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Java� has gained widespread popularity in the industry, and
an efficient Java virtual machine (JVM�) and just-in-time
(JIT) compiler are crucial in providing high performance
for Java applications. This paper describes the design and
implementation of our JIT compiler for IA-32 platforms by
focusing on the recent advances achieved in the past several
years. We first present the dynamic optimization framework,
which focuses the expensive optimization efforts only on
performance-critical methods, thus helping to manage the
total compilation overhead. We then describe the platform-
independent features, which include the conversion from
the stack-semantic Java bytecode into our register-based
intermediate representation (IR) and a variety of aggressive
optimizations applied to the IR. We also present some
techniques specific to the IA-32 used to improve code quality,
especially for the efficient use of the small number of registers
on that platform. Using several industry-standard benchmark
programs, the experimental results show that our approach
offers high performance with low compilation overhead. Most
of the techniques presented here are included in the IBM JIT
compiler product, integrated into the IBM Development Kit for
Microsoft Windows�, Java Technology Edition Version 1.4.0.

Introduction
Java** has gained widespread popularity, and an efficient
Java virtual machine (JVM**) and just-in-time (JIT)
compiler are crucial in providing high performance for
Java applications. Since the compilation time overhead of
a JIT compiler, in contrast to that of a conventional static
compiler, is included in the program execution time, JIT
compilers should be designed to manage the conflicting
requirements between fast compilation speed and fast
execution performance. That is, we would like the system
to generate highly efficient code for good performance,
but at the same time, the system should be lightweight
enough to avoid any startup delays or intermittent
execution pauses caused by the runtime overhead of
the dynamic compilation.

We previously described the design of version 3.0 of
our JIT compiler [1] that was integrated into the IBM
Development Kit (DK) 1.1.7. It was designed to apply

only relatively lightweight optimizations equally to all
of the methods so that compilation overhead would be
minimized but competitive overall performance could still
be achieved at the time of product release. We used an
intermediate representation (IR) called extended bytecode
(EBC)—a compact and stack-based representation similar
to the original Java bytecode. The conversion from the
bytecode to the IR is relatively straightforward. Using
the IR, we performed both classic optimizations, such as
constant propagation, dead code elimination, and common
subexpression elimination, and Java-specific optimizations,
such as exception check elimination. Without imposing a
large impact on compilation overhead, we applied method
inlining only to small target methods to alleviate the
performance problem caused by frequent calls of relatively
small methods. The devirtualization of virtual method call
sites was performed using the guard code for testing the
target method.
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In the previous version, we also introduced a mixed-
mode interpreter (MMI) to allow efficient mixed execution
between interpreted mode and compiled code execution
mode. We begin the program execution using the MMI as
the first execution mode. When the frequently executed
methods or critical hot spots 1 of the program are
identified using method invocation and loop iteration
counters, we invoke the JIT compiler to obtain better
performance for those selected methods. The MMI
handles a large number of performance-insensitive
methods, typically 80% or more of the executed methods
in the program, and thus provides an efficient execution
mode with no compilation overhead.

To achieve higher performance, we needed to apply
more advanced optimization techniques, including
aggressive method inlining, dataflow-based optimizations,
loop optimizations, and more sophisticated register
allocation. However, from the viewpoint of JIT compilers,
these are all relatively expensive optimizations, and simply
putting these optimizations in the existing JIT framework
might have caused unacceptably high compilation
overhead, typically large delays in application startup time.
Using a two-level execution model with the MMI and a
single-level, highly optimizing JIT compiler, the system
would not be able to manage the balance between
optimization effectiveness and compilation overhead
because of the increasing gap of the tradeoff level
between the two execution modes. It was therefore
imperative to provide multiple, reasonable steps in the
compilation levels with well-balanced tradeoffs between
cost and expected performance, from which an adequate
level of optimization could be selected that would
correspond to the execution context.

In this paper, we describe the design and implementation
of version 4.5 of our Java JIT compiler, specifically
developed for IA-32 platforms, which has been integrated
into the IBM DK 1.4.0. To manage the tradeoff, we did
several things:

● In addition to the EBC, we introduced two register-
based intermediate representations to perform more
effective and advanced optimizations. We evaluated
existing and new optimizations by considering the
compilation costs (both space and time) and applied
each of them on an appropriate IR.

● We constructed a dynamic optimization framework using
a multilevel recompilation system. This enabled us
to focus expensive optimization efforts on only
performance-critical methods. We classified all
optimizations into several different levels based on the
cost and the benefit of each optimization. The profiling

system continuously monitors the hot spots of a program
and provides information for method promotion.

● We evaluated our approach using industry-standard
benchmarks and obtained significant performance
improvement for each optimization, while keeping the
compilation overhead—in terms of compilation time,
compiled code size, and compilation peak memory
usage—at a low level.

