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1 Definition

Iterative methodsfor solving sparsesystemsof linear equationsare potentiallylessmemoryandcomputation
intensve thandirect methods but often experienceslow corvergenceor fail to corverge at all. The rohbust-
nessandthe speedof Krylov subspacdteratve methodss improved, often dramatically by preconditioning
Preconditionings a techniquefor transformingthe original systemof equationsnto onewith animproved
distribution (clustering)of eigevaluessothatthe transformedsystemcanbe solvedin fewer iterations.A key
stepin preconditioningalinearsystemAx = b is to find a nonsingulapreconditionematrix M suchthatthe
inverseof M is ascloseto theinverseof A aspossibleandsolvingasystemof theform A z = r is significantly
lessexpensie thansolving Az = b. Thesystemis thensolved by solving (M~ A)x = M ~1b. This particular
exampleshavs whatis known asleft preconditioning Therearetwo otherformulations,known asright pre-
conditioningandsplit preconditioning the basicconcepthowever, is the same.Otherpracticalrequirements
for successfupreconditioningarethatthe costof computing) itself mustbelow andthe memoryrequiredto
computeandapply M mustbessignificantlylessthanthatfor solving Ax = b via directfactorization.

2 Discussion

Preconditioningnethodsarebeingactively researchedndhave beenfor a numberof years. Thereareseveral
classe®f preconditionerssomearemoreamenabldo beingcomputedandappliedin parallelthanothers.This
articlegivesanoverview of thegeneratior{i.e.,computing) in parallel)andapplication(i.e., solvingasystem
of theform Mz = r in parallel)of the mostcommonlyusedparallelpreconditioners Note that the topic of
parallelpreconditioningcaneasilyfill awholevolume. This shortarticlejust scratcheshe surfaceof thisrich
researctareaandintroduceghebasicparallelizationtechniques.

While solvinga sparsdinearsystemAx = b in parallel,thematrix A andthevectorsz andb aretypically
partitioned.Thepartitionsareassignedo tasksthatareexecutedby individual processeser threadsn aparallel
processingenvironment. Both the creationand the applicationof a preconditionerin parallelis affectedby
the underlyingpartitioning of the data. A commonlyusedeffective and naturalway of partitioningthe data
involves partitioningthe graph,of which the coeficient matrix is an adjaceng matrix. Otherthanpartioning
the problemfor parallelization,the graphview of the matrix playsa usefulrole in mary aspectof solving
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Figurel: A 16 x 16 sparsamatrix with symmetricstructureandits associatedjraphpartitionedamongfour
tasks.

sparsdinear systems.Figurel illustratesa partitioning of the rows of a matrix amongfour tasksbasedon a
4-way partitioningof its graph.

2.1 Simple preconditionersbasedon stationary methods

Stationanyiterative methodsarerelatively simplealgorithmsthatstartwith aninitial guesof the solution(like
all iterative methodshndattempto corvergetowardstheactualsolutionby repeate@pplicationof acorrection
equation.The correctionequationusesthe currentresidualanda fixed (stationary)operatoror matrix, which
is anapproximatiorof the original coeficient matrix. While stationaryiteratve methodg¢hemseleshave poor
cornvergencepropertiestheapproximatingmatrix cansene asa preconditionefor Krylov subspacenethods.

2.1.1 Jacobiand block-Jacobipreconditioners

One of the simplestpreconditionerss the point-Jacobipreconditionerwhich is nothing but the diagonal D
of the matrix A of coeficients. Applying the preconditionelin parallelis straightforvard. It simply involves
division with the entries(or multiplicationwith their inverses)f the partof the diagonalcorrespondingo the
portionof the matrix thateachthreador processs responsibldor. In fact,scalingthe coeficient matrix by the
diagonalsothatthe scaledmatrix hasall 1's onthediagonalis equivalentto Jacobipreconditioning.

A block-Jacobipreconditioneris madeup of non-overlappingsquarediagonalblocks of the coeficient
matrix. Theseblock may be of the sameor differentsizes. Theseblocksareusuallyfactoredor inverted(in-
dependentlyin parallel)duringthe preconditioneconstructiorphasesothatthe preconditionecanbe applied
inexpensvely duringthe Krylov solver’s iterations.
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Figure2: Thesparsanatrix correspondingo a4 x 4 finite-differencegrid with red-blackordering,partitioned
amongfour paralleltasks.

