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1 Definition

Iterative methodsfor solvingsparsesystemsof linearequationsarepotentiallylessmemoryandcomputation
intensive thandirect methods,but often experienceslow convergenceor fail to converge at all. The robust-
nessandthespeedof Krylov subspaceiterative methodsis improved,oftendramatically, by preconditioning.
Preconditioningis a techniquefor transformingthe original systemof equationsinto onewith an improved
distribution (clustering)of eigenvaluessothatthetransformedsystemcanbesolvedin fewer iterations.A key
stepin preconditioninga linearsystem

�������
is to find a nonsingularpreconditionermatrix � suchthat the

inverseof � is ascloseto theinverseof
�

aspossibleandsolvingasystemof theform �
	 ��� is significantly
lessexpensive thansolving

���
���
. Thesystemis thensolvedby solving ������� �����
� ����� � . Thisparticular

exampleshows what is known asleft preconditioning. Therearetwo otherformulations,known asright pre-
conditioningandsplit preconditioning; thebasicconcept,however, is thesame.Otherpracticalrequirements
for successfulpreconditioningarethatthecostof computing� itself mustbelow andthememoryrequiredto
computeandapply � mustbesignificantlylessthanthatfor solving

���
���
via directfactorization.

2 Discussion

Preconditioningmethodsarebeingactively researchedandhave beenfor a numberof years.Thereareseveral
classesof preconditioners;somearemoreamenableto beingcomputedandappliedin parallelthanothers.This
articlegivesanoverview of thegeneration(i.e.,computing� in parallel)andapplication(i.e.,solvingasystem
of the form ��	 ��� in parallel)of themostcommonlyusedparallelpreconditioners.Note that the topic of
parallelpreconditioningcaneasilyfill a wholevolume.This shortarticlejust scratchesthesurfaceof this rich
researchareaandintroducesthebasicparallelizationtechniques.

While solvingasparselinearsystem
���
���

in parallel,thematrix
�

andthevectors
�

and
�

aretypically
partitioned.Thepartitionsareassignedto tasksthatareexecutedby individualprocessesor threadsin aparallel
processingenvironment. Both the creationand the applicationof a preconditionerin parallel is affectedby
the underlyingpartitioningof the data. A commonlyusedeffective andnaturalway of partitioningthe data
involvespartitioningthegraph,of which thecoefficient matrix is anadjacency matrix. Otherthanpartioning
the problemfor parallelization,the graphview of the matrix playsa useful role in many aspectsof solving
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(b) The associated graph and its four partitions
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(a) A 16    16 symmetric sparse matrix�
Figure1: A ���! "��� sparsematrix with symmetricstructureandits associatedgraphpartitionedamongfour
tasks.

sparselinearsystems.Figure1 illustratesa partitioningof the rows of a matrix amongfour tasksbasedon a
4-way partitioningof its graph.

2.1 Simplepreconditionersbasedon stationary methods

Stationaryiterative methodsarerelatively simplealgorithmsthatstartwith aninitial guessof thesolution(like
all iterativemethods)andattemptto convergetowardstheactualsolutionby repeatedapplicationof acorrection
equation.Thecorrectionequationusesthecurrentresidualanda fixed(stationary)operatoror matrix, which
is anapproximationof theoriginalcoefficientmatrix. While stationaryiterative methodsthemselveshavepoor
convergenceproperties,theapproximatingmatrix canserve asapreconditionerfor Krylov subspacemethods.

2.1.1 Jacobi and block-Jacobi preconditioners

Oneof the simplestpreconditionersis the point-Jacobipreconditioner, which is nothingbut the diagonal #
of thematrix

�
of coefficients. Applying thepreconditionerin parallelis straightforward. It simply involves

division with theentries(or multiplicationwith their inverses)of thepartof thediagonalcorrespondingto the
portionof thematrix thateachthreador processis responsiblefor. In fact,scalingthecoefficient matrixby the
diagonalsothatthescaledmatrixhasall 1’s on thediagonalis equivalentto Jacobipreconditioning.

