros O - predicted factor ops. O

25S,T 0 cond. no. option I - unused -
26P 0 block size M - unused -

27P,T 0 balancing option I - unused -
28P 0 tri. solve blk. I - unused -
29 0 garbage collection I - unused -
30 0 tri. solve opt. I - unused -
31 0 LLT or LDLT factor I 0.0 Complex matrix with real non-diag. I
32 0 diag. O/P opt. I - unused -
33 - no. of CPUs used O - unused -
34 0 partial solution I - unused -

35P 0 enable dynamic dist. I - unused -
36S,T 0 enable OOC computation M - unused -
37-63 0 reserved R 0.0 reserved R

64 - return err. code O - first bad pivot O

Table 1: The default initial values of the various entries in IPARM and DPARM arrays. A ’-’ indicates that the value is
not read by WSSMP. Please refer to the text for details on ordering options IPARM(16:20). IPARM(36:63) must be filled
with all 0’s and DPARM(36:63) must all contain 0.0 on input.
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• IPARM(4) or iparm[3], type I:

IPARM(4) denotes the format in which the coefficient matrix A is stored. IPARM(4) = 0 denotes CSR/CSC format
and IPARM(4) = 1 denotes MSR/MSC format. Both formats are illustrated in Figure 1.

• IPARM(5) or iparm[4], type I:

If IPARM(5) = 0, then C-style numbering (starting from 0) is used; If IPARM(5) = 1, then Fortran-style numbering
(starting from 1) is used. In C-style numbering, the matrix rows and columns are numbered from 0 to N − 1 and
the indices in IA should point to entries in JA starting from 0.

• IPARM(6) or iparm[5], type M:

On input to the iterative refinement step, IPARM(6) should be set to the maximum number of steps of iterative
refinement to be performed. On output, IPARM(6) contains the actual number of iterative refinement steps per-
formed. Also refer to the description of IPARM(7) and DPARM(6) for more details. DPARM(6) provides a means
of performing none or fewer than IPARM(6) steps of iterative refinement if a satisfactory level of accuracy of the
solution has been achieved.

The default value of IPARM(6) is 1 for the symmetric solver.

• IPARM(7) or iparm[6], type I:

If IPARM(7) = 0, 1, 2, or 3, then the residual in iterative refinement is computed in double precision (the same
as the remainder of the computation). If IPARM(7) = 4, 5, 6, or 7, then the residual in iterative refinement is
computed in quadruple precision (which is twice the precision of the remainder of the computation). If IPARM(7)
= 0 or 4, then exactly IPARM(6) number of iterative refinement steps are performed without checking for the
relative residual norm. If IPARM(7) = 1, 2, 3, 5, 6, or 7, then iterative refinement is performed until the number
of iterative refinement steps is equal to IPARM(6) or until the relative residual norm given by ‖b−Ax‖/‖b‖ falls
below the input value in DPARM(6). Here A is the coefficient matrix, x is the computed solution, and b is the
right-hand side. If IPARM(7) = 1 or 5, then 1-norms are used in computing the relative residual norm, if IPARM(7)
= 2 or 6, then 2-norms are used, and if IPARM(7) = 3 or 7, then infinity-norms are used. Moreover, if IPARM(7)
= 1, 2, 3, 5, 6, or 7, then the actual relative residual norm given by ‖b − Ax‖/‖b‖ at the end of the last iterative
refinement step is placed in DPARM(7). In WSSMP, even if iterative refinement is not performed (i.e. if IPARM(6)
= 0 or if IPARM(3) < 5) the value of relative residual norm is computed and placed in DPARM(7) if IPARM(7)
= 1, 2, 3, 5, 6, or 7. However, in PWSSMP, relative residual norm is computed only if the iterative refinement
step is performed. Relative residual norm with PWSSMP can be computed without actually performing iterative
refinement by setting IPARM(6) (the number of iterative refinement steps) to 0.

If NRHS > 1, then the maximum of the relative residual norms amongst the NRHS solution vectors is considered.
Also note that, if scaling is performed (by setting IPARM(10) appropriately), then the relative residual norms are
computed with respect to the scaled system and not the original system.

The default value of IPARM(7) is 3.

Note 5.6 Please note that the residual is computed at the end of the solution step (Step 4). Even though IPARM(7)
pertains to iterative refinement, it must be set to the appropriate value before the triangular solution step to be
effective.

Note 5.7 Computing the residual adds a small overhead to the solution. Therefore, when solving a large number
of linear systems w.r.t. the same factor without iterative refinement, IPARM(7) should be set to 0 to switch the
residual computation off. This is important in applications in which the triangular solve time dominates.

Note 5.8 In the message-passing parallel version, the relative residual norm is not computed and iterative re-
finement is not performed if NRHS > 20. So if more than 20 solutions are required with iterative refinement or
relative residual norm computation, then these must be performed in batches of at most 20 each.
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• IPARM(8) or iparm[7], type I:

On input, IPARM(8) = 0 means that the matrix A is not permuted and its permutation given by PERM and INVP
must be used in symbolic factorization, Cholesky factorization, solution, and/or iterative refinement.

IPARM(8) = 1 means that the matrix is already permuted by the permutation vectors in PERM and INVP and it
must be used as is by WSSMP.

IPARM(8) cannot be 1 on input if ordering is one of the steps being performed.

It is valid for IPARM(8) to have a value of 0 during ordering and/or symbolic factorization and to use IPARM(8) =
1 during Cholesky factorization. This can be useful because often it is cheaper to generate the matrix in permuted
form than to compute the permutation of an existing matrix. Having WSSMP do the permutation can sometimes be
expensive relative to the factorization cost, especially in the parallel case. However, the number of rows/columns
per process (Ni for Process i) should remain the same for all phases.

• IPARM(9) or iparm[8], type I:

On input, IPARM(9) = 0 means that the right-hand side B is not permuted and its permutation given by PERM
and INVP must be used by WSSMP. IPARM(9) = 1 means that B is permuted already and must be used as it is by
WSSMP.

IPARM(8) cannot be 1 on input if ordering is one of the steps being performed.

• IPARM(10) or iparm[9], type I:

The input in IPARM(10) determines whether or not a scaling of the input matrix and vector(s) will be performed.

If IPARM(10) = 1, then WSSMP performs a scaling that is generally appropriate for LLT factorization or LDLT

factorization without pivoting. If IPARM(10) = 2, then no scaling is performed. If IPARM(10) = 3, then WSSMP
performs a scaling that is generally appropriate for LDLT factorization with pivoting.

If IPARM(10) = 0, which is the default, then the scaling that is generally best for LDLT factorization with pivoting
is performed if IPARM(31) is 2 or 4, otherwise, scaling is not performed.

Note that for factorization without pivoting, the valid inputs in IPARM(10) are 0, 1, and 2. For LDLT factorization
with pivoting, the valid inputs in IPARM(10) are 0, 1, 2, and 3. Although the type of ordering and scaling
performed with IPARM(10) = 3 is usually more suitable for indefinite systems that require pivoting, sometimes,
the simpler ordering and scaling performed when IPARM(10) = 1 suffices and saves some preprocessing time.
Therefore, for LDLT factorization with pivoting, the users are encouraged to experiment with IPARM(10) = 1
and 3, and choose the one that works best for their application.

IPARM(10) is accessed at the time of ordering and it is important to set it to the desired value before ordering. For
LDLT factorization with pivoting, the array AVALS must contain valid values at the time of ordering.

If scaling is performed, then the values of the input matrix in AVALS are changed if the input format is not MSR
and if the matrix is either already permuted or is permuted on output; i.e., if IPARM(4) is 0 and IPARM(8) is 1 or
2. If MSR input format is used or if IPARM(8) is 0, only an internal copy is scaled and the input matrix remains
unchanged.

• IPARM(11) or iparm[10], type I:

IPARM(11) instructs WSSMP and PWSSMP how to handle very small, zero, or negative (in case of LLT factor-
ization) pivots.

We first describe the role of IPARM(11) in LLT factorization. If IPARM(11) = 0, then if WSSMP encounters a di-
agonal value less than or equal to DPARM(10) during factorization (just before the square root), it sets IPARM(64)
to the index of this pivot, puts the actual pivot value in DPARM(64) and returns without further processing. If
IPARM(11) = 1, then if a diagonal value less than or equal to DPARM(10) is encountered, then it is replaced by
the value in DPARM(21) and the factorization continues. An input value of IPARM(11) = 2 is treated similar to
IPARM(11) = 1, except that in addition to replacing a bad pivot with DPARM(21), MRP(I) is set to the integer
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value in IPARM(13) to flag the occurrence of a bad I-th pivot. The number of occurrences of diagonal values less
than or equal to DPARM(10) is reported in IPARM(21) on output.

The slight difference in the handling of bad pivots in case of LDLT factorization without pivoting is as follows.
In this case, the absolute value of the pivot is compared with DPARM(10) and corrective action taken as desired.
If IPARM(11) is 1 and the absolute value of the pivot is less than or equal to DPARM(10), then it replaced by
DPARM(21) with the sign of the original pivot. If IPARM(11) is 2 and the coefficient matrix is real, then, in
addition to the corrective action described above, MRP(I) is set to IPARM(13) if the I-th pivot was less than or
equal to DPARM(10) during factorization. Note that both DPARM(10) and DPARM(21) must always be non-
negative.

For LDLT factorization of a real matrix with pivoting, the role of IPARM(11) is as follows. If IPARM(11) is 0
and a row/column with all entries smaller than or equal to DPARM(10) is encountered during factorization, then
IPARM(64) is set to the index of this row/column, thus returning with an error condition indicating that the matrix
is singular. If IPARM(11) is 1, then the factorization proceeds by replacing the diagonal entry by DPARM(21) of a
column all whose entries are found to be less than or equal to DPARM(10) during factorization. If IPARM(11) is 2,
then in addition to replacing the diagonal with DPARM(21), WSSMP sets the entries in MRP that correspond to the
indices of rows and columns whose diagonal was replaced by DPARM(21) to negative integers. In other words,
MRP marks the set of rows and columns of the matrix that are linearly dependent on a subset of the remaining
rows and columns. Upon return, the N −M entries in MRP corresponding to a set of linearly dependent rows
and columns would contain a negative integer, while the other entries in MRP would be filled with non-negative
integers.

Note that IPARM(11) = 2 is a valid input for real matrices only. For complex matrices, MRP is not accessed and
0 and 1 are the only valid inputs for IPARM(11).

The default value of IPARM(11) is 0.

• IPARM(12) or iparm[11], type I:

For LLT factorization or LDLT factorization without pivoting, IPARM(12) is an input parameter. IPARM(12) is
not used and is ignored when LDLT factorization is performed with diagonal pivoting. If IPARM(12) = 0, then
DPARM(12) and DPARM(22) are ignored. The default value of IPARM(12) is 0.

An input of IPARM(12) = 1 means that in LLT factorization, if a pivot is greater than DPARM(10) but less than
or equal to DPARM(12), it will be replaced by DPARM(22) during factorization. If DPARM(12) < DPARM(10)
and IPARM(12) = 1, then DPARM(12) is set to DPARM(10).

Once again, in the case of LDLT factorization, the absolute value of the pivot is compared against DPARM(10)
and DPARM(12). If the pivot is to be replaced, the new pivot has the sign of the old pivot and the value
DPARM(22). Just like DPARM(10) and DPARM(21), DPARM(12) and DPARM(22) must always be non-negative.

• IPARM(13) or iparm[12], type I/O:

In factorization without pivoting, IPARM(13) is the integer flag used for marking bad pivots in the MRP array if
IPARM(11) = 2.

When LDLT factorization is performed with limited pivoting (i.e., when IPARM(31) is 6 and DPARM(11) is
greater than 0.0) then IPARM(13) returns the number of diagonal entries that were perturbed in an attempt to keep
the factorization numerically stable.

• IPARM(14) or iparm[13], type I:

This option can be used to reuse the space in the arrays AVALS and/or JA if the user is interested in reducing
memory usage and does not need to use either or both of these arrays after factorization. In the distributed-
memory parallel version, IPARM(14) is ignored in the peer-mode; it is only effective in the 0-master mode. Please
refer to Section 8.1 for a description of distributed modes.

Note 5.9 In order to be effective, IPARM(14) must be set before symbolic factorization is performed.
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IPARM(14) = 0 is the default and has no effect. If the amount of memory is not expected to be a constraint, it is
best to leave IPARM(14) equal to 0 to save copying time. IPARM(14) = 0 guarantees that AVALS and JA will be
returned intact.

If IPARM(14) is 1, then WSSMP uses the space in AVALS to store a permuted internal copy of the matrix values.
If the input format is MSR (i.e., IPARM(4) = 1), then this option should be used only if AVALS has the space for
at least N extra double precision numbers. In PWSSMP, IPARM(14) = 1 triggers a slightly more expensive but
less memory intensive method for permuting the matrix for factorization.

If IPARM(14) is 2, then WSSMP and PWSSMP use the space in JA to store a permuted internal copy of the matrix
indices. If the input format is MSR (i.e., IPARM(4) = 1), then this option should be used only if JA has the space
for at least N extra integers.

If IPARM(14) is 3, then both AVALS and JA are used to store a permuted internal copy of the matrix.

An alternate way to reuse the space in AVALS and JA when input format is 0 is to use IPARM(8) = 2. When input
format is 0, this space is automatically reused if IPARM(8) = 1.

Note 5.10 The user must realize that the internal copy of the indices is used in all subsequent calls to factorization
and iterative refinement. Therefore, JA cannot be reused if the multiple factorizations with same indices and
different values are being performed unless the user is supplying a permuted copy of the matrix to factorization;
i.e., IPARM(8) = 1 for factorization. Also, JA or AVALS or both (whichever is being reused) must be passed
unaltered to WSSMP or PWSSMP for iterative refinement steps if these are performed separately.

• IPARM(15) or iparm[14], type I:

IPARM(15) contains the input parameter N1, where 0 ≤ N1 ≤ N . N1 is used only during the ordering phase and
is ignored if it is less than or equal to 0 or greater than or equal to N . If N1 is used, then the first N1 columns of
the matrix are factored before the remaining N− N1 columns.