2.1.2 Gauss-Seidepreconditioner

Letthecoeficientmatrix A berepresentetly athree-vay splittingas’ + D + U, whereL is thestrictly lower
triangularpartof A, D is a diagonalmatrix that consistsof the principal diagonalof A, andU is the strictly
uppertriangularpartof A. The Gauss-Seidgdreconditioneis definedby

M = (D+L)D™YD+U). (1)

A systemMz = r is thentrivially sohedasy = (D + L)~'r, w = Dy, andz = (D + U)~lw. Thus,
applyingthe Gauss-Seidgreconditionein parallelinvolvessolvingalower andanuppertriangularsystemn
parallel.In generalgquation: of alower triangularsystemcanbe solvedfor thei-th unknavn whenequations
1...7 — 1 have beensolved. Similarly, equationi of an N x N uppertriangularsystemcanbe solved after
equations + 1... N have beensolved. Sincethe matrices. andU in our caseare sparsethei-th equation
while computingy = (D + L)~ depend®nly onthoseunknavns thathave nonzerocoeficientsin thei-th
row of L. Similarly, the i-th equationwhile computingz = (D + U)~!w dependsnly on thoseunknavns
that have nonzerocoeficientsin the i-th row of U. As aresult,while solving both thesesystemsmultiple
unknavns may be computedsimultaneously—thosthatdo not dependon any unsohed unknavns. Thisis an
ohvious sourceof parallelism. This parallelismcanbe maximizedby reorderingthe rows and columnsof A
(andhencethoseof L andU) in away thatmaximizesthe numberof independenequationsat eachstageof
the solutionprocess.

Figure 2 illustratesone suchordering, known as red-blackordering, that can be usedto parallelizethe
applicationof the Gauss-Seidgbreconditioneffor a matrix arisingfrom a finite-differencediscretization.The
verticesof thegraphcorrespondingo the matrix areassigneaolorssuchthatnotwo neighboringverticeshave
thesamecolor. All verticesandthecorrespondingows andcolumnsof the matrix arenumberedirst, followed
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Figure3: Multicolored orderingof a hypotheticafinite-elemengraphusingfour colors.

by thoseof the othercolor. Assignmenif matrix rows to tasksis basedon a partitioning of the graph. With
red-blackordering,eachtriangularsolve is performedin two phases.During the lower triangularsolwe, first,
all redunknavnsarecomputedn parallelbecausehey areall independentAfter this step,all blackunknavns
canbe computed.Theorderis reversedduring the uppertriangularsolve. On a distributed-memoryplatform,
eachcomputatiorphasds followed by a communicatiorphase.During a communicatiorphasegachprocess
communicateghe valuesof the unknavns correspondindo graphverticeson the partitionboundarieswith its
neighboringprocesses.

Theideaof red-blackorderingcanbe extendedo generakparsanatricesandtheir graphsfor which more
thantwo colors may be requiredto ensurethat no neighboringverticeshave the samecolor. The triangular
solvesarethenperformedin asmary parallelphasesasthe numberof colors. A multicoloredorderingwith
four colorsis illustratedin Figure3. For improved cacheperformanceblock variantsof multicoloredordering
canbe constructedy assigningecolorsto clustersof graphverticesandensuringthatno two clustersthathave
anedgeconnectinghemareassignedhe samecolor.

Thereadeiis cautionedhatoftenthe cornvergenceof a Krylov subspacenethodis sensitve to theordering
of matrix rows andcolumns.While red-blackandmulticolor orderingsenhanceparallelism they mayresultin
adeterioratiorof the corvergenceratein somecases.