A block-Jacobipreconditioneris madeup of non-overlappingsquarediagonalblocks of the coefficient
matrix. Theseblock maybeof thesameor differentsizes.Theseblocksareusuallyfactoredor inverted(in-
dependently, in parallel)duringthepreconditionerconstructionphasesothatthepreconditionercanbeapplied
inexpensively duringtheKrylov solver’s iterations.
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(a)  A 4    4 grid with red−black ordering

Figure2: Thesparsematrix correspondingto a &' !& finite-differencegrid with red-blackordering,partitioned
amongfour paralleltasks.

2.1.2 Gauss-Seidelpreconditioner

Let thecoefficientmatrix
�

berepresentedby a three-way splittingas (*)+#,)+- , whereL is thestrictly lower
triangularpart of

�
, # is a diagonalmatrix that consistsof theprincipaldiagonalof

�
, and - is thestrictly

uppertriangularpartof
�

. TheGauss-Seidelpreconditioneris definedby

� � ��#�).( � # ��� ��#�).- ��/ (1)

A system �
	 �0�
is then trivially solved as 1 � ��#2)
( � ��� � , 3 � #41 , and 	 � ��#2)�- � ���53 . Thus,

applyingtheGauss-Seidelpreconditionerin parallelinvolvessolvinga lowerandanuppertriangularsystemin
parallel.In general,equation6 of a lower triangularsystemcanbesolvedfor the 6 -th unknown whenequations
� /7/7/ 6�89� have beensolved. Similarly, equation6 of an :; ": uppertriangularsystemcanbe solved after
equations6�)<� /7/7/ : have beensolved. Sincethematrices( and - in our casearesparse,the 6 -th equation
while computing1 � ��#�),( � ��� � dependsonly on thoseunknowns thathave nonzerocoefficientsin the 6 -th
row of ( . Similarly, the 6 -th equationwhile computing

�<� ��#=)9- � ���>3 dependsonly on thoseunknowns
that have nonzerocoefficients in the 6 -th row of - . As a result,while solving both thesesystems,multiple
unknownsmaybecomputedsimultaneously—thosethatdo not dependon any unsolvedunknowns. This is an
obvious sourceof parallelism. This parallelismcanbe maximizedby reorderingthe rows andcolumnsof

�
(andhencethoseof ( and - ) in a way thatmaximizesthenumberof independentequationsat eachstageof
thesolutionprocess.

Figure 2 illustratesone suchordering,known as red-blackordering,that can be usedto parallelizethe
applicationof theGauss-Seidelpreconditionerfor a matrix arisingfrom a finite-differencediscretization.The
verticesof thegraphcorrespondingto thematrixareassignedcolorssuchthatnotwo neighboringverticeshave
thesamecolor. All verticesandthecorrespondingrowsandcolumnsof thematrixarenumberedfirst, followed
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Figure3: Multicoloredorderingof ahypotheticalfinite-elementgraphusingfour colors.

by thoseof theothercolor. Assignmentof matrix rows to tasksis basedon a partitioningof thegraph. With
red-blackordering,eachtriangularsolve is performedin two phases.During the lower triangularsolve, first,
all redunknownsarecomputedin parallelbecausethey areall independent.After thisstep,all blackunknowns
canbecomputed.Theorderis reversedduringtheuppertriangularsolve. On a distributed-memoryplatform,
eachcomputationphaseis followedby a communicationphase.During a communicationphase,eachprocess
communicatesthevaluesof theunknownscorrespondingto graphverticeson thepartitionboundarieswith its
neighboringprocesses.

Theideaof red-blackorderingcanbeextendedto generalsparsematricesandtheirgraphs,for whichmore
thantwo colorsmay be requiredto ensurethat no neighboringverticeshave the samecolor. The triangular
solvesarethenperformedin asmany parallelphasesasthenumberof colors. A multicoloredorderingwith
four colorsis illustratedin Figure3. For improvedcacheperformance,block variantsof multicoloredordering
canbeconstructedby assigningcolorsto clustersof graphverticesandensuringthatno two clustersthathave
anedgeconnectingthemareassignedthesamecolor.

Thereaderis cautionedthatoftentheconvergenceof aKrylov subspacemethodis sensitive to theordering
of matrix rows andcolumns.While red-blackandmulticolororderingsenhanceparallelism,they mayresultin
adeteriorationof theconvergenceratein somecases.