This option is useful for ordering indefinite systems that have a few zero or near-zero values on the diagonal of
the coefficient matrix. For such matrices, LDLT factorization can be performed without pivoting. To ensure
the successful completion of the LDLT algorithm without pivoting, the rows and columns with zero diagonal
entries must be placed at the end of the matrix. By ordering these N −N1 rows and columns in the end, the user
ensures (unless there is numerical cancellation) that these diagonal entries have become nonzero by the time they
are factored.

Another scenario in which it may be useful to use IPARM(15) is when there are only a few entries of interest in
the RHS vector and the solution. In this case, the entire factor does not need to be saved and the computation
in the solve phase can be considerably reduced if the rows and columns of the coefficient matrix corresponding
to the entries of interest in the RHS and solution are placed at the end of the matrix. IPARM(15) must be set to
N1 if only a subset of the last N − N1 entries in the RHS have useful values (all other entries must be 0.0) and
the solution corresponding to only these entries is needed. Please refer to the description of IPARM(34) for more
details.

IPARM(15) is ignored when LDLT factorization is performed with diagonal pivoting.

• IPARM(16) or iparm[15], type I:

IPARM(16:20) control the ordering or the generation of the fill-reducing and load-balancing permutation vectors
PERM and INVP.

If IPARM(16) is -1, the ordering is not performed and the original ordering of rows and columns is used. If
IPARM(16) is -2, then reverse Cuthill-McKee ordering [6] is performed. If IPARM(16) is a nonnegative integer,
then a graph-partitioning based ordering [8] is performed.

If IPARM(16) = 0, then all default ordering options are used and speed of 3 is chosen (see below for description
of speed). If IPARM(16) = 1, 2, or 3, then the options described below are used for IPARM(17:20) instead of the
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defaults. In addition, the ordering speed and quality is determined by the integer value (speed) in IPARM(16).
IPARM(16) = 1 results in the slowest but best ordering, IPARM(16) = 3 results in fastest but worst ordering, and
IPARM(16) = 2 results in an intermediate speed and quality of ordering.

The default value of IPARM(16) is 1. When performing only one or a few factorizations per ordering step, it is
advisable to change IPARM(16) to 3 or 2.

• IPARM(17) or iparm[16], type I:

WSMP uses graph-partitioning based ordering algorithms [8] to minimize fill during factorization. IPARM(17)
specifies the minimum number of nodes that a subgraph must have before it is ordered by using a minimum local
fill algorithm without further subpartition. The user can obtain a pure minimum local fill ordering by specifying
IPARM(17) greater than N. A value of 0 in this field lets the ordering routine chose its own default. Typically,
it is best to use the default, but advanced users may experiment with this parameter to find out what best suits
their application. Sometimes a value larger than the default, which is between 50 and 200, may result in a faster
ordering without a big compromise in quality. The default value for IPARM(17) is 0.

• IPARM(18) or iparm[17], type I:

A value of 0 in IPARM(18) has no effect. The default IPARM(18) = 1 forces the ordering routine to compute
a minimum local fill ordering in addition to the ordering based on recursive graph bisection. It then computes
the amount of fill-in that each ordering would generate in Cholesky factorization and returns the permutation
corresponding to the better ordering. The use of this option increases the ordering time (in most cases the increase
is not significant), but is useful when one ordering is used for multiple factorizations. Note that using this option
produces the best ordering it can with the resources available to it. If graph partitioning fails due to lack of
memory, it still returns the minimum local fill ordering.

Note that in the message-passing parallel routine PWSSMP, IPARM(18) is ignored and the minimum local fill
ordering is not performed because it may hamper parallelism in factorization.

• IPARM(19) or iparm[18], type I:

On input, IPARM(19) contains a random number seed. One can use different values of the seed to force the
ordering routine to generate a different initial permutation of the graph. This is useful if one needs to generate a
few different orderings of the same sparse matrix (perhaps to chose the best) without having to change the input.

• IPARM(20) or iparm[19], type I:

The input IPARM(20) lets the user communicate some known characteristics of the sparse matrix to WSSMP to
aid it in choosing appropriate values of some internal parameters and to chose appropriate algorithms in various
stages of ordering. If the user has no information about the type of sparse matrix or if the matrix does not fall into
one of the categories below, then the default value 0 should be used.

Certain sparse matrices have a very irregular structure and have a few rows/columns that are much denser than
most of the rows/columns. Many sparse matrices arising from linear programming problems fall in this category.
For such matrices, the quality and the speed of ordering can usually be improved by setting IPARM(20) to 1.
This instructs the ordering routine to split the graph based on the high degree nodes before proceeding with the
ordering.

Sometimes, sparse matrices arise from finite-element graphs in which many or most vertices have more than one
degree of freedom. In such graphs, there are a many small groups of nodes that share the same adjacency structure.
If the sparse matrix comes from a problem like this, then a value of 2 should be used in IPARM(20). This instructs
WSSMP to construct a compressed graph before proceeding with the ordering, which then runs much faster as it
runs on the smaller compressed graph rather than the original larger graph.

The symbolic factorization phase may fail for some matrices with very irregular structure, unless IPARM(20) is set
to 1. Note that, if IPARM(20) = 0 produces a better ordering for such a matrix, the failure of symbolic factorization
can still be avoided by using IPARM(20) = 0 during ordering and IPARM(20) = 1 during symbolic factorization.
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Note 5.11 Recommended options for the serial/multithreaded version: The recommended contents of
IPARM(16:20) in the serial mode are (1,0,1,0,1) for interior-point algorithms, (1,0,1,0,2) for finite-element prob-
lems that can benefit from compression; i.e., there is reasonable fraction of vertices with multiple degrees of
freedom, and (1,0,1,0,0) for other matrices. In the serial version, if only one factorization is performed for each
ordering and a fast ordering is important, then IPARM(17) should contain N + 1, where N is the dimension of
the system. The ordering speed can be further increased by using a higher value (2 or 3) in IPARM(16).

Note 5.12 Recommended options for the message-passing parallel version: The recommended contents of
IPARM(16:20) in the parallel version are (1,0,0,0,1) for linear-programming problems, (1,0,0,0,2) for finite-
element matrices that can benefit from graph compression, and (1,0,0,0,0) otherwise. The ordering process can
be speedup up by making IPARM(17) = K, where K = N/p − 1, N is the dimension of the system and p is the
number of processes being used. The ordering speed can be further increased by using a higher value (2 or 3) in
IPARM(16).

Note 5.13 Error code −700 returned from symbolic factorization: If an error code of −700 is generated
during symbolic factorization, then it can often be corrected by setting IPARM(20) = 1 before ordering. In
other words, the error was probably caused because your matrix is not a regular finite-element type matrix and
generates more than expected fill-in for its size.

Please refer to the description of IPARM(64) for more details on error code −700 if setting IPARM(20) = 1 does
not fix it.

• IPARM(21) or iparm[20], type O:

Please refer to the description of IPARM(11). If IPARM(11) is set to 1 or 2 and DPARM(10) and DPARM(21)
contain their default values, then IPARM(21) returns N −M , where M is the rank of the N × N input matrix.
In determining the rank of a matrix, DPARM(10) is used as the singularity threshold. By setting DPARM(21) to
a large value, such as the default 10200, the user can obtain a solution even when the coefficient matrix singular.
The solution will contain zeros in the N −M locations corresponding to the rows and columns that are found to
be linearly depending on the remaining M rows and columns of the matrix.

Note that if DPARM(10) and DPARM(21) do not contain their default values as shown in Table 1, then output in
IPARM(21) may not have any relation with the rank of the matrix. It will return the number of diagonal pivots
replaced by DPARM(21).

• IPARM(22) or iparm[21], type O:

IPARM(22) returns the total number of negative eigenvalues of the coefficient matrix. In the case of LDLT

factorization with pivoting, it is the sum of the number of 2× 2 diagonal blocks and the number of negative 1× 1

diagonals. For factorization without pivoting, it is the number of negative diagonal entries.

• IPARM(23) or iparm[22], type O:

The output IPARM(23) is set after the symbolic factorization phase. It contains the total number of Kilo words
of memory (8-byte double precision words) that WSSMP or PWSSMP will require for factorization. This in-
cludes working storage as well as the space to store the factor. For LDLT factorization with diagonal pivoting,
IPARM(23) is updated after numerical factorization to reflect the actual memory used by the factors, because this
may be larger than that predicted by symbolic factorization due to pivoting.

Note that, due to round-off errors, the value of IPARM(23) may not be very accurate for very small matrices.

• IPARM(24) or iparm[23], type O:

On output, IPARM(24) contains the number of nonzeros in the triangular factor in thousands. This field is set after
the symbolic factorization phase.

Note that, due to round-off errors, the value of IPARM(24) may not be very accurate for very small matrices.
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• IPARM(25)S,T or iparm[24], type I:

IPARM(25) is ignored when IPARM(31) is less than 5. For IPARM(31) = 5, 6, or 7, this parameter indicates
whether or not a condition number estimate is to be performed. If IPARM(25) = 0, then a condition number
estimate is not computed. If IPARM(25) > 0, then the value of ‖A‖ is computed and placed as output in DPARM(2)
and an estimate of ‖A−1‖ is computed and placed in DPARM(3). The condition number of the matrix A is the
product DPARM(2) × DPARM(3). The condition number is a measure of the reliability of the solution of a
given linear system and can be used to compute error bounds. The algorithm described in [4] is used to estimate
‖A−1‖. If IPARM(25) = 1, then 1-norms are computed, if IPARM(25) = 2, then Frobenius-norms are computed,
and if IPARM(25) = 3, then infinity-norms are computed. WSSMP can be made to do this computation either
with factorization, or with solution, or with iterative refinement. WSSMP keeps track of the condition number
estimation computation with respect to a particular norm for a given matrix and if IPARM(25) does not change
between factorization, solution and iterative refinement steps, then the computation is not repeated.

The computation of ‖A‖ returned in DPARM(2) is straightforward. The estimate for ‖A−1‖ returned in DPARM(3)
is computed as follows. Let A = LLT be the factorization. Then a system Lz = d is solved, where the elements
of vector d are chosen from 1.0, −1.0 such that ‖z‖ is maximized. Then LT y = z is solved, followed by Lw = y

and LTx = w. The estimate for ‖A−1‖ is ‖x‖/‖y‖. The process is similar in the case of LDLT factorization,
where D also participates in the computation.

Note that if scaling is opted for by IPARM(10), then the norms computed are those of the scaled matrix and not
the original matrix.

Condition number estimation is not yet available in the message-passing parallel version. It is available for
factorization without pivoting and with static memory allocation in serial/multithreaded mode only; i.e., when
IPARM(31) = 5, 6, or 7.

The default value of IPARM(25) is 0; i.e., condition number estimation is not performed.

• IPARM(26)P or iparm[25], type I or M:

This parameter is relevant only in the message-passing parallel version and specifies the block size that the internal
dense matrix computations use for the two dimensional decomposition of the frontal and update matrices. If it is
0, then the parallel solver chooses an appropriate value and puts it in IPARM(26); otherwise, it uses the largest
power of 2 less than or equal to IPARM(26).

• IPARM(27)T,P or iparm[26], type I:

This parameter, which is relevant in the message-passing and the multithreaded versions, allows the user to control
the load-balance versus fill-in trade-off to some extent.

IPARM(27) = 2 allows the fill-reducing ordering to determine load-balancing among the processes with only slight
adjustments.

If IPARM(27) = 1, then WSSMP and PWSSMP perform somewhat aggressive restructuring of the elimination
tree in order to improve load-balancing. In addition to the possibility of an increase in factorization fill-in, such
restructuring also increases the time for symbolic factorization (because the restructuring is performed during
symbolic factorization). So this option should be used with discretion and aggressive load balancing should be
turned on by setting IPARM(27) to 1 only when poor speedups are observed and load-imbalance is suspected
to be the culprit. Our experience has shown that using IPARM(27) = 1 is significantly beneficial for factoring
LP (Linear Programming) and other highly unstructured matrices. In very rare cases, using IPARM(27) = 1 for
matrices arising from regular grids may cause symbolic factorization to fail.

The default value of IPARM(27) is 0 allows WSSMP and PWSSMP to decide what type of restructuring of the
elimination tree to perform.

• IPARM(28)P or iparm[27], type I:
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IPARM(31) Factorization Memory allocation Pivoting Matrix type
0 LLT Dynamic No Real/Hermitian
1 LDLT Dynamic No Real/Hermitian
2 LDLT Dynamic YesS,T /LimitedP Real/Hermitian
3 LDLT Dynamic No Complex non-Hermitian
4 LDLT Dynamic YesS,T /LimitedP Complex non-Hermitian
5 LLT Static No Real/Hermitian
6 LDLT Static Limited Real/Hermitian
7 LDLT Static Limited Complex non-Hermitian

Table 2: The first column contains the possible input values for IPARM(31), the second column shows the type of
symmetric factorization performed, the third column shows the type of memory allocation performed, the fourth col-
umn indicates whether or not pivoting is performed, and the last column shows the type of input coefficient matrix.
Superscript S denotes serial, T denotes multithreaded, and P denotes MPI parallel
.

This parameter is relevant only in the message-passing parallel version. If triangular solves with many right-hand
sides are being performed (i.e., NRHS� 1), then PWSSMP partitions B along columns into blocks of 20 columns
and solves for 20 right-hand sides at a time. If IPARM(28) = 0 on input, then the maximum default block size of
20 is used for partitioning B. If IPARM(28) > 0, then the value of IPARM(28) itself is used as the block size. If
this block size is too large, then PWSSMP can run out of memory. On the other hand using a small block size
for multiple right-hand sides increases the communication overhead of the triangular solves. This parameter is
irrelevant for NRHS = 1.

• IPARM(29) or iparm[28], type I:

If LDLT factorization with diagonal pivoting is performed, WSSMP may end up with data structures that it al-
locates but does not fully use due to changes in the predicted structure of the factors due to partial pivoting. If
IPARM(29) is 0, this extra memory is not reclaimed. By default, IPARM(29) is 0, because usually the amount of
extra memory is small and is not worth the overhead of reclaiming it. If IPARM(29) is set to 1, then WSSMP per-
forms garbage collection to remove memory holes if it runs short of memory during factorization. If IPARM(29)
is set to 2, then WSSMP always performs a garbage collection step at the end of factorization and returns with
only as much memory allocated as needed to store the factors.