2.1.3 SORpreconditioner

A significantincreasen cornvergencerate may be obtainedby a modificationof Equationl asfollows, with

D<w<?2: 1
D wD™ D
M=(—+1L —
(w+ )2—w(w

+0U), (2)

althoughdeterminingan optimal value of w canbe expensve. The preconditionespecifiedby Equation2 is
known assuccessier overrelaxtionor SORpreconditionerlts symmetricformulation,whenl. = U, is known
assymmetricSORor SSORpreconditioner Theissuesin parallelapplicationof the SOR preconditionemare
identicalto thosefor the Gauss-Seidgireconditioner



2.2 Preconditionersbasedon incompletefactorization

A classof highly effective but conceptuallysimplepreconditionerss basedon incompletefactorizationrmeth-
ods. Recallthatiteratve methodsare usedin applicationswherea factorizationof theform A = LU is not
feasiblebecaus¢hetriangularfactormatricesL, andU aremuchdensethan A, andthereforetoo expensve to

computeandstore. Theideabehindincompletefactorizationis to performafactorizationof A alongthelines
of aregular Gaussiareliminationor Cholesly factorization,but droppinga large fraction of nonzeroentries
from thetriangularfactorsalongtheway. Dependingon the underlyingfactorizationmethod,incompletefac-
torizationis referredto asILU (incompleteLU) or IC (incompleteCholesly) factorization.Dueto dropping,
the resultingtriangularfactorsL andU aremuchsparsethan L andU andare computedwith significantly
lesscomputingeffort. Entriesare chosenfor droppingusing somecriteria that strive to keepthe inverseof

M = LU ascloseto theinverseof A aspossible.Devising effective droppingcriteriahasbeenan active area
of research.Incompletefactorizationmethodscanbe broadly classifiedasfollows basedon the the dropping
criteria.

2.2.1 Static-pattern incompletefactorization

A static-patternncompletefactorizationrmethodis onein whichthelocationsof the entriesthatarekeptin the
factorsandthosethataredroppedaredetermineda priori, basednly onthe structureof A. Thesimplestform
of incompletefactorizationsarelLU(0) andIC(0), in which thestructureof L + U is identicalto structureof A;
i.e., only thosefactorentrieswhoselocationscoincidewith thoseof nonzeroentriesin the original matrix are
saved. A generalizatiorof static-patternncompletefactorizations alevel-x incompletefactorizationyeferred
to aslLU( k) or IC(x) factorizationin theliterature.The structureof alevel-x incompletefactorizationis com-
putedsymbolicallyasfollows. Initially, level(, j) = 0 if a;; # 0; otherwise]evel(i, j) = oo. Thisis followed
by an emulationof factorizationwhere eachnumericalupdatestepof the form a;; = a;; — a;;.ay; is re-
placedby updatinglevel(i, j) = min(level(s, j), level(i, k) + level(k, j) + 1). During the subsequemumerical
factorizationphasesentriesin locationswith alevel greaterthanx aredropped.

In graphterms,uponthe completionof symbolicfactorization,level(i, j) is 1 lessthanthe lengthof the
shortespathbetweernverticesi andj. During the computatiorandapplicationof anILU(x) or IC(x) precon-
ditioner, the computationcorrespondindo a vertex in the graphrequiresdataassociatedavith verticesthatare
upto k + 1 edgesaway from it. For example,in thegraphshavn in Figure4, dataexchanges requiredamong
vertex pairs(p, q) and(q, r) for k = 0. For k = 1, additionalexchangesamongvertex pairssuchas(s, ¢t) and
(u,v) arerequired.Thefigurealsoillustratesthatin a parallelenvironment,dataassociatedvith x + 1 layers
of verticesadjacento a partitionboundaryneedgo be exchangedvith a neighboringask.

Both the computatiorper vertex of the graphandthe dataexchangeoverheadoertaskin eachiterationof
a Krylov solver usinga level-x incompletefactorizationpreconditionetincreaseas  increasesOn the other
hand,the overall numberof iterationstypically declines.The optimumvalueof « is problemdependent.

2.2.2 Threshold-basedncompletefactorization

Althoughit permitsa relatively easyandfastparallelimplementationstatic-patterincompletefactorization
is robustfor a few classe®of problemsonly, including thosewith diagonallydominantcoeficient matrices.It
can,andoftendoesdeletéfill entriesof large magnitudeshatdo nothapperto belocatedin the predetermined
locations. Theresultinglarge error canmale the preconditioneineffective. Threshold-basethcompletefac-
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Figure 4: lllustration of dataexchangeacrossa task boundarywhenlevel 0 andlevel 1 fill is permittedin
incompletefactorization.

torizationrectifiesthis problemby droppingentriesfrom the factorsasthey arecomputed Regardlesof their
locations,entriesgreaterin magnitudethan a userdefinedthresholdr are kept andthe othersare dropped.
Typically, a secondthresholdy is alsousedto limit the factorsto a predeterminedize. If n; is the number
of nonzerosin row (or column)i of the coeficient matrix, thenat most~n; entries(thosewith the largest
magnitudesgarepermittedin row (or column): of theincompletefactor