Since this paper focuses on the evolution of our JIT
compiler from the previous version 3.0 in terms of its
internal architecture and a variety of added optimizations,
we do not address profile-directed optimizations, which
are more advanced techniques. The goal of this paper is
to describe what we have done in the design of our JIT
compiler to balance both the performance improvement
and compilation overhead without using the profile-
directed optimizations.

This paper is organized as follows. We first give an
overview of our JIT compilation system, covering both the
overall compiler structure with three different IRs and a
dynamic optimization framework using the interpreter and
multilevel optimizations. We then describe the platform-
independent optimizations performed on each IR,
followed by IA-32-specific optimizations, especially for the
efficient use of the small number of registers. We next
present the experimental results on both performance and
compilation overhead. Finally, we summarize the related
work and then conclude.

System architecture
This section provides an overview of our system. We
present the overall structure of the JIT compiler by
describing the three different IRs and list the major
optimizations performed on each IR. We then describe
the dynamic optimization framework, in which each
optimization performed in the three IRs is mapped to an
appropriate optimization level based on the compilation
cost and the performance benefit.

Structure of the JIT compiler
Figure 1 shows the overall structure of our JIT compiler.
We employ three different IRs to perform a variety of
optimizations. At the beginning, the given bytecode
sequence is converted to the first IR, called the extended
bytecode (EBC), which was used in the previous version of
our compiler as the sole IR. The EBC is stack-based and
very similar to the original bytecode, but it annotates
additional type information for the destination operand in
each instruction. Most EBC instructions have a one-to-one
mapping with the corresponding bytecode instructions,
but there are additional operators to explicitly express
some operations resulting from method inlining and
devirtualization. For example, if we inline a synchronized

1 A hot spot is a method invocation within a loop or an indirect method invocation
from a loop.
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method, we insert opc_syncenter and opc_syncexit

instructions at the entry and exit of the inlined code,
respectively. This allows us to easily identify any
opportunity to optimize redundant synchronization
operations exposed by several stages of inlining
synchronized methods. The instruction opc_cha_patch is
used to indicate the code location for the runtime patch
when the unguarded devirtualized code is invalidated due
to the dynamic class loading.

Method devirtualization and method inlining are the
two most important optimizations applied on this IR.
The class hierarchy is constructed and used, together
with the result of the object typeflow analysis, to identify
the compile-time monomorphic virtual call sites. The
devirtualized call sites and static/nonvirtual call sites
are then considered for inlining. We have two separate
budgets for performing inlining, one for tiny methods and
the other for all other types of methods. Inlining the tiny
method is always considered beneficial without imposing
any harmful effects on compilation time and code size
growth. In the next section we give a more detailed
description for our inlining policy. Other optimizations
performed on EBC include switch statement
optimization, typeflow analysis, and exception check
elimination.

The EBC is then translated to the second IR, called
quadruples. This is a register semantic IR. The quadruples
are n-tuple representations with an operator and zero or
more operands. We have a set of fine-grain operators in
quadruples for subsequent optimizations. For example, the
exception checking operations implicitly assumed in some
bytecode instructions are explicitly expressed in this IR for
optimizers to easily and effectively identify redundant
exception checking operations. Similarly, the class
initialization checking operation is also explicitly expressed
if the target class is resolved but not yet initialized for the
relevant bytecode instructions. Another example is the
virtual method invocation. The single bytecode instruction
is separated into several operations: the operation for
setting each argument, null pointer check of the receiver
object, the method table load, the method block load, and
finally the method invocation itself. This will increase the
opportunities for performing commoning optimization
for some of these operations between successive virtual
method invocations.

The translation from EBC to quadruples is based on
an abstract interpretation of the stack operations. In this
process, we treat both local variables and stack variables
in the same way to convert to symbolic registers. Figure 2
shows a simple example of the translation. The direct
translation of stack operations produces many redundant
copy operations, as shown in Figure 2(b). We apply copy
propagation and dead code elimination immediately after

the translation, and most of the redundancies that result
from the direct translation of the stack operations can be
eliminated, as shown in Figure 2(c).

We apply a variety of dataflow-based optimizations on
the quadruples. Some dataflow analysis, exception check
elimination, common subexpression elimination, and
privatization of memory accesses are iterated to take
advantage of the fact that the application of one
optimization creates new opportunities for the other
optimizations. The maximum number of iterations is
limited in consideration of its impact on the compilation
overhead (with different threshold values used between
the methods containing loops and those without loops).
The other optimizations on this IR include escape
analysis, synchronization optimization, and athrow inlining
(all described in the section on optimizations on
quadruples).

The third IR is called a directed acyclic graph (DAG).
(We ignore the back edges of the loop when we call the
IR acyclic.) This is also a register-based representation
and is in the form of a static single assignment (SSA)
[3]. It consists of nodes corresponding to quadruple
instructions and edges indicating both data dependencies

Structure of the JIT compiler. (DAG: directed acyclic graph. Athrow 
inlining: see the subsection on athrow inlining and Reference [2].)
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and exception dependencies. Figure 3 shows an example
of constructing the DAG for a method containing a loop.
This simply indicates how the DAG representation looks
and ignores all of the exception checks necessary for the
array accesses within the loop. The actual DAG includes
the nodes for exception checking instructions and the
edges representing exception dependencies.