• IPARM(30) or iparm[29], type I:

IPARM(30) is read during the triangular solution phase, which performs both forward and backward solution if
IPARM(30) is set to its default value of 0. If IPARM(30) is 1, then only the forward (lower triangular) solution
is performed. If IPARM(30) is 2, then only the backward (upper triangular) solution is performed. For LLT

factorization, calling the solve phase of WSSMP or PWSSMP with IPARM(30) = 0 should produce the same
output in B as a call with IPARM(30) = 1 followed by a call with IPARM(30) = 2. However, if forward and back
solves are performed separately, then the user looses the ability to perform iterative refinement on the solution
thus obtained.

In case of LDLT factorization, an additional diagonal solution step is required between the forward and the
backward steps. In this case, if IPARM(30) is 0, then all three steps are performed, if IPARM(30) is 3 then only the
diagonal step is performed, if IPARM(30) is 4 then backward and diagonal steps are performed, and if IPARM(30)
is 5, then forward and diagonal steps are performed. Input values of 1 and 2 for IPARM(30) result in only forward
and backward triangular solutions, respectively.

• IPARM(31) or iparm[30], type I:
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The input IPARM(31) can be used to select the appropriate algorithm depending on the characteristics and type
of the coefficient matrix. Table 2 shows the eight possible input values for IPRM(31) and the corresponding
factorization algorithm and matrix type. The default value of IPARM(31) is 0.

If the matrix is known to be positive-definite, then LLT factorization is recommended as it is somewhat faster than
LDLT factorization in the current implementation. Similarly, if LDLT factorization is known to be stable without
pivoting, then pivoting should be avoided because pivoting slows down the factorization and solve phases. For
solving symmetric indefinite systems that require pivoting, WSMP provides two pivoting options. Both options
use 1× 1 and 2× 2 pivot blocks as in the algorithm by Bunch and Kaufman [2]. In one option, which is available
only in serial and multithreaded modes, pivots can be selected from anywhere in the matrix to satisfy the pivoting
threshold. In the second limited pivoting option, which is useful in the MPI parallel case, pivot search is localized
and is not global. Localized pivot search keeps the communication overhead under control, and while usually
successful, can sometimes fail to find a suitable pivot. In this situation, a small diagonal perturbation is introduced
and make one of the local pivots viable by increasing the magnitude of the corresponding diagonal entry. The
accuracy lost as a result of the perturbation is usually recovered via iterative refinement.

WSMP factorizations also offer two memory allocation strategies. Some factorization algorithms allocate tem-
porary working space and the memory for storing the factors dynamically as needed. Some algorithms allocate
all the working space and the memory for storing the factor in one large block before the factorization starts.
For matrices with sparse factors and slim supernodes, the dynamic memory algorithms can incur a significant
overhead relative to the total amount of computation and may be slower than the static allocation algorithm. How-
ever, dynamic allocation results in a smaller overall memory footprint because the memory for storing the entire
factor has not been allocated at the time of peak temporary working storage demand. Table 2 shows the memory
allocation scheme corresponding to each value of IPARM(31).

Only 0, 1, 2, 5, and 6 can be used as inputs in IPARM(31) for real matrices. For complex matrices (Section 11),
input values of 3, 4, and 7 should be used to indicate that the matrix is non-Hermitian, and the remaining values
can used for Hermitian matrices.

Note 5.14 The input in IPARM(31) is read during the ordering phase; therefore, it is important that the
IPARM(31) contain the proper choice of factorization method to be applied before ordering. Switching between
LLT and LDLT factorization without pivoting is permitted at the time of factorization.

• IPARM(32) or iparm[31], type I:
The default value of IPARM(32) is 0. By setting IPARM(32) to a suitable value, the user can request certain output
in DIAG. If IPARM(32) is greater than 0 on input, then the user must provide a double precision array of length at
least N in DIAG.

WSSMP does not give user the access to the factors of the coefficient matrix, which is stored in a non-standard
format in internally allocated data structures. However, a user may want to inspect the diagonal values of the factor
to analyze the numerical accuracy of the factorization process. If IPARM(32) is 1 on input, then the diagonal of
the Cholesky factor is copied into DIAG (provided that task number 3 is performed during that call to WSSMP).

If the option of getting the diagonal of the factor back in DIAG is used with LDLT factorization (without pivoting),
then the output actually contains the inverse of the diagonal D.

If IPARM(32) is set to 2 on input, then the vector y, as described for IPARM(25), computed during the estimation
of ‖A−1‖ is returned in DIAG. See description of IPARM(25) for more details. Note that the user must activate the
condition number estimation by setting IPARM(25) to a valid value greater than 0 in order to utilize this option of
getting y back in DIAG. Note that since the condition number estimation works on the scaled matrix if IPARM(10)
is greater than 0 and the vector d as described for IPARM(25) is chosen on the fly, scaling must be turned off for
the IPARM(32) = 2 option to work correctly.

Note 5.15 IPARM(32) = 2 is supported only if IPARM(31) is 5, 6, or 7 because condition number estimate is
computed for only these values of IPARM(31).
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• IPARM(33) or iparm[32], type O:

On output, IPARM(33) is set to the number of CPU’s that were used by the process in SMP mode. Please refer to
Section 3.4 for details on controlling the number of threads in WSMP.

In PWSSMP, the output in IPARM(33) is local to each MPI process.

• IPARM(34) or iparm[33], type I:

If IPARM(34) is set to N1 upon input, then only the last N − N1 rows of B are assumed to contain nonzero
values upon input and are considered to be relevant for output. The input IPARM(34) is read at solve time and its
use requires that the first N1 entries of B are set to 0.

For IPARM(34) to be effective, IPARM(15) must be used in the ordering phase and IPARM(34) must be greater
than or equal to the value used in IPARM(15) during ordering.

Note that if N1 is much smaller than N , then it may be inefficient to obtain a partial solution and the user may be
better off using the normal solution process and just using the relevant parts of the solution. The default value of
IPARM(34) is 0, which has no effect on the solution.

Note that if the backward and forward solution steps are performed separately, then IPARM(34) can be applied
selectively to either step.

• IPARM(35)P or iparm[34], type I:

This parameter is relevant only for the message-passing parallel version and has a default value of 0. If IPARM(29)
is 1, PWSSMP attempts to distribute the Cholesky factorization work according to the speed and load of different
processes on a heterogeneous machine. An input value of 0 switches off this optimization and guarantees the
same PERM and INVP for different runs on the same problem with the same number of processes, provided that
the input parameters for ordering, IPARM(16:20), are the same. Note that this parameter is read during symbolic
factorization and must be set to the appropriate value before this step.

• IPARM(36)S,T or iparm[35], type M:

IPARM(36) can be used to enable out-of-core (OOC) computation by setting it to 1 or 2. Its value is 0 by default;
i.e., OOC computation is turned off. OOC computations can only be used with IPARM(31) values of 0 or 1.
Please refer to Section 6 for more details on OOC computations, including the setting of mandatory environment
variables.

• IPARM(37:63) or iparm[36:62], type R:

These are reserved for future use.

• IPARM(64) or iparm[63], type O:

In the event of a successful return from WSSMP or PWSSMP, IPARM(64) is set to 0 on output. A nonzero value
of IPARM(64) upon output is an error code, and indicates that WSSMP/PWSSMP did not complete execution
and detected an error condition. There are two types of error codes—negative and positive. In PWSSMP, the
error code returned on all MPI processes is identical. The three least significant decimal digits indicate the error
code and the remaining most significant digits indicate the MPI process number that was the first to encounter
the error. For example, an error code of −102 indicates that process 0 detected error −102 and an error code of
−2700 indicates that process 2 detected error −700. The value of IPARM(64) will be set to −102 and −2700,
respectively, upon return on all the processes.

Negative Error Codes: A two-digit negative error code indicates an invalid input argument. If an input argument
error is detected, then IPARM(64) is set to a negative integer whose absolute value is the number of the erroneous
input argument. Only minimal input argument checking is performed and a non-negative value of IPARM(64)
does not guarantee that all input arguments have been verified to be correct. An error in the input arguments can
easily go undetected and cause the program to crash or hang.
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A three-digit negative error code indicates a non-numerical run-time error.

If dynamic memory allocation by WSSMP fails, then IPARM(64) is set to −102 on return. This is one of the most
common error codes encountered by the users. Please refer to Section 3.1 if you get this error in your program.

An error code of -103 is sometimes generated for very large matrices if the software encounters an integer over-
flow. Factorization algorithms with static memory allocation (i.e., when IPARM(31) is 5, 6, or 7) are particularly
prone to this error when the size of the factor matrix exceeds 231. On many platforms, a special library lib-
wsmp8 8.a is available. This library uses 8-byte integers and will solve the problem. Please make sure that all
integer parameters that are passed to WSMP routines are of type integer*8 in Fortran or long long in C (either
declared explicitly, or by using the appropriate compiler option to promote all integers to 8-byte size) when using
libwsmp8 8.a.

An output value of −200 in IPARM(64) in the message-passing parallel version indicates that the problem is too
small for the given number of processes and must be attempted on fewer processes. The −200 error code is also
returned if MPI is not initialized before a call to a PWSMP routine.

An error code of −300 is returned if the current operation is invalid because it depends on the successful comple-
tion of another operation, which failed or was not performed by the user. For example, if Cholesky factorization
fails and you call WSMP to perform backsolves after the failed call for factorization, you can expect error −300.

An output value of −700 in IPARM(64) indicates an internal error and should be reported to wsmp@us.ibm.com.
If an error code of −700 is generated during symbolic factorization, then it can often be corrected by setting
IPARM(20) = 1 before ordering. In other words, the error was probably caused because the matrix is not a regular
finite-element type matrix and generates more than expected fill-in for its size.

An error code of −900 is returned if the license is expired, invalid, or missing.

In addition to the above error codes, there are some other negative error codes that can result when out-of-core
computations are used. These are described in Section 6.3.

Positive Error Codes: A positive integer value of IPARM(64) between 1 and N on output indicates that the
coefficient matrix is singular or close enough to singular that factorization cannot proceed beyond IPARM(64)
rows and columns. For LLT factorization, IPARM(64) is the index of the first pivot that was less than or equal
to DPARM(10) before computing the square root for Cholesky factorization. For LDLT factorization without
pivoting, it is the index of the first pivot whose absolute value is less than or equal to DPARM(10). Note that if
C-style (0-based) indexing is used and IPARM(64) > 0, then IPARM(64) is 1 + the index of the bad pivot.

For LDLT factorization with pivoting, a positive error code is returned in IPARM(64) only when IPARM(11) is
set to 0. This denotes that a singularity was encountered. Unlike the factorization without pivoting where the
positive IPARM(64) value points to the location (row/column index) of singularity in the coefficient matrix, for
LDLT factorization with pivoting, the actual positive value returned in IPARM(64) is meaningless.

Note 5.16 Note that in case of an out-of-memory error in the distributed-memory parallel solver, one or more of
the input data arrays may be corrupted.

5.2.15 DPARM (type I, O, M, and R): double precision parameter array

DOUBLE PRECISION DPARM ( 64 )
double dparm[]

The entries DPARM(36) through DPARM(63) are reserved. Unlike IPARM, only a few of the first 35 entries of
DPARM are used. The description of only the relevant entries of DPARM is given below. Note that all reserved entries;
i.e., DPARM(36:63) must contain 0.0.

• DPARM(1) or dparm[0], type O:

Returns the total wall clock time in seconds spent in an WSSMP or PWSSMP call. Since this is the elapsed time,
it can vary depending on the load on the machine and several other factors.
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• DPARM(2) or dparm[1], type O:

Please refer to the description of IPARM(25).

• DPARM(3) or dparm[2], type O:

Please refer to the description of IPARM(25).

• DPARM(4) or dparm[3], type O:

On output, this contains the largest diagonal element encountered in the factorization process (just before the
square root in LLT factorization). For LDLT factorization, DPARM(4) is the diagonal element with the greatest
magnitude. The maximum is taken before the diagonal value is tested for conditions described in the description
of IPARM(10,11) and unless any diagonal entry is replaced by a large value, DPARM(4) = maxi=1,NL(i, i)2 for
LLT factorization and DPARM(4) = D(i) such that D(i) = maxi=1,N |D(i)| for LDLT factorization.

• DPARM(5) or dparm[4], type O:

On output, this contains the smallest diagonal element encountered in the factorization process (just before the
square root in LLT factorization). For LDLT factorization, DPARM(5) is the diagonal element with the smallest
magnitude. The minimum is taken before the diagonal value is tested for conditions described in the description
of IPARM(10,11) and if the factorization proceeds normally without a diagonal entry being replaced, DPARM(5)
= mini=1,NL(i, i)2 for LLT factorization and DPARM(5) = D(i) such that D(i) = mini=1,N |D(i)| for LDLT

factorization.

• DPARM(6) or dparm[5], type I:

DPARM(6) provides a means of performing none or fewer than IPARM(6) steps of iterative refinement if a satis-
factory level of accuracy of the solution has been achieved. Iterative refinement is stopped if IPARM(7) > 0 and
the relative residual norm becomes less than DPARM(6). DPARM(6) is not used if IPARM(7) = 0.

• DPARM(7) or dparm[6], type O:

If a triangular solve or iterative refinement step is performed, then DPARM(7) contains the relative norm of the
residual ‖b − Ax‖/‖b‖ on output. The type of norms used is determined by IPARM(7). If NRHS > 1, then this
field contains the maximum of the relative residual norms amongst the NRHS right-hand side vectors.

In the message-passing parallel version, the relative residual norm is not computed and iterative refinement is not
performed if NRHS > 20. So if more than 20 solutions are required with iterative refinement or relative residual
norm computation, then these must be performed in batches of at most 20 each.