2.1.3 SORpreconditioner

A significantincreasein convergenceratemay be obtainedby a modificationof Equation1 asfollows, with?4@�AB@�C
:

� � � # A ).( �
A #D���C 8 A �

# A ).- ��E (2)

althoughdetermininganoptimalvalueof
A

canbeexpensive. Thepreconditionerspecifiedby Equation2 is
known assuccessiver overrelaxtionor SORpreconditioner. Its symmetricformulation,when ( � - , is known
assymmetricSORor SSORpreconditioner. The issuesin parallelapplicationof theSORpreconditionerare
identicalto thosefor theGauss-Seidelpreconditioner.
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2.2
F

Preconditionersbasedon incompletefactorization

A classof highly effective but conceptuallysimplepreconditionersis basedon incompletefactorizationmeth-
ods. Recall that iterative methodsareusedin applicationswherea factorizationof the form

�2� (G- is not
feasiblebecausethetriangularfactormatrices( and - aremuchdenserthan

�
, andtherefore,tooexpensive to

computeandstore.Theideabehindincompletefactorizationis to performa factorizationof
�

alongthelines
of a regular Gaussianeliminationor Cholesky factorization,but droppinga large fraction of nonzeroentries
from thetriangularfactorsalongtheway. Dependingon theunderlyingfactorizationmethod,incompletefac-
torizationis referredto asILU (incompleteLU) or IC (incompleteCholesky) factorization.Dueto dropping,
the resultingtriangularfactors H( and H- aremuchsparserthan ( and - andarecomputedwith significantly
lesscomputingeffort. Entriesarechosenfor droppingusingsomecriteria that strive to keepthe inverseof
� � H( H- ascloseto theinverseof

�
aspossible.Devising effective droppingcriteriahasbeenanactive area

of research.Incompletefactorizationmethodscanbebroadlyclassifiedasfollows basedon the thedropping
criteria.

2.2.1 Static-pattern incompletefactorization

A static-patternincompletefactorizationmethodis onein which thelocationsof theentriesthatarekept in the
factorsandthosethataredroppedaredeterminedapriori, basedonly on thestructureof

�
. Thesimplestform

of incompletefactorizationsareILU(0) andIC(0), in whichthestructureof H(I) H- is identicalto structureof
�

;
i.e., only thosefactorentrieswhoselocationscoincidewith thoseof nonzeroentriesin theoriginal matrix are
saved.A generalizationof static-patternincompletefactorizationis a level-J incompletefactorization,referred
to asILU( J ) or IC( J ) factorizationin theliterature.Thestructureof a level-J incompletefactorizationis com-
putedsymbolicallyasfollows. Initially, level��6 ELKM�N� ? if OQPSRIT� ? ; otherwise,level��6 ELKU�N��V . This is followed
by an emulationof factorizationwhereeachnumericalupdatestepof the form O PWR � O PSR 8�O PSX / O XYR is re-
placedby updatinglevel��6 ELKM�N� min(level��6 ELKM� , level��6 E7Z[� + level� Z[ELKU� + 1). During thesubsequentnumerical
factorizationphases,entriesin locationswith a level greaterthan J aredropped.

In graphterms,uponthe completionof symbolic factorization,level��6 ELKU� is 1 lessthanthe lengthof the
shortestpathbetweenvertices6 and

K
. During thecomputationandapplicationof anILU( J ) or IC( J ) precon-

ditioner, thecomputationcorrespondingto a vertex in thegraphrequiresdataassociatedwith verticesthatare
up to J\)�� edgesawayfrom it. For example,in thegraphshown in Figure4, dataexchangeis requiredamong
vertex pairs ��] E7^_� and � ^_EL�[� for J � ? . For J � � , additionalexchangesamongvertex pairssuchas ��` ELa7� and
��b ELcd� arerequired.Thefigurealsoillustratesthat in a parallelenvironment,dataassociatedwith JI),� layers
of verticesadjacentto apartitionboundaryneedsto beexchangedwith aneighboringtask.