This IR is designed to perform optimizations, such as
loop versioning and prepass code scheduling, that are
more expensive but sometimes quite effective. The IR is
converted back to quadruples before entering the code
generation phase. Thus, the conversion to DAG and
applying the DAG-based optimization is completely an
optional pass, and we need to apply this set of these
optimizations judiciously and for only those methods
that can benefit from the transformation.

All of the instructions of these three IRs are grouped
into basic blocks (BBs). Our BBs are extended in the
sense that they are not terminated by instructions which

constitute potential exceptions, as in the factored control
flow graph [4]. The BBs are placed using the branch
frequencies collected during the MMI execution. Since
the branch history information is limited to the first few
executions in the MMI, we do not use code positioning
guided solely by profile information [5]. Instead, we
combine the use of this information with some heuristics
so that we can place backup blocks generated by
versioning optimizations at the bottom of the code. We
also use the profile information to select the depth first
order for if-then-else blocks; this separates the BBs
of frequently and infrequently executed paths.

The compiler is designed to be very flexible so that
each optimization can be enabled or disabled for a given
method. At a minimum, we need to perform bytecode-
to-EBC conversion, EBC-to-quadruple translation, and
native code generation from the quadruples, even if all
optimizations are skipped. Method inlining can be applied
either for tiny methods only or based on more aggressive

ALOAD 1

IGETFIELD
ILOAD 2
IDIV
ISTORE 2

(a) (b)

AMOVE LA3 = LA1
NULLCHECK LA3
IGETFIELD LI3 = LA3, offset
IMOVE LI4 = LI2
IDIV LI3 = LI3, LI4
IMOVE LI2 = LI3

(c)

NULLCHECK LA1
IGETFIELD LI3 = LA1, offset

IDIV LI2 = LI3, LI2

Figure 2

An example of translation from EBC to quadruples: (a) Extended bytecode; (b) conversion to quadruples; (c) after copy propagation.

Figure 3

Example of constructing a DAG for a loop-containing method: (a) Original code; (b) quadruples for the loop body; (c) DAG for the loop 

body. For the sake of simplicity, this ignores all of the exception checks necessary for the array accesses within the loop.

int i, n;
float a[], b[], c[], d[];
float f1, f2, f3, f4;
...
for (i=0; i<n; i++) {
   f1 += a[i]*d[i];
   f2 += b[i]*c[i];
   f3 += a[i]*c[i];
   f4 += b[i]*d[i];
}
.... = f1;
.... = f2;
.... = f3;
.... = f4;

(a) (b)

a: faload f5 = a, i
b: faload f6 = d, i
c: fmul f7 = f5, f6
d: fadd f1 = f1, f7
e: faload f8 = b, i
f: faload f9 = c, i
g: fmul f10 = f8, f9
h: fadd f2 = f2, f10
i: fmul f11 = f5, f9
j: fadd f3 = f3, f11
k: fmul f12 = f8, f6
l: fadd f4 = f4, f12
m: iadd i = i, 1
n: iflt i, n
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static heuristics. The number of iterations on the dataflow
analyses can be adjusted. The generation of a DAG
representation and the optimizations on the DAG are
optional. We exploit this capability in the design of the
dynamic optimization framework described in the next
section.

Dynamic optimization framework
Figure 4 depicts the architecture of our dynamic
optimization framework 2 [6]. This is a multilevel
compilation system with an MMI and three compilation
levels (level 1 to level 3). All of the optimizations
described in the section above on the structure of the
compiler are classified into these three levels. Basically,
the lightweight optimizations, such as those with linear
order to the size of the target code, are applied in the
earlier optimization levels, and those with higher costs in
compilation time or greater code size expansion are delayed
to the later optimization levels. The classification is based
on the empirical measurements of both compilation cost
and performance benefit of each optimization [7].

The three optimization levels in our JIT compiler are
the following:

1. Level 1 (L1) optimization employs only a very limited
set of optimizations for minimizing the compilation
overhead. For the EBC, it performs devirtualization of
the dynamically dispatched call sites based on class
hierarchy analysis (CHA) [8]. For the resulting
devirtualized call sites and static/nonvirtual call sites, it
performs inlining only when the target method is tiny.
Switch statement optimization is also performed. For
quadruples, it enables dataflow optimizations only for
very basic copy propagation and dead code elimination
that eliminate the redundant operations resulting from

the EBC-to-quadruple translation. No other dataflow-
based or DAG-based optimizations are performed.

2. Level 2 (L2) optimization enhances level 1 by employing
additional optimizations. For the EBC, method inlining
is performed not only for tiny methods, but also for
all types of methods based on static heuristics. Pre-
existence analysis using the results of object typeflow
analysis is performed on both the EBC and the
quadruples to safely remove guard code and backup
paths that resulted from devirtualization. For quadruples,
it performs a set of dataflow optimizations iterated
several times, but the maximum number of iterations
is still limited to a low value. The other dataflow-based
optimizations, such as synchronization optimization and
athrow inlining, are also enabled at this level. DAG-
based optimizations are not yet performed.