• DPARM(10) or dparm[9], type I:

For factorization without diagonal pivoting, the input in DPARM(10) serves as the lower threshold on value of
a good diagonal value. If a pivot value is less than or equal to DPARM(10), then either an error is flagged or
corrective action is taken as specified by IPARM(11). DPARM(10) must be non-negative. In case of LDLT

factorization without pivoting, DPARM(10) is treated as the lower threshold on the absolute value of a good pivot.
Please refer to the description of IPARM(11) for more details.

For LDLT factorization with pivoting, the input in DPARM(10) is used as the threshold for determining if a
matrix is singular. If a leading row or column is encountered in the unfactored part of the matrix such that all its
entries are less than or equal to DPARM(10), then the matrix is deemed singular and this condition is reported in
IPARM(64). The default value of DPARM(10) is 10−18. The default value of DPARM(10) is appropriate only if
the matrix is scaled. If the matrix is not scaled, then the user must specify an appropriate threshold in DPARM(10)
to detect singularity.

DPARM(10) is accessed at the time of ordering and it is important to set it to the desired value before ordering.
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• DPARM(11) or dparm[10], type I:

For LDLT factorization with diagonal pivoting, DPARM(11) is the pivoting threshold used in the Bunch-
Kaufman [2] algorithm. A value greater than 0.64 for DPARM(11) is not recommended, and in practice, much
smaller values usually work quite well. A smaller value of DPARM(11) reduces the time and memory requirement
of factorization, but also reduces the numerical stability and the accuracy of the solution. Often, some or most of
this loss of accuracy can be recovered with a few steps of iterative refinement. The default value of DPARM(11)
is 0.001.

DPARM(11) is accessed at the time of ordering and it is important to set it to the desired value before ordering.
DPARM(11) is not accessed when either LLT factorization or LDLT factorization without pivoting are chosen.

• DPARM(12) or dparm[11], type M:

DPARM(12) is also used to provide user some control over pivoting. See the description of IPARM(12) for more
details. DPARM(12) must be non-negative. DPARM(12) is ignored if LDLT factorization is performed with
pivoting.

• DPARM(13) or dparm[12], type O:

After symbolic factorization, DPARM(13) contains the number of supernodes detected. A small number of su-
pernodes relative to the size of the coefficient matrix indicates larger supernodes and hence, higher potential
performance in the numerical steps.

• DPARM(15) or dparm[14], type M:

DPARM(15) is accessed by WSSMP during the numerical LDLT factorization phase with pivoting; i.e., when
IPARM(31) is 2 or 3. Typically, for a sequence of matrices with the same structure but changing values, ordering
and symbolic factorization steps are performed only once, followed by repeated factorization and solve steps. For
LDLT factorization with pivoting, however, ordering is partly based on the numerical values in the coefficient
matrix. As the coefficient matrix values change, the ordering may become outdated and may need to be recom-
puted for optimum overall performance. If DPARM(15) is set to 1.0 while refactoring a matrix (i.e., IPARM(2) is
3) for which ordering and symbolic factorization has already been computed, then the ordering is refreshed based
on the current values in the coefficient matrix.

The default value of DPARM(15) is 0.0 and when an input of 1.0 is supplied to trigger an update of the ordering
for the new values, it is reset to 0.0 on output.

Refreshing the ordering can be costly and must be performed judiciously. Refreshing the ordering too frequently
can degrade the overall performance. In many applications, the ordering never needs to be refreshed. The use of
DPARM(15) is recommended for advanced user only. Typically, determining when to refresh the ordering requires
careful tracking of factorization memory or time and solution error. Alternatively, a user may experiment with
fixed intervals for refreshing the ordering (say, every 10 or 20 factorization steps) and choose the best for their
application.

Note that, while using IPARM(2) = 3 and DPARM(15) = 1.0 is semantically equivalent to using IPARM(2) = 1
and DPARM(15) = 0.0, the first option is faster and involves less recomputation than the second option.

• DPARM(21) or dparm[20], type I:

Please refer to the description of IPARM(11). the default value of DPARM(21) is 10200. DPARM(21) must be
non-negative.

DPARM(21) is ignored if LDLT factorization is performed with pivoting.

• DPARM(22) or dparm[21], type I:

Please refer to the description of IPARM(12). If DPARM(22) is being used; i.e., if IPARM(12) = 1, then it is the
user’s responsibility to initialize DPARM(22) with a valid positive double precision value. DPARM(22) must be
non-negative.
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DPARM(22) is ignored if LDLT factorization is performed with pivoting.

• DPARM(23) or dparm[22], type O:

After the symbolic factorization phase, DPARM(23) is the same DPARM(24); i.e., it contains the expected number
of floating point operations required for factorization. After the numerical factorization phase, DPARM(23) is
updated to contain the actual number of floating point operations performed during factorization. For factorization
without pivoting, this is the same as DPARM(24), but is usually higher for LDLT factorization with diagonal
pivoting.

• DPARM(24) or dparm[23], type O:

After the symbolic factorization phase, DPARM(24) contains the expected number of floating point operations
required for factorization.

• DPARM(64) or dparm[63], type O:

If IPARM(11) = 0, then DPARM(64) contains the value of the first pivot (if any) encountered that was less than or
equal to DPARM(11).

6 The Out-of-Core Solver: Using Secondary Storage
WSMP’s Cholesky and LDL’ factorization functions (and the corresponding solve phases) without pivoting can be
performed out-of-core using secondary storage for matrices whose factorization requires more memory than what is
available to the process. The out-of-core (OOC) functionality can be used only if IPARM(31) is 0 or 1, and is not
available in distributed memory. The OOC functionality is also not available through the simple interface described
in Section 7. In other words, OOC functionality can be used with the WSSMP routine (Section 5) only, and only if
IPARM(31) is 0 or 1.

The OOC functionality can be triggered by setting IPARM(36) to 1 or 2. If IPARM(36) is 0, then an in-core factor-
ization is attempted, which could result in error -102 in IPARM(64) upon return if memory is insufficient. If IPARM(36)
is 1, then an OOC factorization is attempted. If IPARM(36) is 2, then WSSMP decides whether to perform the factor-
ization in-core or out-of-core, based on the amount of in-core memory available and the expected size of the factors.
If IPARM(36) is 2, then it is set to 0 or 1 after the symbolic factorization phase to indicate whether the numerical
factorization will be performed in-core or out-of-core.

In addition to IPARM(36), two mandatory environment variables, namely WOOCDIR0 and WINCOREMEM must
be set for WSSMP to perform OOC factorization. These, and some other optional environment variables related to OOC
factorization are summarized in Section 6.1 below. In addition to these environment variables, it is extremely important
to set certain system parameters appropriately for the OOC functionality of WSMP to work effectively. Setting these
may require root privileges. These are described in Section 6.2.

6.1 Environment Variables for OOC Computation

1. WOOCDIR0:

WSSMP needs to know the path to the directories in which it can store the factor and temporary arrays during
factorization. If IPARM(36) is nonzero, then WOOCDIR0 is a mandatory environment variable that must be set to
the location where WSSMP can create temporary files when running in out-of-core mode. If WOOCDIR0 is not
set, or if WSSMP is unable to open files in the directory specified by WOOCDIR0, then error −502 is returned in
IPARM(64).

WSSMP can use up to 8 different directories among which to distribute the temporary files. This can be useful if a
single location does not have a free space. Moreover, if the machine has multiple secondary storage devices, then
using all of them may improve performance. Additional locations are specified by setting environment variables
WOOCDIR1, WOOCDIR2, . . ., WOOCDIR7. Note that WOOCDIR0 is mandatory, but WOOCDIRk, 1 ≤ k ≤ 7
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are optional. The first k + 1 locations are used if WOOCDIR0 . . . WOOCDIRk are set for all m, 0 ≤ m ≤ k and
k < 8.

2. WINCOREMEM:

This is another environment variable that is mandatory if IPARM(36) is nonzero. WINCOREMEM is used to indi-
cate to WSSMP roughly how much in-core memory in megabytes it is allowed to use. If the sum of all bookkeeping
and factorization memory requirement exceeds WINCOREMEM megabytes, then WSSMP uses secondary storage
to supplement the in-core memory.

Note that while setting WINCOREMEM, the user must take into account the total memory available on the ma-
chine, whether or not other processes are using part of that memory, the amount of memory used by the user’s
application outside WSMP, and the fact that some memory will inevitably be unused due to fragmentation. While
larger in-core memory, in general, improves performance, the user must be careful to not set WINCOREMEM to a
value that results in paging/swapping. A process that performs automatic paging/swapping will run considerably
slower than one in which WSMP explicitly orchestrates writes and reads to secondary storage.

If IPARM(36) is nonzero and WINCOREMEM is not set, then error −501 will be returned in IPARM(64).

3. WMAXOOCFILESIZE:

This is an optional environment variable that indicates that maximum size, in megabytes, of a single out-of-core
file. The default size is 1024 MB.

4. WMINWRTBLK:

This is an optional environment variable that can be used to specify the minimum size, in megabytes, of the block
for write operations of factor data to secondary storage. By default, the factor is written to secondary storage
in blocks of at least 8 MB (equivalent to WMINWRTBLK set to 8); i.e., write operations with smaller data are
consolidated.

5. WOOCTASKCCSIZE:

This is an optional environment variable that can be used to specify the size, in megabytes, of task-private storage
of contribution blocks. The default size is 16 MB (equivalent to WOOCTASKCCSIZE set to 16). Please refer to
the technical paper [1] on WSMP’s OOC solver for more details on task-private storage. The user may try to tune
it for the best performance for the application and hardware combination.

6. WFACTORMINMEM:

This is an optional environment variable that can be used to specify the target minimum percentage of in-core
memory that will be used to store the factor. If space to store the factor drops below a certain percentage of in-
core memory, then WSMP employs a technique called ”pushing down of parallelism” in an attempt to store more
of the factor data in memory [1]. Excessive pushing down of parallelism can reduce concurrency. The default
value is 70% (corresponding to a setting of 70 for WFACTORMINMEM). The user may try to tune it for the best
performance for the application and hardware combination.

7. WLPREFIX and WUPREFIX:

WSMP uses the default prefix wsmp tmp scratch for the files that store factor (L) and update (U) matrices. The
user can change the default prefixes for L and U matrices by setting the WLPREFIX and WUPREFIX environment
variables, respectively.

The purpose of these prefixes is to make these files readily identifiable as temporary files that are useful only while
the process that created them is active. In fact, the process id itself is also a part of the file names. WSMP deletes
the temporary files when these are no longer needed. However, if the process terminates abnormally or is killed
by the user, then the temporary files are not deleted. The user will then need to delete the leftover files manually.
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6.2 System Settings for OOC Computation

Modern operating systems are generally set up to use main memory as a cache for the secondary storage when possible.
To some extent, this is useful for OOC solvers as it prevents excessive disk access, which can be costly. However,
beyond a point, this can interfere with the careful management of the primary and secondary storage that WSMP’s OOC
solver incorporates. One of the reasons is that when some data is scheduled to be written on to secondary storage, the
OS generally does not have knowledge of the future use of this data. As a result, it may cache some persistent data and
may expel transient data to secondary storage. This can result in a large performance degradation. In order to avoid this
performance degradation, certain system settings must be changed from their default values. Changing these settings
may require root privileges (by logging in as root or through sudo). We describe the changes for AIX and Linux below;
similar changes may be required on other systems as well.

6.2.1 Linux

On Linux systems, the file /proc/sys/vm/swappiness must be edited to contain a 0. With root privilege, this can be
accomplished by the following command:
% echo 0 > /proc/sys/vm/swappiness

Note that the user may want to back the original file up to restore swappiness to its original value when the machine
is not being used to the run the OOC solver.

6.2.2 AIX

On an AIX system, the user can use the smitty utility with root privileges to change the value of minperm to 3, maxperm
to 5, maxclient to 5, strict maxperm to 1, and lru file repage to 1. These can be accessed by successively choosing the
following from the smitty menu: (1) Performance & Resource Scheduling, (2) Tuning Kernel & Network Parameter,
(3) Tuning Virtual Memory Manager, File System and Logical Volume Manager Params, (4) Change / Show Current
Parameters.

The user may want to restore these to the original values when the machine is not being used to the run the OOC
solver.

6.3 Possible Errors During OOC Computation

In addition to the possible error codes described in Section 5.2.14 that can be returned in IPARM(64), there are some
errors that are exclusive to OOC computation. Failure to set environment variables WINCOREMEM and WOOCDIR0,
when IPARM(36) is 1 or 2, may result in errors −501 and −502, respectively. Error −503 results due to a failure to
write to secondary storage, most likely due to the storage device being full. Error −504 is returned in IPARM(64) if the
value of WINCOREMEM is insufficient for the given coefficient matrix.

7 Subroutines Providing a Simpler Serial/Multithreaded Interface
In this section, we describe a simpler interface to WSSMP. This interface accepts the input in both CSR/CSC and
MSR/MSC formats and expects a Fortran-style indexing starting from 1. The shape, size, attributes, and meaning of all
data structures is the same as in the calling sequence of the WSSMP routine described in Section 5, unless mentioned
otherwise. The WSMP home page contains an example driver program wssmp ex2.f that uses the simple interface. The
calling sequences of these subroutines are described below.

Note 7.1 The calls to the WSSMP/PWSSMP routines should not be mixed with those to the routines in the simple
interface described in this section and in Section 9. The user must choose to use either the WSSMP/PWSSMP routines
or the simple interface for a given application, and stick to the chosen interface.
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Note 7.2 The simple interface routines perform factorization with static data allocation. Please refer to the description
of IPARM(31) and Table 2 for more details. If you wish to perform factorization with dynamic memory allocation, which
may be more suitable in certain circumstances, please use the WSSMP routine.