Successfuandscalableparallelimplementationsf threshold-basemcompletefactorizationprecondition-
ing usegraphpartitioningandgraphcoloringfor balancingcomputatiorandminimizingcommunicatiommong
paralleltasks. The useof thesetwo techniquesn the context of sparsanatrix computationsasalreadybeen
discusseatarlier Graphpartitioningenablegaralleltasksto independenthcomputeandapply (i.e., perform
forwardandbacksubstitutionthepreconditionefor thematrix rows andcolumnscorrespondingo theinternal
verticesof the partition. An internalvertex andall its neighborsbelongto the samepartition. Graphcoloring
permitsparallelincompletefactorizationandforward and back substitutionof matrix rows andcolumnscor
respondingo the boundaryvertices.In the contect of incompletefactorizationcoloringis appliedto a graph
thatincludesonly the boundaryvertices(i.e., afterthe internalverticeshave beeneliminated)but includesthe
additionaledged(fill-in) createdasaresultof theeliminationof theinternalvertices.

2.2.3 Incomplete factorization basedon inverse-normestimate

Thisis arelatively new classof incompletefactorizationpreconditionersn which the droppingcriteriontakes
into accountandseekgo minimizethe growth of the normof theinverseof the factors. Thesepreconditioners
have beenshavn to be morerobust andeffective thanincompletefactorizationwith droppingbasedsolely on



the positionor absolutevalueof the entries.Theissuesdn the parallelgeneratiorandapplicationof thesepre-
conditionersarevery similar to thosein threshold-basethcompletefactorization—inboth casesthelocation
of nonzerosn thefactorscannotbe determineda priori.

2.3 Sparseapproximate inversepreconditioners

While theincompletefactorizationpreconditionerseekto computeL and U asapproximationf the actual
factorsL andU of the coeficient matrix A, sparseapproximatgoreconditionerseekto computeM —! asan
approximationto its inverseA~!. The problemof computing)/ ! is framedasthe problemof minimizing
thenorm||I — AM|| or || — M A||. To supportparallelism,theseminimizationproblemscanbe reducedo
independersubproblemsf computingherows andcolumnsof M ~!. Notethattheactualinverseof asparsed
is densejn general lt is thereforeémperatie thata numberof entriesbe droppedn orderto keep)M ~! sparse.
Justlike incompletefactorizationthe droppingcanbestructural(static),or basedn values(dynamic),or both.
In graphterms,while computingthe rows or columnsof A/~ in parallel,droppingis typically orchestrated
in a way that confinesthe interactionto pairs of verticesthat are eitherimmediateneighborsor have short
pathsconnectingthemin the graphof A. Graphpartitioningis usedto facilitate load balanceand minimize
interactionamongparalleltasks—bottduringthe computatiorandthe applicationof the preconditioner

Thereare someimportantadwantagesto explicitly usingan approximationof A~! for preconditioning,
ratherthanusing A’s approximatdactors.First, the preconditionecomputatioravoidsthekind of breakdavns
thatarepossiblein incompletefactorizationdueto smallor zero(or negative, in caseof incompleteCholesly)
diagonals Secondlytheapplicationof the preconditionerivolvesa straightforvard multiplicationof avector
with the sparsematrix M ~1, which may be simplerandmore easily parallelizablethanthe forward andback
substitutionswith I andU. However, justlike I andU, M~ maybedensetthan A. Therefore the graphof
M~ mary have mary moreedgeghanthe graphof A andmultiplying a vectorwith M/~ mayrequiremore
communicatiorthanmultiplying a vectorwith A.

2.4 Multigrid preconditioners

Multigrid methodsareaclassof iterative algorithmsfor solvingpartialdifferentialequationgPDESs)efficiently,

often by exploiting moreproblem-specifienformationthanatypical Krylov subspacenethod.Eachiteration
of amultigrid solver is a somavhat comple recursie procedureln mary applicationsthe effectvenesf a
multigrid algorithmcanbe substantiallyenhancedby usingit to preconditiona Krylov subspacenethodrather
thanusingit asthe solver. Thisis doneby replacingthe preconditioningstepof the Krylov subspacesolver
with oneiterationof the multigrid algorithm;i.e., treatingthe approximatesolutionobtainedby aniterationof

the multigrid algorithmasthe solutionwith respecto a hypotheticapreconditionematrix.