3. Level 3 (L3) optimization is augmented with all
remaining optimizations available in our system. New
optimizations enabled at this level include escape
analysis (including stack object allocation, scalar
replacement, and synchronization elimination), code
scheduling, and DAG-based optimizations. It also
increases the maximum iteration count for the
dataflow-based optimizations on quadruples. There is
no difference between L2 and L3 optimizations in
terms of the scope and aggressiveness of inlining.

The compilation for L1 optimization is invoked from
the MMI and is executed within the application thread,
while the compilation for L2 and L3 is performed by a
separate compilation thread in the background. The
upgrade recompilation from L1-compiled code to higher-
level optimized code is triggered on the basis of the
hotness level of the compiled method as detected by a
timer-based sampling profiler [9]. Depending on the
relative hotness level, the method can be promoted from
L1-compiled code either to L2 or directly to L3 optimized

2 �ACM, 2001. This subsection is from the work published in [6]. Used with
permission.

Figure 4

System architecture of our dynamic optimization framework.
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code. This decision is made on the basis of different
threshold values on the hotness level for each L2 and
L3 method promotion.

The sampling profiler periodically monitors the program
counters of application threads; it keeps track of methods
in threads that are using the most central processing unit
time by incrementing a hotness count associated with each
method. The profiler keeps the current hot methods in a
linked list, sorted by the hotness count, and then groups
them together and gives them to the recompilation
controller at every fixed interval for upgrade recompilation.
The sampling profiler operates continuously during the
entire period of program execution to effectively adapt
to the behavioral changes of the program.

Platform-independent optimizations
This section provides a detailed description of the platform-
independent optimization features performed on each of
the three IRs.

Optimizations on EBC
Figure 5 shows the sequence of optimizations performed
on EBC. Since EBC is a compact representation, method
inlining is performed on this IR. It expands the target
procedure body at the corresponding call sites and
defines the scope of the compilation target. All of the
optimizations on EBC following the method inlining are
then performed to simplify the control flow or to eliminate
redundant code so that we can reduce the target code size
before converting to the second IR, quadruples.

Method inlining
Our dynamic compiler is able to inline any methods,
regardless of the context of the call sites or the types of
caller or callee methods. For example, there is no
restriction in inlining synchronized methods or methods
with try-catch blocks (exception tables), nor against
inlining methods into call sites within a synchronized

method or a synchronized block. For runtime handling of
exceptions and synchronization, we create a data structure
indicating the inline context tree within the method and
map each instruction or call site address that may
constitute an exception with the corresponding node in the
tree structure. Using this information, the runtime system
can identify the associated try region identification or
necessary object-unlocking actions based on the current
program counter. Thus, the inlining decision can be made
purely from the cost-benefit estimate for the method being
compiled.

Many methods in Java, such as accessor methods,
simply result in a small number of instructions of code
when compiled; we call these tiny methods. A tiny method
is one whose estimated compiled code is equal to or less
than the corresponding call site code sequence (argument
setting, volatile registers saving, and the call itself). That
is, the entire body of the method is expected to fit into
the space required for the method invocation. Our
implementation identifies these methods on the basis
of the estimated compiled code size. 3

Since invocation and frame allocation costs outweigh
the execution costs of the method bodies for these
methods, inlining them is considered completely beneficial
without causing any harmful effects in either compilation
time or code size expansion. In fact, an empirical study
showed that the tiny-only inlining policy has very little
effect in increasing compilation time, while it produces
significant performance improvements over the no-inline
case [10]. Thus, they are always inlined at all compilation
levels. For non-tiny methods, we employ static heuristics
to perform method inlining in an aggressive way while
keeping the code expansion within a reasonable limit.

The inliner first builds a (possibly large) call tree of
inlined scopes based on allowable call tree depths and
callee method sizes; then, to come up with a final tree,
it looks at the total cost by checking each individual
decision. Whenever it performs inlining on a method,
the inliner updates the call tree to encompass the new
possible inlining targets within the inlined code. When
looking at the total cost, we manage two separate budgets
proportional to the original size of the method: one for
tiny methods and the other for any type of method. The
inliner tries to greedily incorporate as many methods as
possible from the given tree using static heuristics until
the predetermined budget is used up. Currently the static
heuristics consist of the following rules:

● If the total number of local variables and stack variables
for the method being compiled (both caller and callees)
exceeds a threshold, reject the method for inlining.

3 This estimate excludes the prologue and epilogue code. The compiled code size is
estimated on the basis of the sequence of bytecodes, each of which is assigned an
approximate number of instructions generated.

Sequence of optimizations on EBC.