7.1 WMMRB, WKKTORD, WN1ORD (ordering)

WMMRB ( N, XADJ, ADJNCY, OPTIONS, NUMBERING, PERM, INVP, AUX, NAUX )
void wmmrb ( int *n, int *xadj, int *adjncy, int *options, int *numbering, int *perm, int *invp, int *aux, int *naux )

WKKTORD ( N, XADJ, ADJNCY, OPTIONS, NUMBERING, PERM, INVP, AUX, NAUX )
void wkktord ( int *n, int *xadj, int *adjncy, int *options, int *numbering, int *perm, int *invp, int *aux, int *naux )

WN1ORD ( N, N1, XADJ, ADJNCY, OPTIONS, NUMBERING, PERM, INVP, AUX, NAUX )
void wn1ord ( int *n, int *n1, int *xadj, int *adjncy, int *options, int *numbering, int *perm, int *invp, int *aux, int
*naux )

WMMRB is the main ordering routine whose calling sequence is described below in detail. The WKKTORD routine
has exactly the same calling sequence as WMMRB and should be used for ordering the systems in which the coefficient
matrix K takes the following form:

K =

(
D1 MT

M D2

)
,

where M is an n×m sparse matrix, D1 is an m×m diagonal matrix, D2 is an n×n diagonal matrix, and n+m = N .
The routine WN1ORD is also similar to WMMRB, except that WN1ORD has an extra parameter N1, where 0 ≤ N1
≤ N . Any permutation generated by WN1ORD is such that the first N1 columns of the matrix are factored before the
remaining N− N1 columns. N1 is ignored if it is less than or equal to 0 or greater than or equal to N . The routine
WN1ORD is useful for ordering indefinite systems that have zero or near-zero values on the diagonal of the coefficient
matrix. To ensure the completion of the LDLT algorithm, the rows and columns with zero diagonal entries must be
placed at the end of the matrix. By ordering these N −N1 rows and columns in the end, the user ensures (unless there
is numerical cancellation) that these diagonal entries have become nonzero by the time they are factored.

7.1.1 N, (type I): matrix dimension

INTEGER N
int *n

This is the number of rows and columns in the sparse matrix A or the number of equations in the sparse linear system
AX = B.

7.1.2 XADJ, (type I): pointers into adjacency list

INTEGER XADJ (NUMBERING : N + NUMBERING)
int *xadj

XADJ(I) points to the starting location in ADJNCY of the indices of the vertices adjacent to vertex I in the undirected
graph corresponding to the sparse matrix being ordered. The vertices adjacent to vertex I+1 must be stored immediately
after the vertices adjacent to vertex I in ADJNCY. Thus, XADJ(I+1) - XADJ(I) is the degree of vertex I in the graph.

7.1.3 ADJNCY, (type I): adjacency list

INTEGER ADJNCY(NUMBERING:XADJ(N+NUMBERING)-1)
int *adjncy



c©IBM Corporation 1997, 2021. All Rights Reserved. 35

ADJNCY contains the adjacency list of the graph. The vertices adjacent to vertex I+1 must be stored immediately
after the vertices adjacent to vertex I.

Note that XADJ and ADJNCY are different from IA and JA in that a vertex is not considered adjacent to itself and
therefore I is not included in ADJNCY(XADJ(I):XADJ(i+1)-1). On the other hand, all diagonal entries must be non-zero;
therefore, I must be included in JA(IA(I):IA(I+1)-1) in the CSR/CSC format (IPARM(4) = 0). Moreover, the adjacency
list for a vertex I must contain all neighbors of I or all entries in row/column I of the matrix except I itself. In contrast,
the index list stored in JA corresponding to row/column I contains only those indices of row/column I that are greater
than or equal to I .

7.1.4 OPTIONS, (type I): ordering options

INTEGER OPTIONS(1:5)
int *options

OPTIONS is an integer array of size 5 that is used to pass various optional parameters to WMMRB. Note that when
WSSMP or PWSSMP is used for ordering, the meaning of IPARM(16:20) is the same as that of OPTIONS(1:5). The
only exception is OPTIONS(4), which also serves as an output for indicating the status of the call to WMMRB. In case
of WSSMP/PWSSMP, IPARM(19) is a pure input argument. On output, a −102 in OPTIONS(4) indicates that dynamic
memory allocation failed (see Section 3.1), a−101 indicates that NAUX was not large enough (if it was nonzero), a−100

indicates that ordering completed, but ADJNCY was overwritten due to shortage of space, and any other negative integer
-k indicates that an error was detected in the k-th input argument. If none of the above events occur, then OPTIONS(4)
is unchanged.

Note 7.3 Note that WSSMP, by default, passes (1,0,1,0,0) in OPTIONS to WMMRB (Table 1, Section 5.2). This should
not be confused with the fact that the default values of (0,0,0,0) are used for OPTIONS(2:4) if OPTIONS(1) is 0 in the
three ordering routines described in this section.

Note 7.4 OPTIONS(4) is used to output an error condition (if one arises) only in a direct call to WMMRB. In WSSMP,
IPARM(19) is always unchanged and only IPARM(64) is used to flag all errors, including the ones detected in the
ordering phase.

• OPTIONS(1) or options[0], type I:

If OPTIONS(1) is -1, the ordering is not performed and the original ordering of rows and columns is returned in
PERM and INVP. If OPTIONS(1) is -2, then reverse Cuthill-McKee ordering [6] is performed. If OPTIONS(1) is
a nonnegative integer, then a graph-partitioning based ordering [8] is performed.

If OPTIONS(1) = 0, then all default options are used and speed of 3 is chosen (see below for description of speed).
If OPTIONS(1) = 1, 2, or 3, then the options described below are used instead of the defaults. In addition, the
ordering speed and quality is determined by the integer value (speed) in OPTIONS(1). Speed = 1 results in the
slowest but best ordering, speed = 3 results in fastest but worst ordering, and speed = 2 makes WMMRB work at
moderate speed and generate an ordering of intermediate quality.

• OPTIONS(2) or options[1], type I:

By default, WMMRB uses graph-partitioning based ordering algorithms [8] to minimize fill during factorization.
OPTIONS(2) specifies the minimum number of nodes that a subgraph must have before it is ordered by using a
minimum local fill algorithm without further subpartition. The user can obtain a pure minimum local fill ordering
by specifying OPTIONS(2) greater than N. A value of 0 in this field lets WMMRB chose its own default. Typically,
it is best to use the default, but advanced users may experiment with this parameter to find out what best suits
their application. Sometimes a value larger than the default, which is between 50 and 200, may result in a faster
ordering without a big compromise in quality. The default value for this element of OPTIONS is 0.
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• OPTIONS(3) or options[2], type I:
The default value of 0 in OPTIONS(3) has no effect. OPTIONS(3) = 1 forces WMMRB to compute a minimum
local fill ordering in addition to the ordering based on recursive graph bisection. It then computes the amount of
fill-in that each ordering would generate in Cholesky factorization and returns the permutation corresponding to
the better ordering. The use of this option increases the ordering time (in most cases the increase is not significant),
but is very useful when one ordering is used for multiple factorizations. Note that this option forces WMMRB to
produce the best ordering it can with the resources available to it. If graph partitioning fails due to lack of memory,
it still returns the minimum local fill ordering.

• OPTIONS(4) or options[3], type I or M:
On input, OPTIONS(4) contains a random number seed. One can use different values of the seed to force WMMRB
to generate a different initial permutation of the graph. This is useful if one needs to generate a few different
orderings of the same sparse matrix (perhaps to chose the best) without having to change the input.

• OPTIONS(5) or options[4], type I:
The input OPTIONS(5) lets the user communicate some known characteristics of the sparse matrix to WMMRB to
aid it in choosing appropriate values of some internal parameters and to chose appropriate algorithms in various
stages of ordering. If the user has no information about the type of sparse matrix or if the matrix does not fall into
one of the following categories, then the default value 0 should be used.

Certain sparse matrices have a few rows/columns that are much denser than most of the rows/columns. Most
sparse matrices used in interior-point problems in linear programming fall in this category. For such matrices, the
integer value supplied in OPTIONS(5) should be 1 or 3. This instructs WMMRB to split the graph based on the
high degree nodes before proceeding with the ordering.

Sometimes, sparse matrices arise from finite-element graphs in which many or most vertices have more than one
degree of freedom. In such graphs, there are a many small groups of nodes that share the same adjacency structure.
If the sparse matrix comes from a problem like this, then a value of 2 or 3 should be used in OPTIONS(5). This
instructs WMMRB to construct a compressed graph before proceeding with the ordering.

To summarize, OPTIONS(5) should contain 0 for default, 1 for a preprocessing based on high degree nodes, 2 for
preprocessing the graph to compress it, and 3 if both of the above preprocessing steps are desired. Preprocessing
the high degree nodes may result in an improvement in the quality of ordering (if the matrix is suitable for this), and
preprocessing for compression may result in a much faster ordering if there are significant (enough to compensate
for the time spent in performing compression) number of nodes with identical adjacencies.

7.1.5 NUMBERING, (type I): indexing options

INTEGER NUMBERING
int *numbering

This is same as IPARM(11) described in Section 5.2.14.

7.1.6 PERM, (type O): permutation vector

INTEGER PERM ( N )
int *perm

The description is the same as in Section 5.2.6.

7.1.7 INVP, (type O): inverse permutation vector

INTEGER INVP ( N )
int *invp

The description is the same as in Section 5.2.7.
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7.1.8 AUX, (type O, I, or T): auxiliary storage

INTEGER AUX ( NAUX )
int *aux

AUX is temporary integer workspace, which is used only if NAUX > 0. The user has the option of having the
WMMRB routines allocate memory dynamically by specifying NAUX = 0, or by supplying an integer array AUX of size
NAUX > 0 and having the WMMRB routines use AUX as the work space. The exact value of NAUX required is data
dependents, but roughly, for WMMRB with not too irregular graphs, 30×N + 6×E + 30000 should be sufficient. The
memory requirement can be a lot less if compression is opted for and is achieved.

In general, using NAUX = 0 is somewhat more robust (especially for ordering LP matrices) because memory require-
ment is problem dependent and may exceed the above estimates. However, if the calling program has already allocated
a large amount of memory which is unused at the time of ordering, it may be worthwhile to pass that in to WMMRB for
its temporary use because additional memory allocation by WMMRB may fail under such circumstances.

The quality and the run time of ordering are affected by the amount of memory available.

7.1.9 NAUX, (type I): size of user supplied auxiliary storage

INTEGER NAUX
int *naux

If NAUX = 0, then AUX is NULL and WMMRB performs dynamic memory allocation. A positive integer value in
NAUX forces WMMRB to use the first NAUX integer locations of AUX for its memory requirements.

7.2 WSCSYM (symbolic, CSR input) and WSMSYM (symbolic, MSR input)

WSCSYM ( N, IA, JA, PERM, INVP, NNZL, WSPACE, INFO )
void wscsym ( int *n, int *ia, int *ja, int *perm, int *invp, int *nnzl, int *wspace, int *info )

WSMSYM ( N, IA, JA, PERM, INVP, NNZL, WSPACE, INFO )
void wsmsym ( int *n, int *ia, int *ja, int *perm, int *invp, int *nnzl, int *wspace, int *info )

These routines perform symbolic factorization only and uses the input permutation given by PERM and INVP. On
output, the integer NNZL contains the number of nonzeros in the Cholesky factor in thousands and the integer WSPACE
contains the number of double words of memory required by Cholesky factorization in thousands, including the storage
for the Cholesky factor. The description of the output INFO is the same is that of IPARM(64) in the calling sequence of
the WSSMP routine described in Section 5.2.14.

7.3 WSCALZ (analyze, CSR input) and WSMALZ (analyze, MSR input)

WSCALZ ( N, IA, JA, OPTIONS, PERM, INVP, NNZL, WSPACE, AUX, NAUX, INFO )
void wscalz ( int *n, int *ia, int *ja, int *options, int *perm, int *invp, int *nnzl, int *wspace, int *aux, int *naux, int
*info )

void WSMALZ ( N, IA, JA, OPTIONS, PERM, INVP, NNZL, WSPACE, AUX, NAUX, INFO )
void wsmalz ( int *n, int *ia, int *ja, int *options, int *perm, int *invp, int *nnzl, int *wspace, int *aux, int *naux, int
*info )

These routines perform both ordering and symbolic factorization; i.e., all the preprocessing that is required prior to
numerical factorization. After the completions of this preprocessing (also known as the analyze phase) any number of
calls to numerical factorization, solve, and iterative refinement routines can be made as long as the nonzero structure of
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the coefficient matrices does not change. The description of OPTIONS, AUX, and NAUX inputs is the same as in the
calling sequence of WMMRB (Section 7.1). Note that NAUX for this routine is the number of integers that AUX can
hold.

On output, the integer NNZL contains the number of nonzeros in thousands in the Cholesky factor and the integer
WSPACE contains the number of double words of memory required by Cholesky factorization in thousands, including
the storage for the Cholesky factor.

The PERM and INVP outputs of this routine must be passed to all subsequent factorization and solves. This routine
needs to be called only once for any number of factorizations and solves, as long as the location of nonzeros in the input
matrix remains the same.

The description of the output INFO is the same is that of IPARM(64) in the calling sequence of the WSSMP routine
described in Section 5.2.14.

7.4 WSCCHF (Cholesky, CSR input) and WSMCHF (Cholesky, MSR input)

WSCCHF ( N, IA, JA, AVALS, PERM, INVP, INFO )
void wsschf ( int *n, int *ia, int *ja, double *avals, int *perm, int *invp, int *info )

WSMCHF ( N, IA, JA, AVALS, DIAG, PERM, INVP, INFO )
void wsmchf ( int *n, int *ia, int *ja, double *avals, double *diag, int *perm, int *invp, int *info )

These routines perform LLT factorization, assume that the input matrix is not permuted, and use the permutation
given by PERM and INVP for factorization. The input NAUX, which specifies the size of double precision work array
AUX, should either be zero, or at least as large as the output WSPACE of the analyze or symbolic routines, either of
which must be called before a WSxCHF routine. The description of the output INFO is the same is that of IPARM(64)
in the calling sequence of the WSSMP routine described in Section 5.2.14.

7.5 WSCLDL and WSMLDL (LDLT factorization, CSR and MSR inputs)

WSCLDL ( N, IA, JA, AVALS, PERM, INVP, INFO )
void wscldl ( int *n, int *ia, int *ja, double *avals, int *perm, int *invp, int *info )

WSMLDL ( N, IA, JA, AVALS, DIAG, PERM, INVP, INFO )
void wsmldl ( int *n, int *ia, int *ja, double *avals, double *diag, int *perm, int *invp, int *info )

These routines perform LDLT factorization without pivoting, assume that the input matrix is not permuted, and use
the permutation given by PERM and INVP for factorization. WSPACE of the analyze or symbolic routines, either of
which must be called before a WSxLDL routine. Note that LDLT factorization with Bunch-Kaufman pivoting is not
available via the simple interface, and the WSSMP routine must be used for that.