Both thecomputationpervertex of thegraphandthedataexchangeoverheadper taskin eachiterationof
a Krylov solver usinga level-J incompletefactorizationpreconditionerincreaseas J increases.On theother
hand,theoverall numberof iterationstypically declines.Theoptimumvalueof J is problemdependent.

2.2.2 Thr eshold-basedincompletefactorization

Although it permitsa relatively easyandfastparallel implementation,static-patternincompletefactorization
is robust for a few classesof problemsonly, includingthosewith diagonallydominantcoefficient matrices.It
can,andoftendoesdeletefill entriesof largemagnitudesthatdonothappento belocatedin thepredetermined
locations.Theresultinglargeerrorcanmake thepreconditionerineffective. Threshold-basedincompletefac-
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Figure4: Illustration of dataexchangeacrossa task boundarywhen level 0 and level 1 fill is permittedin
incompletefactorization.

torizationrectifiesthis problemby droppingentriesfrom thefactorsasthey arecomputed.Regardlessof their
locations,entriesgreaterin magnitudethana user-definedthresholde arekept and the othersaredropped.
Typically, a secondthresholdf is alsousedto limit the factorsto a predeterminedsize. If g P is the number
of nonzerosin row (or column) 6 of the coefficient matrix, thenat most fhgiP entries(thosewith the largest
magnitudes)arepermittedin row (or column)6 of theincompletefactor.

Successfulandscalableparallelimplementationsof threshold-basedincompletefactorizationprecondition-
ing usegraphpartitioningandgraphcoloringfor balancingcomputationandminimizingcommunicationamong
paralleltasks.Theuseof thesetwo techniquesin thecontext of sparsematrix computationshasalreadybeen
discussedearlier. Graphpartitioningenablesparalleltasksto independentlycomputeandapply (i.e., perform
forwardandbacksubstitution)thepreconditionerfor thematrixrowsandcolumnscorrespondingto theinternal
verticesof thepartition. An internalvertex andall its neighborsbelongto thesamepartition. Graphcoloring
permitsparallel incompletefactorizationandforward andbacksubstitutionof matrix rows andcolumnscor-
respondingto theboundaryvertices.In thecontext of incompletefactorization,coloring is appliedto a graph
that includesonly theboundaryvertices(i.e., after theinternalverticeshave beeneliminated)but includesthe
additionaledges(fill-in) createdasa resultof theeliminationof theinternalvertices.

2.2.3 Incomplete factorization basedon inverse-normestimate

This is a relatively new classof incompletefactorizationpreconditionersin which thedroppingcriteriontakes
into accountandseeksto minimizethegrowth of thenormof theinverseof thefactors.Thesepreconditioners
have beenshown to bemorerobustandeffective thanincompletefactorizationwith droppingbasedsolelyon
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the
j

positionor absolutevalueof theentries.Theissuesin theparallelgenerationandapplicationof thesepre-
conditionersarevery similar to thosein threshold-basedincompletefactorization—inbothcases,the location
of nonzerosin thefactorscannotbedeterminedapriori.

2.3 Sparseapproximate inversepreconditioners

While the incompletefactorizationpreconditionersseekto compute H( and H- asapproximationsof theactual
factors ( and - of thecoefficient matrix

�
, sparseapproximatepreconditionersseekto compute����� asan

approximationto its inverse
� ��� . The problemof computing ����� is framedasthe problemof minimizing

thenorm kml48 � �2k or kml48<� � k . To supportparallelism,theseminimizationproblemscanbereducedto
independentsubproblemsof computingtherowsandcolumnsof � ��� . Notethattheactualinverseof asparse

�
is dense,in general.It is thereforeimperative thatanumberof entriesbedroppedin orderto keep� ��� sparse.
Justlike incompletefactorization,thedroppingcanbestructural(static),or basedonvalues(dynamic),or both.
In graphterms,while computingthe rows or columnsof � ��� in parallel,droppingis typically orchestrated
in a way that confinesthe interactionto pairsof verticesthat areeither immediateneighborsor have short
pathsconnectingthemin the graphof

�
. Graphpartitioningis usedto facilitateload balanceandminimize

interactionamongparalleltasks—bothduringthecomputationandtheapplicationof thepreconditioner.
Thereare someimportantadvantagesto explicitly using an approximationof