Figure 5
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● If the total estimated size of the compiled code for
the methods being compiled (both caller and callees)
exceeds a threshold, reject the method for inlining.

● If the estimated size of the compiled code for the target
method being inlined (callee only) exceeds a threshold,
reject the method for inlining. This is to prevent wasting
the total inlining budget due to a single excessively large
method.

● If the call site is within a basic block that has not yet
been executed at the time of the compilation, it is
considered a cold block of the method, and the inlining
is not performed. On the other hand, if the call site is
within a loop, it is considered a hot block, and the
inlining is tried for a deeper nest of call chains than
for outside a loop.

Throughout the process, the inliner devirtualizes
dynamically dispatched call sites using both the CHA and
the typeflow analysis. It produces either guarded code (via
class test or method test [11]) or unguarded code (via
code patching on invalidation [12]), depending on whether
the call site can be assumed to be monomorphic. When
more than two target methods are found, it performs
devirtualization only when the profile is available and
the most beneficial target can be selected. A backup
path is generated for both guarded and unguarded
devirtualization cases to execute when the compile-
time assumption is invalidated at runtime. Thus, it
produces a diamond-shaped control flow, with the
nonvirtual call on the fast path and the backup path on
the other. At this point, the nonvirtual call sites in the fast
path may or may not be inlined according to the static
rules described above.

Idiomatic translation
This component recognizes the sequences of bytecode
instructions or special method calls (primarily the math.
class library calls), and replaces those bytecode
instructions with simpler operators, mostly binary or unary
operators, expressed in the EBC. For example, if the
compiler finds a bytecode sequence that results from a
max or min operation expressed with explicit control
flow (if-then-else) or an arithmetic if operator,
this is converted to a single EBC instruction with the
corresponding operator. This code is generated using the
cmov instruction for efficient execution on IA-32.

For the math. class library calls, such as the square root,
ceil/floor functions, and some transcendental functions,
we can exploit the IA-32 native instructions or specially
prepared library calls, instead of invoking standard native
methods using the Java Native Interface (JNI), if they are
not specified as strictfp operations. Thus, we replace
the sequence of bytecode instructions for these method

invocations with single binary or unary operations. This
significantly simplifies the control flow at compile time
and also reduces the path length at execution time. In
addition, we can eliminate both F2D and D2F conversions
produced for single-precision operations before and after
the original math library calls [13]. This is because the
math libraries are provided with only double-precision
versions, and thus the inefficient conversion operations
are necessary when calling the library functions.

Switch statement optimization
The switch statement sometimes has a long list of case
labels, and, in general, this makes the generated code
inefficient because of the complicated control flow and
many compare-and-branch instructions that have to be
executed sequentially. In some cases, however, we can
optimize the switch statement to simplify the control
flow or to decrease the number of compare-and-branch
instructions executed before finding the appropriate target
statement. We consider two such optimizations here:
transformation to a table lookup operation and the
extraction of frequently executed case statements.

The transformation to a table lookup operation is made
when the switch statement is used as an assignment of a
different value to a single local variable according to the
input parameter. Figure 6 shows a simple example of this
transformation. We first examine the structure of the
switch statement to see whether it is applicable for this
transformation by checking each case statement. The
check includes the number of case labels and the density
of case key values, as described below. If the conditions
are satisfied, we introduce a compiler-generated table that
holds the values as its elements corresponding to each
assignment statement and convert the switch and the set
of case statements into a simple table lookup operation.

As shown in the figure, the new code consists of the
index variable normalization, the range checking of the
index, the loading from the compiler-generated table, and
the default value setting code for an index out-of-the-table
range. If the default setting is not explicitly specified in
the original switch statement, the conversion is in a
slightly different form. That is, when the index is within
the table range but turns out to be a value not specified in
the case statement (through a dummy value stored in the
table), we need to set the variable back to its original
value before entering the switch statement.

Because of the base overhead of the index
normalization and range checking, the transformation
is not actually effective in a small number of case
statements. Also, if the value density between the lowest
and the highest keys in the case labels is not sufficiently
high, the compiler-generated table may simply be a waste
of memory. Thus, we check the total number of case
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labels and the density of the values in the case labels
before applying this transformation.

The second optimization is the extraction of frequently
executed case statements. Using the execution frequencies
for individual cases and default statements collected
during the MMI execution, we extract some number of
frequently executed cases and put explicit compare and
branch instructions at the beginning of the switch
statement. We compute the expected number of
comparison instructions to be executed before reaching
each body statement by assuming either linear search
or binary search based on the number of case labels,
as performed in the code generation. We then try to
minimize this expected number by the case extraction.
When the number of case statements is small and the
frequency between the cases is clearly ordered, we replace
the whole switch statement with that control flow;
otherwise, the switch statement still remains after
removing some number of extracted cases. For the profile
collection, we limit the number of profiles both by the
number of executions at the switch statement entry and by
the number of executions at individual case statements in
order to save the profile buffer space. We collect several
different profiles for the default case, one for the input
value above the highest key within the case labels, one
for the value below the lowest key, and several others
between two adjacent keys within the range. On the basis
of these profiles, we apply the same transformation for the
default case.