If NAUX is 0, then the factor matrix is stored internally, else it is stored in AUX. In the latter case, the AUX array
must be passed unaltered to any subsequent back-substitution and iterative refinement calls.

The description of the output INFO is the same is that of IPARM(64) in the calling sequence of the WSSMP routine
described in Section 5.2.14.

7.6 WSCSVX and WSMSVX (expert drivers with CSR and MSR inputs)

WSCSVX ( N, IA, JA, AVALS, PERM, INVP, B, LDB, NRHS, RCOND, INFO )
void wscsvx ( int *n, int *ia, int *ja, double *avals, int *perm, int *invp, double *b, double *ldb, int *nrhs, double
*rcond, int *info )
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WSMSVX ( N, IA, JA, AVALS, DIAG, PERM, INVP, B, LDB, NRHS, RCOND, INFO )
void wsmsvx ( int *n, int *ia, int *ja, double *avals, double *diag, int *perm, int *invp, double *b, double *ldb, int
*nrhs, double *rcond, int *info )

These routines perform LDLT factorization without pivoting, triangular and diagonal solutions, and iterative re-
finement. A call to the appropriate WSxSYM or WSxALZ routine must precede the call to a WSxSVX routine. PERM
and INVP inputs determine the permutation of the input matrix that is used. The input matrix and B are assumed to be
unpermuted and the output B is in the same order as the input. Note that LDLT factorization with Bunch-Kaufman
pivoting is not available via the simple interface, and the WSSMP routine must be used for that.

Upon return, RCOND is the inverse of the condition number estimate of the input matrix. The description of the
output INFO is the same is that of IPARM(64) in the calling sequence of the WSSMP routine described in Section 5.2.14.

7.7 WSSLV (solve a system using a prior factorization)

WSSLV ( N, PERM, INVP, B, LDB, NRHS, NITER )
void wsslv ( int *n, int *perm, int *invp, double *b, double *ldb, int *nrhs, int *niter )

The routine WSSLV solves a system of equations with right-hand side B, using a prior factorization by a call to a
WSxCHF, WSxLDL, or a WSxSVX routine. NITER is an input integer that specifies the number of iterative refinement
steps to be performed. If NITER is 0, iterative refinement is not performed.

8 The Primary Message-Passing Parallel Subroutine: PWSSMP

The calling sequence for the parallel routine PWSSMP is identical to that of the serial/multithreaded routine WSSMP
and the arguments have similar meanings. However, certain distinctions need to be made and the sizes of the arrays may
need to be redefined. These distinctions are detailed in the following subsections.

8.1 Parallel modes and data distribution

The parallel routine PWSSMP described in this section and the routines described later in Section 9 work in two modes;
we shall call them the 0-master mode and the peer mode. In the 0-master mode, all data including the entire matrix A

and right-hand side B initially reside on process 0; henceforth referred to as P0. In general, if the program is running
on p MPI processes, we shall name the processes P0, P1, . . . , Pp−1. In the peer mode, the initial data is distributed
among the processes. In general, Pi initially owns Ni columns of the matrix A and also Ni positions of the right-
hand side B. The dimension of the system of equations is N = Σp−1

i=0Ni. In the 0-master mode, N = N0 and
N1 = N2 = · · · = Np−1 = 0. In the peer mode, N > N0. There is no restriction on the relative amount of data on any
of the processes in the peer mode and the entire matrix A residing on a single process other than P0 is a valid special
case of the peer mode. In summary, the parallel solver is in 0-master mode iff N = N0 and in peer mode iff N > N0.

Figure 2 illustrates the input data structures for the matrix A in the peer mode for p = 3, N0 = 3, N1 = 2, and
N2 = 4 for the matrix shown in Figure 1 earlier. Note that in the 0-master mode, process 0 calls the message-passing
parallel routine PWSSMP exactly the way it would call the serial/multithreaded routine and all the other processes call
PWSSMP with Ni = 0. Therefore, the illustration of CSC-LT and MSC-LT (see Sections 5.1 and 5.2.2–5 for more
details) in Figure 1 for the serial/multithreaded version is valid for the 0-master mode in the parallel version.

The example program in pwssmp ex1.f at the WSMP home page illustrates the use of the PWSSMP subroutine in
0-master mode for the matrix shown in Figure 1. The example program in pwssmp ex3.f at the WSMP home page shows
the use of PWSSMP in the peer mode for the distribution shown in Figure 2.

As shown in Figure 2, in the default peer mode, consecutive processes must contain consecutive portions of the
matrix A (and also the right-hand side B). In other words, under default conditions, if l is the last column on process Pi,
then the first column on process Pi+1 must be l+ 1. In addition, the indices and the values corresponding to consecutive
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is shown in the table.

input formats accepted by PWSSMP

A 9 X 9 symmetric sparse matrix.

A possible peer−mode distribution

and the storage of this matrix in the

CSC-LT Format MSC-LT Format
Node# K IA(K) JA(K) AVALS(K) K IA(K) JA(K) AVALS(K) DIAG(K)

1 1 1 14.0 1 1 3 -1.0 14.0
2 5 3 -1.0 2 4 7 -1.0 14.0
3 9 7 -1.0 3 7 8 -3.0 16.0
4 13 8 -3.0 4 10 3 -1.0
5 2 14.0 5 8 -3.0

P0 6 3 -1.0 6 9 -1.0
7 8 -3.0 7 7 -2.0
8 9 -1.0 8 8 -4.0
9 3 16.0 9 9 -2.0

10 7 -2.0
11 8 -4.0
12 9 -2.0

1 1 4 14.0 1 1 6 -1.0 14.0
2 5 6 -1.0 2 4 7 -1.0 14.0
3 9 7 -1.0 3 7 8 -3.0

P1 4 8 -3.0 4 6 -1.0
5 5 14.0 5 8 -3.0
6 6 -1.0 6 9 -1.0
7 8 -3.0
8 9 -1.0

1 1 6 16.0 1 1 7 -2.0 16.0
2 5 7 -2.0 2 4 8 -4.0 16.0
3 7 8 -4.0 3 5 9 -2.0 71.0
4 9 9 -2.0 4 6 8 -4.0 16.0

P2 5 10 7 16.0 5 6 9 -4.0
6 8 -4.0
7 8 71.0
8 9 -4.0
9 9 16.0

Figure 2: A sample distribution of the matrix in the two input formats for the peer mode of the message-passing parallel
version.

columns must appear in consecutive order, just as in the serial/multithreaded version or the 0-master mode of the parallel
version. However, in the peer mode, this default restriction can be overcome and any column of the matrix can reside on
any process in any order if the special routine WSETGLOBIND is used. This routine is described in Section 10. Unless
the WSETGLOBIND routine and the peer mode are used the global index of a column k on process Pj is k + Σj−1

i=0Ni

(assuming that the columns are numbered from 1 through N ).

8.2 Calling sequence

The message-passing parallel routine PWSSMP must be called on all the processes. The calling sequence on process Pi

is as follows (0 ≤ i < p):

PWSSMP (Ni, IAi, JAi, AVALSi, DIAGi, PERM, INVP, Bi, LDBi, NRHS, AUXi, NAUXi, MRPi, IPARM, DPARM)

void pwssmp ( int *ni, int iai[], int jai[], double avalsi[], double diagi[], int perm[], int invp[], double bi[], int *ldbi,
int *nrhs, double *auxi, int *nauxi, int mrpi[], int iparm[], double dparm[])
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In the message-passing parallel version, an argument can be either local or global. A global array or variable must
have the same size and contents on all processes. The size and contents of a local variable or array vary among the
processes. In the context of PWSSMP, global does not mean globally shared, but refers to data that is replicated on all
processes. In the above calling sequence, all arguments with a subscript are local.

Following is a brief description of the arguments. A more detailed description can be found in Section 5.2; this sec-
tion is intended to highlight the differences between the serial/multithreaded and the message-passing versions, wherever
applicable.

• Ni: The number of columns/rows of the matrix A and the number of rows of the right-hand side B residing on
process Pi. The total size N of system of equations is Σp−1

i=0Ni, where p is the number of processes being used.

Note that, normally, the distribution chosen for a given matrix, cannot be changed between different phases. In
other words, the Ni’s must remain the same on each process for each call made to PWSSMP in the context of the
same system of equations. The only exception is when IPARM(8) = 1 in the peer mode for Cholesky factorization,
then user is allowed to use a fresh distribution only once before the first Cholesky factorization for a given matrix.
Please refer to the description of IPARM(8) below for more details.

• IAi: Integer array of size Ni + 1. This array provides pointers into the array of indices JA. See Figure 2 for more
details. Note that if Ni = 0, then IAi must be a single integer with a value of 0 (with C-style numbering) or 1 (with
Fortran-style numbering) to be consistent with the definition of IAi.

• JAi: Integer array of size IAi(Ni + IPARM(5)) - IPARM(5) that contains the global row (column) indices of each
column (row) on process Pi. If Ni = 0, then this parameter can be a NULL pointer.

• AVALSi: Double precision array of size IAi(Ni + IPARM(5)) - IPARM(5) that contains the numerical values
corresponding to the indices in JAi. If Ni = 0, then this parameter can be a NULL pointer.

• DIAGi: Double precision array of size Ni (only relevant if IPARM(4) = 1; i.e., MSR/MSC input format is used,
or if IPARM(32) = 1; i.e., the diagonal of the factor is requested as output). If Ni = 0, then this parameter can be
a NULL pointer.

• PERM and INVP: These two integer arrays contain the permutation and the inverse permutation vectors. Unlike
most other parameters of PWSSMP, each process must provide space (N integers) for full PERM and INVP. After
the ordering step, only process P0 returns any meaningful information in PERM and INVP, although space for
N integers must be provided in both PERM and INVP on all processes. The permutation in PERM and INVP
after the ordering step is a valid fill-reducing ordering; however, it is altered during symbolic factorization. At
the end of symbolic factorization, PERM and INVP and filled with a permutation on all processes and this is the
permutation that is used in the remainder of the steps; i.e., Cholesky factorization, triangular solves, and iterative
refinement. Just like in the WSSMP routine, users of PWSSMP need not use the ordering produced by it, but can
supply their own ordering. However, this user-supplied ordering must be the input in PERM and INVP on process
P0 for symbolic factorization and the modified ordering returned on all processes by symbolic factorization is the
one that is actually used. Of course, the final ordering produced by the symbolic factorization phase is strongly
related to the original ordering in PERM and INVP on P0 before symbolic factorization, but it is not identical to
it.

Note 8.1 If ordering and symbolic factorization are performed in different calls, or an external non-WSMP or-
dering is used, then upon exiting from ordering and entering symbolic, the vectors PERM and INVP contain
useful data only on process P0. All processes contain the actual permutation in these vectors only after symbolic
factorization and this permutation is different (but similar in properties) to the permutation on P0 at the beginning
of symbolic factorization.

• Bi, LDBi, and NRHS: B is a double precision array of size LDBi× NRHS, where LDBi ≥ Ni. If Ni = 0, then B

can be a NULL pointer. The number of right-hand sides, NRHS, must be the same on all processes.
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• AUXi and NAUXi:
AUXi and NAUXi are obsolescent and are currently present for backward compatibility only. NAUXi must be set
to 0 on all processes.

• MRPi: Integer array of size Ni used only if IPARM(11) = 2. If Ni = 0, then MRP can be a NULL pointer.

• IPARM and DPARM: The description of IPARM and DPARM is contained in Sections 5.2.14 and 5.2.15, respec-
tively. For the message-passing parallel version, all input parameters in these arrays must be identical on each
process. On output, IPARM(21), IPARM(22), DPARM(4), DPARM(5), DPARM(7), and DPARM(64) are always
identical on all processes. The outputs in IPARM(24), DPARM(23), and DPARM(24) are reported only on P0.
The output IPARM(23) is local to each process. DPARM(2) and DPARM(3), which together report the condition
number estimate in the serial/multithreaded version, always contain 0.0 on output in the message-passing parallel
version because the parallel condition number estimator is not yet implemented.

Similar to the serial version, it is legal for a user to have the input IPARM(8) set to 0 or 2 during ordering and
symbolic factorization and to 1 in the remaining three computational phases. This allows the user to obtain
the permutation (via vectors PERM and INVP) from WSSMP or PWSSMP and generate a permuted matrix for
factorization, solution, and iterative refinement. Often, this is more efficient than feeding in an unpermuted
matrix, especially if the numerical values are being generated repeatedly and the cost of generating a permuted or
unpermuted matrix is more or less the same. In the parallel version, providing a permuted matrix can significantly
improve factorization performance by improving the locality in the input data. If IPARM(8) is 1 for factorization
in the peer mode, then the user is permitted to make the call to PWSSMP with different values of Ni than the ones
used in previous PWSSMP calls for ordering and symbolic factorization. This is because permutation can change
the distribution of the matrix. However, after the first PWSSMP call for factorization, the values of Ni should not
change in any subsequent calls for factorization, triangular solves, or iterative refinement for the same system.
This flexibility of redistributing the matrix does not allow the user to change from 0-master mode to peer mode,
or vice-versa. If you are using the WSETGLOBIND routine (Section 10) to define a distribution of the matrix
among the processes, then you are permitted to make a call to WSETGLOBIND once before the first factorization
to redefine the distribution in the peer mode while using IPARM(8) = 1.

8.3 Some parallel performance issues

Please refer to Section 3 for platform-specific performance issues and for information in setting environment variable
appropriately on each platform.

The message-passing version of the package performs ordering, factorization, solution, and iterative refinement
in parallel. Symbolic factorization, which is the least time-consuming phase, is performed serially on process P0.
Process P0 also bears a disproportionately high workload in the ordering phase compared to the other processes. On
a heterogeneous cluster the performance of the parallel routines will be much better if process P0 has fast cores, high
memory bandwidth, and plentiful RAM. The time spent in ordering and symbolic factorization relative to that in the
numerical computation phases increases as the number of processes increases because the numerical phases have a high
scalability. The users can reduce the ordering and symbolic time at the cost of increased factorization time by carefully
selecting the inputs in IPARM(16), IPARM(17), and IPARM(27). See Sections 5.2.14 and 7.1.4 for details.