2.4.1 Geometric multigrid

Multigrid methodswere originally designedor solving elliptic PDEsby discretizingthemusinga hierarchy
of regular grids of varying degreesof finenessver the samedomain. For example,consideradomainD and
a sequencef successiely finer discretizationd7, G1, ..., G.,,. HereG is the coarsestliscretizationand
G, is thefinestdiscretizatiorover which the eventualsolutionto the PDEis desired.Figure5 shavs a square
domainwith m = 3. Asthefigureshaws,thegrid pointsin GG; areasubsebdf thegrid pointsin G;,1. A simple
formulationof multigrid would work asfollows:



(a) Discretization G, (b) Discretization G,

(c) Discretization G, (d) Discretization G,

Figure5: Successiely finer discretization®f a domain.

. First, the linear systemcorrespondingo discretizationGy is solved. SinceG, hasa small numberof
points,the associatedinear systemis smallandcanbe solvedinexpensvely by anappropriatedirector
iteratve method.

. The solutionat Gz is interpolatedto obtainaninitial guessof the solutionof the systemcorresponding
to G1, whichis four timeslarger. Amongvariouswaysof interpolation(alsoknows asprolongatior), a

simpleoneinvolvesapproximatinghe valueof the solutionat a point thatis in G; but notin Gy by the

averageof thevaluesof its neighbors.

. Startingwith the initial guessobtainedby interpolation,a few stepsof relaxation(alsoreferredto as
smoothing areusedto refinethesolutionat G;. Often,therelaxationstepsaresimply afew iterationsof
arelatvely inexpensve stationarymethodsuchasJacobior Gauss-Siedel.

. The processof relaxationand interpolationcontinuesfrom G; to G;11, until i + 1 = m. After the
relaxationat G,,,, a first approximationz(® to the solutionz™ of the the linear systemA™z™ = b™
correspondindo G, is obtained.Successiely moreaccurateapproximationsci®, z5*, ... areobtained
by 27\, = =" + dj', whered]" is obtainedby solving Ad}" = r]* = (om — Ax;ﬁ) via stepsb and6
belaw.



Figure6: Thedomainanddiscretizationg7,—G3 of Figure5 mappecdontofour paralleltasks.

5. The systemAd]* = r7* in the j-th multigrid iterationis solved by a recursve processjn which the
residualr’” correspondindo G, is projectedon to Gy, andsoon. The processof projection (also
known asrestriction is the reverseof interpolation. At the end of the recursve projectionsteps,a
relatively small systemof equations4d(; = r;? correspondingo G, is obtainedwhich is readily solved
by anappropriatéterative or directmethod.

6. Thecycle of interpolationandrelaxationis thenrepeatedo obtaind}, d?, ..., dj" startingwith d? com-
putedin stepb.

7. Theprocesss stoppedafterk multigrid iterationsif 7" is smallerthana userdefinedthreshold.

Whenthemultigrid methodis usedasa preconditionertheninsteadof repeatinghemultigrid cycle k times
to solve the problem,the approximatesolutionafteronecycle is substitutecasthe solutionwith respecto the
preconditioneinsidea Krylov subspacalgorithm. Whethermultigrid is usedasa solver or a preconditioner
the parallelizationprocesss the same.

Thefirst stepin implementinga parallelmultigrid proceduras to partitionthedomainamongthetaskssuch
thateachtaskis assigneadoughlythesamenumberof pointsof thefinestgrid. For example Figure6 shavsthe
partitioningof the domainof Figure5 andits discretizationg7,—(G3 into four paralleltasks.Unlike Figures5
and6, thedomainin a real problemmay beirregular andthe partitioningmay not betrivial. The partitioning
of the domainimplicitly definesa partitioningof the grids at all levels of discretization.It is easily seenthat
the parallelinterpolation,relaxation,and projectionat ary grid level requirea taskto exchangeinformation
correspondingo the grid points along the partition boundarywith its neighboringtasks. All computations
correspondingo eachpartition’s interior pointscanbe performedndependently