Exception check elimination
The redundant exception check elimination (both null
check and array bound check) in the EBC level is based
on simple forward dataflow. The dataflow analysis
propagates both non-null and range expressions to
determine where they must be checked and where they
can be skipped. Since an exception is not explicitly

represented in the EBC, all results of the exception check
redundancy are marked as attributes in the relevant
instructions. When the EBC is converted to quadruples,
the explicit exception checking code is generated only
for those without the attribute, and thus the size of
the quadruples can be reduced.

Typeflow analysis
We perform typeflow analysis at various phases in the
optimization process to infer the static type of each object
reference. In the method inlining, we used the results of
typeflow analysis for determining the types of receiver
objects of virtual method invocations to increase the
opportunities of devirtualization. At this phase, we use
the results of typeflow analysis for three optimizations:
elimination of backup paths of devirtualized code,
elimination of redundant type checking code, and conversion
of the native method call System.arraycopy� to a
special operator instruction.

We exploit the “preexistence” [11] to safely eliminate
devirtualized-call-site backup paths without requiring a
complex on-stack replacement technique. The preexistence
is a property of virtual call receiver objects in which the
receiver is preallocated before the calling method is
invoked. If the receiver for a devirtualized call site has
this property and the devirtualization is made for the
target method of a single implementation, we can
eliminate the backup path without causing incorrect
behavior because we can guarantee that the single
implementation assumption is true on entry of the calling
method. Even if another implementation of the target
method is loaded because of the dynamic class loading
later, we can modify the affected method to be recompiled
at its entry before making the loaded class available. To
prove preexistence, we perform an additional argument
analysis to check whether the receiver object of each
devirtualized call site is directly reachable from an

Figure 6

An example of the transformation of the switch statement into a simple operation of loading from a compiler-generated table: (a) Original 
switch statement; (b) pseudocode after transformation.

switch (var) {
case 100: t = 'A'; break;
case 101: t = 'B'; break;
case 103: t = 'C'; break;
case 104: t = 'D'; break;
case 107: t = 'E'; break;
default: t = 'Z'; break;
}

(a) (b)

#I = var � 100;  // normalize index
if (#I < 0) || (7 < #I) goto default; // range checking
t = LOADTABLE #T[#I]  // table lookup
goto done;
default:
t = 'Z';   // default value setting
done:
 #I: compiler generated table index variable
 #T: compiler generated table [A,B,Z,C,D,Z,Z,E]
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argument of the calling method. This optimization results
in eliminating the merge points from virtual call sites in
the control flow and thus can improve the precision of
dataflow analyses in the later phases.

We also perform the elimination of redundant type
checking code using the typeflow analysis. The type
checking code examines whether two object references
are related by a subclass relationship and is required for
checkcast, instanceof, and aastore bytecode
instructions. By propagating the type information along
the forward dataflow from several seed instructions—such
as object allocation, argument specification, and instance
checking code—we can identify and eliminate redundant
type checking operations in some cases. For example, the
following statement is quite common in practice, and the
second instance checking for the checkcast instruction is
eliminated by propagating the type information already
checked:

If (anObj instanceof aClass) {

aClass ao � (aClass) anObj;

}

Another optimization is for the special method call,
System.arraycopy�. This is one of the most frequently
called native methods and takes five arguments: the source
array and its start index, the destination array and its start
index, and the number of elements to be copied. If we
know from the results of the typeflow analysis that an
array store exception cannot be raised for the given
pair of arrays, we convert the method call to a single
EBC operator. The typeflow analysis also provides the
information that the source and destination arrays are not
aliased on the basis of the corresponding seed instruction.
Additional attributes for this operator, such as the length

of the array, the start index, and the number of copy
elements, may be added by the optimizations of constant
propagation and copy propagation performed in the
quadruple optimization phase. At the code generation
phase, depending on the information available for the
operator, we inline the code by using the special
instruction movs with the repeat prefix for IA-32. In the
best case, the inlined code is quite simple because we
know that the range of the copy operation is guaranteed
to have no overlap and the array bound checking code is
not necessary.

Optimizations on quadruples
We perform a variety of dataflow-based optimizations on
quadruples. Figure 7 shows the sequence of optimizations
performed on quadruples. In the following, we describe
each optimization in detail.

Copy propagation and dead code elimination
These optimizations are designated to eliminate the
redundant register-to-register copy operations in the code
directly translated from the stack-based EBC, as described
above in the section on the structure of the JIT compiler.
The optimizations are applied globally across basic blocks.

Class initialization elimination
Since we separate the resolution of a class from the
execution of its class initializer, we can try to resolve a
class at compile time without violating the language
specification. For a resolved but not yet initialized class
access, we explicitly generate a quadruple operator for
class initialization, because we have to execute the class
initializer (i.e., �clinit�) once at every first access for
each class. The class initialization is a method invocation

Figure 7

Sequence of performance optimizations on quadruples.