� ��� for preconditioning,
ratherthanusing

�
’sapproximatefactors.First, thepreconditionercomputationavoidsthekind of breakdowns

thatarepossiblein incompletefactorizationdueto smallor zero(or negative, in caseof incompleteCholesky)
diagonals.Secondly, theapplicationof thepreconditionersinvolvesastraightforwardmultiplicationof avector
with thesparsematrix �
��� , which maybesimplerandmoreeasilyparallelizablethanthe forwardandback
substitutionswith H( and H- . However, just like H( and H- , �
��� maybedenserthan

�
. Therefore,thegraphof

� ��� many have many moreedgesthanthegraphof
�

andmultiplying a vectorwith � ��� mayrequiremore
communicationthanmultiplying avectorwith

�
.

2.4 Multigrid preconditioners

Multigrid methodsareaclassof iterativealgorithmsfor solvingpartialdifferentialequations(PDEs)efficiently,
oftenby exploiting moreproblem-specificinformationthana typical Krylov subspacemethod.Eachiteration
of a multigrid solver is a somewhatcomplex recursive procedure.In many applications,theeffectivenessof a
multigrid algorithmcanbesubstantiallyenhancedby usingit to preconditionaKrylov subspacemethodrather
thanusingit asthe solver. This is doneby replacingthe preconditioningstepof the Krylov subspacesolver
with oneiterationof themultigrid algorithm;i.e., treatingtheapproximatesolutionobtainedby aniterationof
themultigrid algorithmasthesolutionwith respectto ahypotheticalpreconditionermatrix.

2.4.1 Geometricmultigrid

Multigrid methodswereoriginally designedfor solving elliptic PDEsby discretizingthemusinga hierarchy
of regulargridsof varyingdegreesof finenessover thesamedomain.For example,considera domain # and
a sequenceof successively finer discretizationsnpo , n � ,

/7/7/
, nrq . Here npo is the coarsestdiscretizationand

nrq is thefinestdiscretizationover which theeventualsolutionto thePDEis desired.Figure5 shows a square
domainwith s ��t

. As thefigureshows,thegrid pointsin n P areasubsetof thegrid pointsin n Pvu � . A simple
formulationof multigrid wouldwork asfollows:

7



(a)  Discretization  G G(b)  Discretization  0 1

GG(c)  Discretization  (d)  Discretization  2 3

Figure5: Successively finerdiscretizationsof a domain.

1. First, the linear systemcorrespondingto discretizationnpo is solved. Since npo hasa small numberof
points,theassociatedlinearsystemis smallandcanbesolved inexpensively by anappropriatedirector
iterative method.

2. Thesolutionat n o is interpolatedto obtainan initial guessof thesolutionof thesystemcorresponding
to n � , which is four timeslarger. Amongvariouswaysof interpolation(alsoknows asprolongation), a
simpleoneinvolvesapproximatingthevalueof thesolutionat a point that is in n � but not in npo by the
averageof thevaluesof its neighbors.

3. Startingwith the initial guessobtainedby interpolation,a few stepsof relaxation(also referredto as
smoothing) areusedto refinethesolutionat n � . Often,therelaxationstepsaresimplya few iterationsof
a relatively inexpensive stationarymethodsuchasJacobior Gauss-Siedel.

4. The processof relaxationand interpolationcontinuesfrom n P to n Pwu � , until 6r)�� � s . After the
relaxationat nrq , a first approximation

� qo to the solution
� q of the the linear system

� q � q �x� q
correspondingto nrq is obtained.Successively moreaccurateapproximations

� q �
EL� qy E7/7/7/ areobtained

by
� qRmu �

��� qR )9z qR , where z qR is obtainedby solving
� z qR ��� qR|{ � � q 8 ��� qR � via steps5 and6

below.
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Figure6: Thedomainanddiscretizationsnro –np} of Figure5 mappedontofour paralleltasks.

5. The system
� z qR �~� qR in the

K
-th multigrid iteration is solved by a recursive process,in which the

residual
� qR correspondingto nrq is projectedon to nrq ��� andso on. The processof projection (also

known as restriction) is the reverseof interpolation. At the end of the recursive projectionsteps,a
relatively smallsystemof equations

� z o R ��� oR correspondingto npo is obtained,which is readilysolved
by anappropriateiterative or directmethod.