2.4.2 Algebraic multigrid

Thealgebraiamultigrid (AMG) methodis ageneralizatiorof the hierarchicalpproactof the geometrianulti-

grid methodsothatit is notdependentn the availability of the mesheasedfor discretizinga PDE, but canbe
useda black-boxsoler for a givenlinearsystenof equationsin thegeometrianultigrid method successiely

finer meshesare constructecby a geometricrefining of the coarsermeshes.On the otherhand,the starting
pointfor AMG is thefinal systemof equationganalogougo thefinestgrid), from which successely smaller
(coarserpystemareconstructedThecoeficientsof a coarsesystemin AMG areonly algebraicallyrelatedto

thecoeficientsof thefiner systemswhichis in contrasto thegeometriaelationshipbetweersuccessie grids
in geometricmultigrid.

Justlike geometricmultigrid, an AMG methodcanbe usedeitherasa solver or a preconditionerin either
case the methodinvolvestwo phasesin thefirst set-upphasethe hierarchyof coarsesystemss constructed
from the original linear systemandthe prolongationandrestrictionoperatorsaaredefined.The secondsolution
phaseconsistof the prolongationyelaxation,andrestrictioncycles.

Efficient parallelizationof AMG is muchharderthanthat of geometricmultigrid. As usual,the basisof
parallelizationis a good partitioning of the graphcorrespondingo the coeficient matrix and assigningthe
partitionsto individual tasks. The solution phase,in principle, can then be parallelizedwith computation
correspondingo the interior nodesremainingindependentnd that involving the nodesat or closeto the
boundaryinvolving exchangeof datawith neighboringpartitions. The boundarycommunicatiorcanbe more
involved thanin the caseof geometricmultigrid becausef the irregularity of the graphandthe factthatthe
setsof interactingboundarynodesandtheinteractionpatterncanbe differentfor prolongationyelaxation,and
restriction.However, themaindifficulty in parallelizingAMG is in the set-upphase.

Effective parallelizationof the set-upphasds essentiafor the overall scalabilityof parallel AMG because
this phasecan accountfor up to one-fourthof the total executiontime. The processof constructionof a
coarserlinear systemin the classicalAMG approachrelies on a notion of the "strength” of dependencies
amongcoeficients. This processds not only sequentiain nature,but alsoinvolvesa highly non-localpattern
of interactionbetweenthe verticesof the graphof the coeficient matrix. Therefore,the algorithm mustbe
adaptedor parallelization which canmalke the corvergencerateandperiterationcostof AMG dependenbn
the numberof paralleltasks. Caremustbe taken to ensurethat parallelizationdoesnot adwersely effect the
convergencerateor theiterationcompleity of AMG. Typical approacheso parallelizingcoarseningn AMG
rely on decouplingthe partitions,using parallelindependensets(similar to multicoloring describedearlier),
or performingsubdomairblocking, which startsthe coarseningat the partition boundariesandthenproceeds
to the interior nodes. Note that the coarseningschemehasan impacton the intertaskinteractionduring the
prolongationandrestrictionstepsof the solutionphase.

WhenparallelizingAMG on large parallelmachinesthe numberof paralleltasksmay exceedthe number
of pointsin someof thegridsatthecoarseslkevels. This situationrequiresspeciaktreatment A commonlyused
work-aroundo this problemis agglomeation, in which neighboringdomainsarecoalescedeaving sometasks
idle duringthe processingf the coarsestevels. Anotherapproacthis to stopthe coarseningvhenthe number
of coeficientspertaskbecomesoo small,which makesthe behaior of theoverall algorithmdependenonthe
numberof paralleltasks.
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2.5 Stochasticpreconditioners

Therehasbeena fair amountof researcton algorithmsfor approximatinghe solutionof linear systemsased
onrandomsamplingof thecoeficientmatrixor onrandomwalksin thegraphcorrespondingo it. Mostof these
methodshave beenprovento work on a limited classef linear systemsonly, suchassymmetricdiagonally
dominantsystems.A few practicalsolvers have beendevelopedrecentlyby usingsomeof thesetechniques
for preconditioningKrylov subspacenethods.An attractve propertyof thesemethodss thatthey areusually
trivially parallelizable.The questfor scalablemassiely parallelsparsdinear solversmay promptmoreactive

researchnto statisticaltechniquegor preconditioning.