Class initialization
elimination

Quadruples

Synchronization
optimization

Common subexpression elimination
and memory access privatization

Copy propagation/dead
code elimination

Null check elimination
(platform-independent)

Array bound check elimination

Athrow inlining

Null check elimination
(platform-dependent)

Escape analysis

Dataflow iterations

Typeflow analysis and
optimization

Copy propagation/dead
code elimination
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and thus has to be treated as a barrier in the following
exception check elimination and memory access
privatization phases. We attempt to eliminate the
redundant class initializations at this stage using simple
forward dataflow analysis.

Escape analysis
Escape analysis examines each dynamically allocated
object and deduces the bounds on the lifetimes of those
objects to perform optimizations. If all uses of the
allocated object are within the current method, we can
allocate the object on the stack to improve both the
allocation and reclamation costs of memory management.
If the object is proved to be nonescaping from the current
thread, we can eliminate any synchronization operations
on this object.

Our escape analysis is based on the algorithm described
in [14]. This is a compositional analysis designed to
analyze each method independently and to produce
summary information that can be used at every call
site that may invoke the method. Without the summary
information, the analysis treats all arguments as escaping
at the given call sites. Hence, the analysis result can be
more precise and complete, since more of the invoked
methods are analyzed. However, if backup paths for
devirtualized call sites have been eliminated by the pre-
existence analysis, we suppress generation of the summary
information. This is because the escape analysis will be
based on the optimistic assumption without considering
those potentially escaping paths eliminated by the pre-
existence analysis. In that case, we may incorrectly
conclude in some of its caller methods that the object
passed as a parameter is nonescaping by using the
summary information. When dynamic class loading
invalidates the pre-existence assumption, we will then have
to recompile not only the current method, but all caller
methods that have used the summary information as well.

The stack allocation of an object basically holds the
space of the whole object, including the object header,
within the stack frame. Since it may increase memory
consumption by extending the lifetime of objects until the
method returns and the stack is rolled back, we perform
the stack allocation only when the allocation site is not
within a loop and the size of the allocated objects (both
individually and collectively) is within a preset threshold
value.

When the only uses of an object are to read and write
fields of the object, we can perform scalar replacement for
those field variables instead of allocating the entire object.
For example, if an object is passed as an argument to
other methods or is used in type checking instructions,
it is not eligible for scalar replacement. For this
transformation, we introduce a new local variable for each
of the object fields and simply replace the allocation

instruction with a set of initialization instructions for those
new locals. Each reference to the object is also replaced
with a simple copy instruction from or into the new local
variable. The computational redundancies with this
transformation can be eliminated in the subsequent phase
of copy propagation and dead code elimination.

Dataflow iterations
We perform exception check elimination, common
subexpression elimination, and memory access
privatization iteratively using the partial redundancy
elimination (PRE) technique [15, 16]. Within each
iteration, the null check elimination first moves null
checks backward and eliminates redundant null
checks within a loop. This optimization increases the
opportunities for the following array bound checking
elimination, since the bound checking code is now allowed
to move in a wider range in the program beyond the
original place of the null checking code. After the
exceptions are eliminated from a loop, we apply common
subexpression elimination and privatize memory (instance,
class, and array variable) access operations. Again, these
optimizations should be effective here because many
of the barriers for code motion were eliminated in the
previous steps. The common subexpression elimination
and the memory access privatization can, in turn, expose
new opportunities for the exception elimination
optimization, so we iterate these dataflow optimizations
several times.

Figure 8 shows an example in which these optimizations
in the dataflow iteration can affect each other successively
to produce better code. The original program (a) is
converted to the quadruple representation (b). With a
simple approach of eliminating redundant exceptions using
forward dataflow, the first null check for the array a in (b)
cannot be lifted out of the loop, since the exception has
not been checked in the code reaching to the entry of
the loop. Our algorithm uses PRE and moves this null
check out of the loop, as shown in (c). This creates an
opportunity in (d) to move the bound checking code out
of the inner loop, which in turn enables privatization to
be applied for the loop invariant array access in the first
dimension, as shown in (e). This again creates another
opportunity (f) for elevating the null checking code
out of the inner loop.

We assign different values for the maximum number of
iterations of these dataflow optimizations depending on
the platform (i.e., the number of available registers),
optimization level, and whether or not the method
contains a loop. For IA-32, we chose four iterations as the
maximum case when using the highest (L3) optimization
and for a method containing a loop. We adjust this
number for the lower-level optimizations and for a method
without a loop. In any case, the specified number is a limit
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for the iterations. We also stop the iterations if an
iteration produces no new transformations.

Null check elimination (platform-dependent)
This is the platform-dependent part of our null check
elimination algorithm [15]. On IA-32 Windows and
Linux**, we can utilize the hardware trap mechanism for
accessing the zero page. We call the null check implicit
when we can rely on the hardware trap without generating
actual checking code, and explicit otherwise. We need to
use an implicit null check wherever possible to minimize
the overhead of null exception checks.