Although the message-passing parallel routines can be called on any number of processes with the initial data and the
final results distributed on a subset or all of them, the best performance will be obtained when the number of processes
is a power of 2.

In most cases, using the peer mode with near uniform distribution of the input matrix (not in terms of Ni, but in
terms of the sizes of arrays JAi and AVALSi) will yield much better performance than the 0-master mode. The latter
however, is easier to use and provides a quick way of migrating from a serial to a parallel implementation because of
identical calling sequences. Since process P0 may become a memory and communication bottleneck in the 0-master,
we strongly recommend using PWSSMP in peer mode, especially for a large number of processes (say, 16 or more).

Providing a prepermuted matrix enhances parallel factorization performance and is recommended if the user can
generate the permuted matrix cheaply. Please review the description of Ni and IPARM(8) in Section 8.2 carefully for
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the correct use of this option, especially in the peer mode. Please refer to the description of IPARM(14) for some more
performance/memory issues relevant in the serial version and in the 0-master mode of the parallel version.

9 Parallel Subroutines Providing a Simpler Interface
In this section, we list the routines that provide a simpler interface to PWSSMP. This interface is analogous to the
simple interface to WSSMP described in Section 7. Parallel routines PWSxALZ, PWSxSYM, PWSxCHF, PWSxLDL,
PWSxSVX, and PWSSLV are available to the users, where x is C for the CSR/CSC input format and M for the MSR/MSC
input format. The function and the calling sequence of these routines are identical to the serial/multithreaded routines
WSxALZ, WSxCHF, WSxLDL, WSxSVX, and WSSLV, respectively described in Section 7. The meaning of the various
parameters is the same as in the calling sequence of the PWSSMP routine described in Section 8. A difference between
PWSxSVX and WSxSVX routines is that condition number is not estimated in the parallel routine and the output RCOND
is always zero in PWSxSVX.

The example program in pwssmp ex2.f at the WSMP home page illustrates the use of the simple parallel interface
for the matrix shown in Figure 1.

Note 9.1 The calls to the WSSMP/PWSSMP routines should not be mixed with those to the routines in the simple
interface described here and in Section 7. The user must choose to use either the WSSMP/PWSSMP routines or the
simple interface for a given application, and stick to the chosen interface.

10 Miscellaneous Routines
In this section, we describe some optional routines available to the users for managing memory allocation, data distri-
bution, and some other miscellaneous tasks. Just like other WSMP routines, these can be called from a C program by
passing the arguments by reference (Note 5.4).

Note 10.1 Some routines in this section have underscores in their names, and due to different mangling conventions
followed by different compilers, you may get an “undefined symbol” error while using one of these routines. Placing an
explicit underscore at the end of the routine name usually fixes the problem. For example, if WS SORTINDICES I does
not work, then try using WS SORTINDICES I .

10.1 WS SORTINDICES I ( M, N, IA, JA, INFO) S,T

This routine can be used to sort the row indices of each column or the column indices or each row (depending on the
type of storage) of an M × N sparse matrix. The size of IA is M + 1 and the range of indices in JA is 0 to N − 1

or 1 to N . Only JA is modified upon successful completion, which is indicated by a return value of 0 in INFO. The
descriptions of IA and JA are similar to those in Section 5.2. The description of INFO is similar to that of IPARM(64).

Please read Note 10.1 at the beginning of this section.

10.2 WS SORTINDICES D ( M, N, IA, JA, AVALS, INFO) S,T

This routine is similar to WS SORTINDICES I, except that it also moves the double precision values in AVALS according
to the sorting of indices in JA. The descriptions of IA, JA, and AVALS are similar to those in Section 5.2. The description
of INFO is similar to that of IPARM(64).

Please read Note 10.1 at the beginning of this section.

10.3 WS SORTINDICES Z ( M, N, IA, JA, AVALS, INFO) S,T

This routine is similar to WS SORTINDICES D, except that the values in AVALS are of type double complex.
Please read Note 10.1 at the beginning of this section.
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10.4 WSETMAXTHRDS ( NUMTHRDS )

A call to WSETMAXTHRDS can be used to control the number of threads that WSMP spawns by means of the inte-
ger argument NUMTHRDS. Controlling the number of threads may be useful in many circumstances, as discussed in
Section 3.4. As with all other WSMP functions, when calling from C, a pointer to the integer containing the value of
NUMTHRDS must be passed. The integer value NUMTHRDS is interpreted by WSMP as follows:

If NUMTHRDS > 0, then WSMP uses exactly NUMTHRDS threads. If NUMTHRDS is 0, then WSMP tries to use
as many cores as are available in the hardware. This is the default mode.

Note that if this routine is used, it must be called before the first call to any WSMP or PWSMP computational
routine or the initialization routines (Section 10.10). Once WSMP/PWSMP is initialized, the number of threads cannot
be changed for a given run.

The environment variable WSMP NUM THREADS can also be used to control the number of threads (Section 3.4)
and has precedence over WSETMAXTHRDS.

10.5 WSSYSTEMSCOPE and WSPROCESSSCOPE

A call to WSSYSTEMSCOPE can be used to set the contention scope of threads to PTHREAD SCOPE SYSTEM. Sim-
ilarly, WSPROCESSSCOPE can be called to set the contention scope of threads to PTHREAD SCOPE PROCESS.
If these routines are used, they must be called before the first call to any WSMP or PWSMP computational
routine or the initialization routines (Section 10.10). Currently, the default contention scope of the threads is
PTHREAD SCOPE SYSTEM.

10.6 WSETMAXSTACK ( FSTK )

All threads spawned by WSMP are, by default, assigned a 1 Mbyte stack in 32-bit mode and 4 Mbytes in 64-bit mode.
In rare case, for very large matrices, this may not be enough for one or more threads. The user can increase or decrease
the default stack size by calling WSETMAXSTACK prior to any computational or initialization routine of WSMP. The
double precision input parameter FSTK determines the factor by which the default stack size of each thread is changed;
e.g., if FSTK is 2.d0, then each thread is spawned with a 2 Mbyte stack in 32-bit mode and 8 Mbyte stack in 64-bit
mode. If this routine is used, it must be called before the first call to any WSMP or PWSMP computational routine or the
initialization routines (Section 10.10). In the distributed-memory parallel version, this routine, if used, must be called
by all processes (it is effective on only those processes on which it is called).

Note that this routine does not affect the stack size of the main thread, which, on AIX, can be controlled by the
-bmaxstack option during linking. Also note that when calling from a C program, a pointer to a double precision value
must be passed.

On some systems, the user may need to increase the default system limits for stack size and data size to accommodate
the stack requirements of the threads.

10.7 WSETLF ( DLF )T,P

The WSETLF routine can be used to indicate the load factor of a workstation to WSMP to better manage parallelism and
distribution of work. The double precision input DLF is a value between 0.d0 and 1.d0 (0.0 and 1.0, passed by reference
in C). The default value of zero (which is used if WSETLF is not called) indicates that the entire machine is available to
WSMP; i.e., the load factor of the machine without the application using WSMP is 0. An input value of one indicates
that the machine is fully loaded even without the WSMP application. For example, if a 2-way parallel job is already
running on a 4-CPU machine, then the input DLF should be 0.5 and if four serial, or two 2-way parallel, or one 4-way
parallel job is already running on such a machine, then the input DLF should be 1.0.

If this routine is used, then it must be called before the first call to any WSMP or PWSMP computational routine or
the initialization routines (Section 10.10).
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10.8 WSETNOBIGMAL ()

On most platforms, WSMP attempts to allocate as large a chunk of memory as possible and frees it immediately without
accessing this memory. This gives WSMP an estimate of the amount of memory that it can dynamically allocate, and on
some systems, speeds up the subsequent allocation of many small pieces of memory. However, this sometimes confuses
certain tools for monitoring program resource usage into believing that an extraordinarily large amount of memory was
used by WSMP. This large malloc can be switched off by calling the routine WSETNOBIGMAL before initializing or
calling any computational routine of WSMP or PWSMP.

10.9 WSMP VERSION ( V, R, M )

This routine returns the version, release, and modification number of of the WSMP or PWSMP library being used in the
integer variables V , R, and M , respectively.

Please read Note 10.1 at the beginning of this section.

10.10 WSMP INITIALIZE ()S,T and PWSMP INITIALIZE ()P

These routines are used to initialize WSMP and PWSMP, respectively. Their use is optional, but if used, a call to one
of them must precede any computational routine. However, if any of WSETMAXTHRDS (Section 10.4), WSSYSTEM-
SCOPE, WSPROCESSSCOPE (Section 10.5), WSETMAXSTACK (Section 10.6), WSETLF (Section 10.7), and WSET-
NOBIGMAL (Section 10.8) routines are used, they must be called before WSMP INITIALIZE or PWSMP INITIALIZE.
PWSMP INITIALIZE, if used, must be called on all nodes in the message-passing parallel mode. WSMP and PWSMP
perform self initialization when the first call to any user-callable routine is made.

PWSMP INITIALIZE also performs a global communication using its current communicator, which is
MPI COMM WORLD by default, unless it has been set to something else using the WSETMPICOMM routine. There-
fore, PWSMP INITIALIZE must be called on all the nodes associated with the currently active communicator in
PWSSMP.

Please read Note 10.1 at the beginning of this section.

10.11 WSMP CLEAR ()S,T and PWSMP CLEAR ()P

Both the serial and the parallel versions of the solver have the context stored internally, which enables them to perform
a desired task at any time while using the information from tasks performed earlier, provided that the necessary infor-
mation was generated at least once. For example, several calls to Cholesky factorization, triangular solves, and iterative
refinement can be made with different numerical data (but the same indices) after one step of symbolic factorization.
The solvers are able to perform these operations because they remember the results of the last symbolic factorization.
Similarly, they remember the factor for any number of solves and iterative refinement steps until a new factorization or
symbolic factorization is performed to replace the previously stored information. As a result, the solver routines occupy
storage to remember all the information that might be needed for a future call to perform any legal task. The user can
call a routine WSMP CLEAR() in the serial/multithreaded mode and PWSMP CLEAR() in the message-passing parallel
mode to free this storage if required. Both the routines have no arguments and can also be used with the simple interfaces
described in Sections 7 and 9. After a call to any of these routines, the solver does not remember any context and the next
call must be for performing ordering (or symbolic factorization if the user is providing his/her own PERM and INVP)
to start a new context. All previously stored contexts by using WSTOREMAT or PWSTOREMAT (see Section 10.17), if
any, are also destroyed by a call to WSMP CLEAR() or PWSMP CLEAR().

WSMP CLEAR and PWSMP CLEAR also undo the effects of WSMP INITIALIZE and PWSMP INITIALIZE, re-
spectively.

Please read Note 10.1 at the beginning of this section.
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10.12 WSFFREE ()S,T and PWSFFREE ()P

These routines are relevant only when NAUX = 0 and WSSMP or PWSSMP is using dynamic memory allocation for
factorization.

Many applications perform ordering and symbolic factorizations only once for several iterations of factorization and
solution. WSSMP and PWSSMP allocate memory for factorization on the first call that performs factorization. This
space is not released after factorization or even after subsequent triangular solves because the user can potentially make
further calls for solution with the same factorization. However, the user can free this space by calling WSFFREE ()
in serial and PWSFFREE () in parallel to use this space for tasks requiring memory allocation between factorizations.
Remember, however, that this space will be reallocated in the next call to factorization and can only be temporarily
reclaimed.

The routines WSFFREE () and PWSFFREE () work only in the current context and do not affect the factor storage
of other sparse systems whose contexts may have been stored using WSTOREMAT or PWSTOREMAT routines.

10.13 WSAFREE ()S,T and PWSAFREE ()P

These routines can be called after factorization to free the space occupied by a permuted internal copy of the coefficient
matrix. Please note that if these routines are used, then iterative refinement cannot be performed because the coefficient
matrix is required for computing the residual.

10.14 WSSFREE ()S,T and PWSSFREE ()P

The routines WSFFREE and PWSFFREE described in Sections 10.12 release the memory occupied by the factors of
the coefficient matrix, but retain all other data structures to facilitate subsequent factorizations of matrices of the same
size and nonzero pattern. WSSFREE and PWSSFREE release all the memory allocated by WSMP in the context of
solving symmetric systems via direct factorization. If you need to solve more symmetric systems after call to WSSFREE
or PWSSFREE, then you must start with the ordering or the symbolic factorization (if you are supplying your own
permutation vectors) steps.

10.15 WSSMATVEC (N, IA, JA, AVALS, X, B, IERR)S

This routine multiplies the vector X with the N -dimensional symmetric sparse matrix stored in IA, JA, AVALS (lower
triangular part only in CSC format or upper triangular part only in CSR format) and returns the result in the vector B.
The description of N, IA, JA, and AVALS is the same as in Section 5.2. IERR is equivalent to IPARM(64), described in
Section 8.2.14. Both C and Fortran style numbering convention is supported.

Unlike most other routines that work with double precision data, WSSMATVEC has two versions for double complex
data type. ZSSMATVEC assumes a symmetric matrix and its interface is identical to that of WSSMATVEC, with the
exception that AVALS, X , and B are double complex. An additional routine is provided for Hermitian matrices, whose
interface is described below:

ZHSMATVEC (N, IA, JA, AVALS, X, B, IFMT, IERR)S

ZHSMATVEC treats the triangular matrix in IA, JA, and AVALS as a Hermitian matrix. If the input IFMT is set to 0,
then the triangular matrix is interpreted to be stored in CSR-UT (compressed sparse rows, upper triangular) format, and
the implicit lower triangular portion is assumed to be the conjugate of the input matrix. If the input IFMT is set to 1,
then the triangular matrix is interpreted to be stored in CSC-LT (compressed sparse columns, lower triangular) format,
and the implicit upper triangular portion is assumed to be the conjugate of the input matrix.