2.6 Matrix-fr eemethodsand physics-basedgreconditioners

Note thatthis article discussepreconditionerslerived explicitly from the coeficient matrix A of the system
Ax = b that needsto be solved. In someapplications,A is never constructedexplicitly to save time and
storagelnsteadijt is appliedimplicitly to computethe matrix-vectorproductsrequiredin the Krylov subspace
solver. In someof thesecasespreconditionings alsoappliedimplicitly, or the the knowledgeof the physics
of the applicationis utilized to constructthe preconditioner which cannotbe derived from the coeficient
matrix in a matrix-freemethod. Suchpreconditionersare called physics-basegreconditioners.Due to the
highly application-specifimatureof matrix-freemethodsandphysics-basegreconditionersthesetopicsare
not coveredin furtherdetailin this article.

3 RelatedTopics

e Krylov subspacenethods

Graphpartitioning

Linearalgebrasoftware

Algebraicmultigrid

Domaindecomposition

Parallelalgorithmsfor PDEs

4 Bibliographic Notes

Thereadersarereferredio Saads book[11] andthesuney by Benzi[1] for afairly comprehense introduction
to variouspreconditioningechniquesThesedo not cover parallelpreconditionerandmaynotincludedsome
of themostrecentwork in preconditioning.However, theseareexcellentresourcegor gaininganinsightinto
the stateof theart of preconditioningcirca2002.

Hysomand Pothen[7] and Karypis and Kumar[8] cover the fundamental®f scalableparallelizationof
incompletefactorizationbasedoreconditionersThework of GroteandHuckle [6] andEdmondChow [3, 4] is
the basisof modernparallelsparseapproximatenversepreconditionersChaw et al’s surney [5] shouldgive
thereadersagoodoverview of parallelizationtechniquedor geometricandalgebraiomultigrid methods.
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Last,but nottheleast,almostall parallelpreconditioningechniquesely on effective parallelheuristicsfor
critical combinatoriaproblems—graplpartitioningandgraphcoloring. Thereadersarereferredto papers

by KarypisandKumar[9, 10] andBozdagetal. [2] for anoverview of these.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Michele Benzi. Preconditioningechniquegor large linearsystemsA suney. Journal of Computational
Physics 182(2):418-4772002.

Doruk Bozdag,Assetw H. GebremedhinFredrik Manne,Eric G. Boman,andUmit V. Catalyurek. A
framawork for scalablegreedycoloring on distributed memoryparallel computers. Journal of Parallel
and DistributedComputing 68(4):515-5352008.

EdmondChaow. A priori sparsitypatterndor parallelsparseapproximatanversepreconditionersSIAM
Journal on ScientificComputing 21(5):1804-18222000.

EdmondChow. Parallelimplementatiornand practicaluseof sparseapproximateinverseprecondition-
erswith a priori sparsitypatterns.InternationalJournal of High PerformanceComputingApplications
15(1):56-742001.

EdmondChaw, RobertD. Falgout,Jonathanl. Hu, RaymondS. Tuminaro,and Ulrike Meier Yang. A
suney of parallelizationtechniquedor multigrid solvers. In Michael A. Heroux,PadmaRaghaan, and
HorstD. Simon,editors,Parallel Processindgor ScientificComputing SIAM, 2006.

M. J. GroteandT. Huckle. Parallel preconditioningwith sparseapproximatenverses.SIAM Journal on
ScientificComputing 18(3),1997.

David HysomandAlex Pothen A scalablgparallelalgorithmfor incompleteactorpreconditioning SIAM
Journal on ScientificComputing 22(6):2194-22152000.

Geopge KarypisandVipin Kumar Parallelthreshold-basetlU factorization. TechnicalReportTR 96-
061, Departmentf ComputerScienceUniversity of Minnesota,1996.

Geoge Karypis and Vipin Kumar ParMETIS: Parallel graph partitioning and sparsematrix ordering
library. TechnicalReportTR 97-060,Departmentf ComputerScienceUniversity of Minnesota,1997.

[10] GeogeKarypisandVipin Kumar Parallelalgorithmsfor multilevel graphpartitioningandsparsematrix

ordering.Journal of Parallel and DistributedComputing 48:71-95,1998.

[11] YousefSaad.lterative Methodsfor SpaseLinear Systems2ndedition SIAM, 2003.

12