6. Thecycle of interpolationandrelaxationis thenrepeatedto obtain z��R E z y R E7/7/7/�E z qR startingwith z o R com-
putedin step5.

7. Theprocessis stoppedafter
Z

multigrid iterationsif
� qX is smallerthanauser-definedthreshold.

Whenthemultigrid methodis usedasapreconditioner, theninsteadof repeatingthemultigrid cycle
Z

times
to solve theproblem,theapproximatesolutionafteronecycle is substitutedasthesolutionwith respectto the
preconditionerinsidea Krylov subspacealgorithm. Whethermultigrid is usedasa solver or a preconditioner,
theparallelizationprocessis thesame.

Thefirst stepin implementingaparallelmultigrid procedureis to partitionthedomainamongthetaskssuch
thateachtaskis assignedroughlythesamenumberof pointsof thefinestgrid. For example,Figure6 showsthe
partitioningof thedomainof Figure5 andits discretizationsnpo –np} into four paralleltasks.Unlike Figures5
and6, thedomainin a realproblemmaybeirregularandthepartitioningmaynot betrivial. Thepartitioning
of thedomainimplicitly definesa partitioningof thegrids at all levels of discretization.It is easilyseenthat
the parallel interpolation,relaxation,andprojectionat any grid level requirea taskto exchangeinformation
correspondingto the grid pointsalong the partition boundarywith its neighboringtasks. All computations
correspondingto eachpartition’s interiorpointscanbeperformedindependently.

9



2.4.2
�

Algebraic multigrid

Thealgebraicmultigrid (AMG) methodis ageneralizationof thehierarchicalapproachof thegeometricmulti-
grid methodsothatit is notdependenton theavailability of themeshesusedfor discretizingaPDE,but canbe
usedablack-boxsolver for agivenlinearsystemof equations.In thegeometricmultigrid method,successively
finer meshesareconstructedby a geometricrefining of the coarsermeshes.On the otherhand,the starting
point for AMG is thefinal systemof equations(analogousto thefinestgrid), from which successively smaller
(coarser)systemsareconstructed.Thecoefficientsof acoarsesystemin AMG areonly algebraicallyrelatedto
thecoefficientsof thefinersystems,which is in contrastto thegeometricrelationshipbetweensuccessive grids
in geometricmultigrid.

Justlike geometricmultigrid, anAMG methodcanbeusedeitherasa solver or a preconditioner. In either
case,themethodinvolvestwo phases.In thefirst set-upphase,thehierarchyof coarsesystemsis constructed
from theoriginal linearsystemandtheprolongationandrestrictionoperatorsaredefined.Thesecondsolution
phaseconsistsof theprolongation,relaxation,andrestrictioncycles.

Efficient parallelizationof AMG is muchharderthanthat of geometricmultigrid. As usual,the basisof
parallelizationis a goodpartitioningof the graphcorrespondingto the coefficient matrix andassigningthe
partitions to individual tasks. The solution phase,in principle, can then be parallelizedwith computation
correspondingto the interior nodesremainingindependentand that involving the nodesat or closeto the
boundaryinvolving exchangeof datawith neighboringpartitions.Theboundarycommunicationcanbemore
involved thanin thecaseof geometricmultigrid becauseof the irregularity of thegraphandthe fact that the
setsof interactingboundarynodesandtheinteractionpatterncanbedifferentfor prolongation,relaxation,and
restriction.However, themaindifficulty in parallelizingAMG is in theset-upphase.