Note that WSSMATVEC, ZSSMATVEC, and ZHSMATVEC routines are neither multithreaded, nor optimized for
performance. Multithreaded and optimized sparse matrix-vector multiplication is included in the iterative solver pack-
age [9].
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10.16 PWSSMATVEC (Ni, IAi, JAi, AVALSi, Xi, Bi, IERR)P

This routine multiplies the vector X with the symmetric sparse matrix stored in IA, JA, AVALS (lower triangular part
only in CSC format or upper triangular part only in CSR format) and returns the result in the vector B. Here Ni is the
local number of rows/columns on the Process i and the local number of entries of the distributed vectors X and B stored
on it. The matrix as well as both the vectors are expected to be stored in a distributed fashion, similar to the distribution
illustrated in Figure 2. The description of Ni, IAi, JAi, and AVALSi is the same as in Section 8.2. IERR is equivalent to
IPARM(64), described in Section 8.2.14. Both C and Fortran style numbering convention is supported.

Just like its serial counterpart, PWSSMATVEC has two versions to support double complex data type. PZSSMATVEC
assumes a symmetric matrix and PZHSMATVEC assumes a Hermitian matrix. Note that PZHSMATVEC has the addi-
tional IFMT argument before IERR (see Section 10.15 for details).

10.17 WSTOREMAT (ID, INFO)S,T and PWSTOREMAT (ID, INFO)P

These routines store the current context and assign the tag ID to this context. ID is a user supplied integer input argument
whose value must be in the range 0 . . . 63 (0 . . . 255 in 64-bit mode). The purpose of these routines is to postpone further
processing of the current symmetric sparse system and work on a different system. Since the input ID must lie in the
range 0 . . . 63 (0 . . . 255 in 64-bit mode), at most 64 (256 in 64-bit mode) systems can be stored. INFO is an output
integer argument. INFO = 0 upon return signals a successful return, INFO = -211 indicates that the input ID was not in
the range 0 . . . 63 (0 . . . 255 in 64-bit mode), and INFO = -210 indicates that another context is already stored in the slot
indicated by ID. After a context has been stored, it must be recalled (see Section 10.18) before another context can be
stored with the same ID.

After a successful call to WSTOREMAT or PWSTOREMAT, the current context is destroyed; i.e., either the user
should recall a previously stored context (see Section 10.18), or start a new one with the call to ordering or symbolic
factorization with a valid input in PERM, INVP.

Note 10.2 Before storing a context, it is advisable to call WSFFREE or PWSFFREE (Section 10.14) if the factors of the
current matrix are not going to be used for further solves. Thus only the ordering and symbolic factorization information
of the current context will be stored for future factorization/solves.

10.18 WRECALLMAT (ID, INFO)S,T and PWRECALLMAT (ID, INFO)P

These routines recall the context of a sparse symmetric system that was previously stored using a call to WSTOREMAT
or PWSTOREMAT. The input integer ID must contain the tag of the context to be recalled. A 0 integer output in INFO
indicates a successful return. A return value of -211 in INFO indicates that the input ID was not in the range 0 . . . 63

(0 . . . 255 in 64-bit mode). An output of -210 in INFO indicates that slot ID was empty; i.e., a context was either not
previously stored with the current value of ID or it has already been recalled.

A successful call to WRECALLMAT or PWRECALLMAT destroys the current context and replaces it with the context
previously stored with the tag ID. Moreover, it deallocates the memory where the context with the tag ID was stored.
Once recalled, a context is no longer stored but becomes the current context. If processing must be postponed for the
corresponding system once again, then this context must be stored again with any valid and free ID in the range 0 . . . 63

(0 . . . 255 in 64-bit mode).

10.19 WSETMPICOMM ( INPCOMM )P

The message-passing parallel library PWSMP uses MPI COMM WORLD as the default communicator. The default
communicator can be changed to INPCOMM by calling this routine.

WSETMPICOMM can be called any time and PWSMP will use INPCOMM as the communicator for all MPI calls
after the call to WSETMPICOMM, until the default communicator is changed again by another call to WSETMPICOMM.
Although, WSETMPICOMM can be called at any time, it must be used judiciously. The communicator can be changed
only after you are completely done with one linear system and are moving on to another. You cannot factor a matrix
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with one communicator and do the backsolves with another, unless both communicators define the same process group
over the same set of nodes.

Note 10.3 INPCOMM must be a communicator generated by MPI’s Fortran interface. If you are using the PWSMP
library from a C/C++ program and using a communicator other than MPI COMM WORLD, then you would need to
use MPI Comm c2f to obtain the equivalent Fortran communicator, or write a small Fortran routine that would generate
a communicator over the same processes as your C communicator.

10.20 WSADJSTBADPIVS ( N, GAMMA )S,T and PWSADJSTBADPIVS ( N, GAMMA )P

The integer input N is the total number of equations in the system and the double precision input GAMMA is the
value that is placed at all those diagonal locations that were smaller than DPARM(11) during factorization, provided
that IPARM(11) was set to a nonzero value during factorization. Please refer to the description of IPARM(11) for more
details.

These routines, which can be called any time after factorization, give the user another chance to control the effect of
very small (and negative in case of LLT factorization) pivots on the solution before solving for right-hand side vector(s).

10.21 WSETGLOBIND ( Ni, NUMBERING, GLIi, INFO )P

In the parallel version, by default it is assumed that the matrix is distributed on processes P0 to Pp−1 in increasing order
of global indices and the portion of the matrix residing on process Pi is determined by Ni on that process (Figure 2). In
the peer mode (only) of the parallel version, the user can specify an arbitrary distribution. This is accomplished by the
use of the WSETGLOBIND routine whose calling parameters are described below. The user should note that the new
global indices also determine the distribution of the right-hand side and the solution vectors.

A call to WSETGLOBIND affects only the current context. If used, clearly WSETGLOBIND must be called before
any other parallel routine that involves the matrix whose distribution is determined by GLIi.

• The integer input parameter Ni is the number of matrix columns/rows on process Pi. This Ni must be the same
as the Ni in the subsequent calls to PWSSMP, or any of the simpler routines of Section 9, or the transposition
routines of Section 10.22 in the context of the same matrix.

• The integer input parameter NUMBERING can be 0 or 1 depending on whether C-style indexing starting from 0
is used or Fortran-style indexing starting from 1 is used. This must be the same as IPARM(5) in subsequent calls
to PWSSMP in the context of the same matrix.

• GLIi is an input integer array of size Ni. The k-th element of this integer array contains the global row/column
number (in the overall matrix) of the k-th local row/column on process Pi. The default global index corresponding
to the k-th index on Pi is k + Σi−1

j=0Nj . The purpose of using the WSETGLOBIND subroutine is to override these
defaults.

For example, refer to the matrix shown in Figure 2. If the user wanted to use PWSSMP such that P0 contains
columns 6, 8, and 1 (in that order), P1 contains columns 2, 3, and 7, and P2 contains columns 9, 4, and 5, then
WSETGLOBIND would be called on the three processes with NUMBERING = 1, N0 = 3, N1 = 3, N2 = 3, GLI0 =
(6,8,1), GLI1 = (2,3,7), and GLI2 = (9,4,5). In subsequent calls to the parallel routines, JA0 = (6,7,8,9,8,9,1,3,7,8),
JA1 = (2,3,8,9,3,7,8,9,7,8), and JA2 = (9,4,6,7,8,5,6,8,9) in the CSR/CSC format. In this case, IA0 = (1,5,7,11),
IA1 = (1,5,9,11), and IA2 = (1,2,6,10).

• The output integer parameter INFO is 0 on a successful return and is −102 if the routine runs out of memory.

10.22 Routines for transposing distributed sparse matrices

In this section, we describe the routines for transposing distributed sparse matrices. While these can be used for trans-
posing any sparse matrix, we envision them being used primarily to switch triangular portions of symmetric matrices
between CSC and CSR formats.
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Transposing a sparse matrix would require calls to two or three of the following routines. Note that a call to
PWS XPOSE IA starts the process and is mandatory. It also clears the internal memory associated with any previ-
ously transposed matrices and allocates appropriate data structures for the new matrix. This may be followed by none
or at most one call to PWS XPOSE JA. Any number of calls to PWS XPOSE AV or PZS XPOSE AV may follow.

Transposition retains the original distribution of the matrix. If there are Ni rows (columns) on process Pi in the
original matrix, then the transpose will result in exactly the same Ni columns (rows) on Pi. Note that WSETGLOBIND
(Section 10.21) can be used in conjunction with the sparse transpose routines described in this section to specify an
arbitrary initial distribution and ordering of matrix row/columns. The output of the transpose will mimic the same
distribution. You can use PWSTOREMAT (Section 10.17) and PWRECALLMAT (Section 10.18) to switch between
matrices.

10.22.1 PWS XPOSE IA (Ni, IAi, JAi, NNZi, IERR)P

This routine allocates some internal data structures and returns the number of nonzeros (local output NNZi) of the trans-
pose that will be stored on process Pi. The global output IERR is the same as IPARM(64) described in Section 5.2.14.
The description of local inputs Ni, IAi, JAi is the same as in Section 8.2.

PWS XPOSE IA must be the first routine called to transpose a matrix, the indices of whose local submatrix with Ni

rows or columns on process Pi are stored in IAi and JAi.
A call to PWS XPOSE IA is mandatory to initiate the process of transposing a matrix.

10.22.2 PWS XPOSE JA (Ni, IAi, JAi, TIAi, TJAi, IERR)P

This routine transposes the indices of a distributed sparse matrix. It expects local inputs Ni, IAi, JAi on each process
Pi and generates the corresponding local output in TIAi and TJAi. The size of TIAi must be at least Ni + 1, which is
the same as the size of IAi. The size of TJAi must be at least NNZi, where NNZi is the number of local nonzeros in
the transposed matrix, as returned by PWS XPOSE IA. The global output IERR is the same as IPARM(64) described in
Section 5.2.14.

Calling PWS XPOSE JA is optional. If used, it must be called after PWS XPOSE IA without calls to any other
transposition routines in between.

10.22.3 PWS XPOSE AV (Ni, IAi, JAi, AVALSi, TIAi, TJAi, TAVALSi, IERR)P

PWS XPOSE AV, if called after PWS XPOSE IA, transposes the indices as well as the values of the distributed sparse
matrix whose local portion on process Pi is stored in IAi, JAi, AVALSi. The local output is generated in TIAi,
TJAi, TAVALSi. If it is called after the indices have already been transposed by an earlier call to PWS XPOSE JA
or PWS XPOSE AV, then it transposes the values only. This routine can be called any number of times after
PWS XPOSE IA or PWS XPOSE JA to transpose sparse matrices with the same structure as that of a previously trans-
posed matrix, but different values. The size of TIAi must be at least Ni + 1, which is the same as the size of IAi. The
size of TJAi and TAVALSi must be at least NNZi, where NNZi is the number of local nonzeros in the transposed matrix,
as returned by PWS XPOSE IA. The global output IERR is the same as IPARM(64) described in Section 5.2.14.

10.22.4 PZS XPOSE AV (Ni, IAi, JAi, AVALSi, TIAi, TJAi, TAVALSi, IERR)P

PZS XPOSE AV is the complex counterpart of PWS XPOSE AV. AVALSi and TAVALSi must both be double complex in
PZS XPOSE AV and double precision in PWS XPOSE AV.

10.22.5 PWS XPOSE CLEAR ( )

This routine can be used to deallocate the internal storage that is allocated in the context of transposition. Such space may
be allocated by PWS XPOSE IA, PWS XPOSE JA, PWS XPOSE AV, or PZS XPOSE AV. After PWS XPOSE CLEAR,
no transposition routine other than PWS XPOSE IA may be called.
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11 Routines for Double Complex Data Type
The double complex (complex*16) version of the symmetric solver can be accessed via the routines ZSSMP, ZSCALZ,
ZSMALZ, ZSCSYM, ZSMSYM, ZSCCHF, ZSMCHF, ZSCLDL, ZSMLDL, ZSCSVX, ZSMSVX, ZSSLV, ZSSMATVEC and
ZHSMATVEC in serial/multithreaded mode and by their distributed-memory parallel counterparts PZSSMP, PZSCALZ,
PZSMALZ, PZSCSYM, PZSMSYM, PZSCCHF, PZSMCHF, PZSCLDL, PZSMLDL, PZSCSVX, PZSMSVX, PZSSLV,
PZSSMATVEC and PZHSMATVEC in the message-passing mode. These routines are identical to their double precision
real counterparts described in Sections 5, 7, 8, and 9, with the exception that the data type of AVALS, DIAG, B, and AUX
in these routines is double complex or complex*16. The WSMP web page at http://www.research.ibm.com/projects/wsmp
contains example programs illustrating the use of these routines.

Note that only LDLT factorization is supported for complex non-Hermitian matrices. While using the ZSSMP
or PZSSMP routines, care must be taken to set IPARM(31) properly. Please refer to the description of IPARM(31) in
Section 5.2 for more details. It must be set to 0, 1, 2, 5, or 6 for Hermitian matrices and to 3, 4, or 7 for non-Hermitian
matrices. Routines ZSCCHF, ZSMCHF, PZSCCHF, and PZSMCHF can be called for Hermitian matrices only. When
ZSCLDL, ZSMLDL, ZSCSVX, ZSMSVX, PZSCLDL, PZSMLDL, PZSCSVX, or PZSMSVX are called, then a symmetric
non-Hermitian matrix is assumed. If you wish to perform LDLT factorization on a Hermitian matrix, then you must
use the ZSSMP or PZSSMP routines.

Upon return from the ordering or the symbolic factorization steps, the permutation vectors are not returned in PERM
and INVP when complex matrices are being used. In fact, unlike the interface for real matrices, in the case of complex
input matrices, it is not even necessary for the user to supply valid length-N integer space in PERM and INVP unless
the user intends to supply their own ordering as input and skip WSMP’s ordering.

12 Notice: Terms and Conditions for Use of WSMP and PWSMP

Please read the license agreement in the HTML file of the appropriate language in the license directory before installing
and using the software. The 90-day free trial license is meant for educational, research, and benchmarking purposes by
non-profit academic institutions. Commercial organizations may use the software for internal evaluation or testing with
the trial license. Any commercial use of the software requires a commercial license.
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