Effective parallelizationof theset-upphaseis essentialfor theoverall scalabilityof parallelAMG because
this phasecan accountfor up to one-fourthof the total execution time. The processof constructionof a
coarserlinear systemin the classicalAMG approachrelies on a notion of the ”strength” of dependencies
amongcoefficients. This processis not only sequentialin nature,but alsoinvolvesa highly non-localpattern
of interactionbetweenthe verticesof the graphof the coefficient matrix. Therefore,the algorithmmustbe
adaptedfor parallelization,which canmake theconvergencerateandper iterationcostof AMG dependenton
the numberof parallel tasks. Caremustbe taken to ensurethat parallelizationdoesnot adverselyeffect the
convergencerateor theiterationcomplexity of AMG. Typical approachesto parallelizingcoarseningin AMG
rely on decouplingthe partitions,usingparallel independentsets(similar to multicoloring describedearlier),
or performingsubdomainblocking,which startsthecoarseningat thepartitionboundariesandthenproceeds
to the interior nodes.Note that the coarseningschemehasan impacton the inter-task interactionduring the
prolongationandrestrictionstepsof thesolutionphase.

WhenparallelizingAMG on largeparallelmachines,thenumberof paralleltasksmayexceedthenumber
of pointsin someof thegridsat thecoarsestlevels.Thissituationrequiresspecialtreatment.A commonlyused
work-aroundto thisproblemis agglomeration, in whichneighboringdomainsarecoalescedleaving sometasks
idle duringtheprocessingof thecoarsestlevels. Anotherapproachis to stopthecoarseningwhenthenumber
of coefficientspertaskbecomestoosmall,whichmakesthebehavior of theoverall algorithmdependentonthe
numberof paralleltasks.

10



2.5
F

Stochasticpreconditioners

Therehasbeena fair amountof researchon algorithmsfor approximatingthesolutionof linearsystemsbased
onrandomsamplingof thecoefficientmatrixor onrandomwalksin thegraphcorrespondingto it. Mostof these
methodshave beenproven to work on a limited classesof linearsystemsonly, suchassymmetricdiagonally
dominantsystems.A few practicalsolvershave beendevelopedrecentlyby usingsomeof thesetechniques
for preconditioningKrylov subspacemethods.An attractive propertyof thesemethodsis that they areusually
trivially parallelizable.Thequestfor scalablemassively parallelsparselinearsolversmaypromptmoreactive
researchinto statisticaltechniquesfor preconditioning.

2.6 Matrix-fr eemethodsand physics-basedpreconditioners

Note that this articlediscussespreconditionersderived explicitly from thecoefficient matrix
�

of thesystem�������
that needsto be solved. In someapplications,

�
is never constructedexplicitly to save time and

storage.Instead,it is appliedimplicitly to computethematrix-vectorproductsrequiredin theKrylov subspace
solver. In someof thesecases,preconditioningis alsoappliedimplicitly, or the theknowledgeof thephysics
of the applicationis utilized to constructthe preconditioner, which cannotbe derived from the coefficient
matrix in a matrix-freemethod. Suchpreconditionersarecalledphysics-basedpreconditioners.Due to the
highly application-specificnatureof matrix-freemethodsandphysics-basedpreconditioners,thesetopicsare
not coveredin furtherdetail in thisarticle.

3 RelatedTopics

� Krylov subspacemethods

� Graphpartitioning

� Linearalgebrasoftware

� Algebraicmultigrid

� Domaindecomposition

� Parallelalgorithmsfor PDEs

4 Bibliographic Notes

Thereadersarereferredto Saad’sbook[11] andthesurvey by Benzi[1] for afairly comprehensive introduction
to variouspreconditioningtechniques.Thesedonot cover parallelpreconditionersandmaynot includedsome
of themostrecentwork in preconditioning.However, theseareexcellentresourcesfor gaininganinsight into
thestateof theart of preconditioningcirca2002.

HysomandPothen[7] andKarypis andKumar[8] cover the fundamentalsof scalableparallelizationof
incompletefactorizationbasedpreconditioners.Thework of GroteandHuckle[6] andEdmondChow [3, 4] is
thebasisof modernparallelsparseapproximateinversepreconditioners.Chow et al.’s survey [5] shouldgive
thereadersagoodoverview of parallelizationtechniquesfor geometricandalgebraicmultigrid methods.
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Last,but not theleast,almostall parallelpreconditioningtechniquesrely oneffectiveparallelheuristicsfor
two critical combinatorialproblems—graphpartitioningandgraphcoloring.Thereadersarereferredto papers
by KarypisandKumar[9, 10] andBozdagetal. [2] for anoverview of these.
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