Our algorithm treats all null checks as explicit at first.
We then perform forward dataflow analysis to compute
the latest point in the region at which each null check can
be moved forward. We then insert either an explicit or
implicit null check at that point, depending on whether
the next instruction following the insertion point will raise
a hardware trap for the object access. Finally, we perform
backward dataflow analysis to eliminate redundant explicit
null checks. This optimization substitutes explicit null
checks wherever possible by finding and using the memory
accessing instructions that raise the hardware traps.

Typeflow analysis
The typeflow analysis and optimizations performed on
quadruples are basically the same as those performed
on the EBC. That is, the results of the analysis are used
for the elimination of devirtualized code backup paths,
the elimination of the redundant type checking code,
and the conversion of the calls to the native method
System.arraycopy� into the internal operator.
We perform the typeflow analysis and the same set of
optimizations here again to identify the type of variables
more precisely than for the EBC. This is because other
optimizations—in particular, copy propagation and
memory access privatization—allow better dataflow
propagation and thus expose more opportunities for the
three optimizations using the result of the typeflow
analysis.

Synchronization optimization
Since we explicitly express the synchronization enter
and exit operations (syncenter and syncexit) in
our IR with its target object, it is easy to identify the
opportunities for eliminating redundant synchronization
operations. There are two scenarios in which we can

Figure 8

An example of successive optimizations with dataflow iterations. Note that for simplicity the code for initializing and incrementing loop indices 

in the original program is not shown in (b) to (f) . This is a minor revision of the figure published in [15]. ©ACM, 2000; used with permission.

i = 0;
do {
    j = 0;
    do {
        sum +� a[i][j];
        j++;
    } while (expr1)
    i++;
} while (expr2)

do {
    do {
        nullcheck a;
        boundcheck(a,i);
        t1 � a[i];

        nullcheck t1;
        boundcheck (t1,j);
        t2 � t1[j];

        sum +� t2;
    } while (expr1)
} while (expr2)

Original program
(a)

Quadruple
representation

(b)

nullcheck a;
do {
    boundcheck(a,i);
    t1 � a[i];
    do {

        nullcheck t1;
        boundcheck (t1,j);
        t2 � t1[j];

        sum +� t2;
    } while (expr1)
} while (expr2)

After scalar
replacement

(e)

nullcheck a;
do {
    boundcheck(a,i);
    t1 � a[i];
    nullcheck t1;
    do {

        boundcheck (t1,j);
        t2 � t1[j];

        sum +� t2;
    } while (expr1)
} while (expr2)

After second nullcheck
elimination

(f)

nullcheck a;
do {
    do {

        boundcheck(a,i);
        t1 � a[i];

        nullcheck t1;
        boundcheck (t1,j);
        t2 � t1[j];

        sum +� t2;
    } while (expr1)
} while (expr2)

nullcheck a;
do {
    boundcheck(a,i);
    do {

        t1 � a[i];

        nullcheck t1;
        boundcheck (t1,j);
        t2 � t1[j];

        sum +� t2;
    } while (expr1)
} while (expr2)

After first nullcheck
elimination

(c)

After array bound
check elimination

(d)
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perform the optimization. One is a nested synchronization,
that is, a syncenter operation on the same object twice
followed by two syncexit operations, where we can
remove the inner pair of the synchronization. The other
is two separate synchronization regions, such as a pair
of syncenter and syncexit operations on one object
followed by another pair of syncenter and syncexit

operations on the same object. There may be some other
code between the two regions. In this case, we have an
opportunity to reduce the number of synchronization
operations by extending the scope of synchronization
and creating a single larger synchronization region.

This second optimization requires somewhat careful
consideration to guarantee the correct program behavior.
Suppose there is an object field access in the code
between the two synchronization regions. If we perform
this optimization, the code of the field access can be
moved within the new wide synchronization region and
may be reordered with other memory operations on
different objects that were placed within either of the two
original synchronization regions. If the program assumes
the order of computation forced by the two original
synchronization regions, this optimization can lead to an
unintended behavior. Thus, we perform this optimization
only if there is no quad instruction causing any side
effect, such as an object write instruction and a method
invocation between the two synchronization regions.

Another possibility for optimization is to lift the
synchronization operation out of the loop. This situation
occurs when a synchronized method is inlined within a
loop. This optimization is efficient and probably legal
in Java, but the resulting behavior is not what most
programmers would expect. If the loop is long-running,
other threads trying to access that method will be starved.
However, most programmers writing such a loop would
expect the lock to be released and reacquired each time
through the loop to allow any other thread to have a
chance to execute. Thus, we currently do not perform
this optimization on synchronization.

Athrow inlining
This is a part of exception-directed optimization (EDO)
[2], which is a technique to identify and optimize
frequently raised exception paths. It first collects exception
path profiles. An exception path is a stack trace from the
method that throws an exception through a method that
catches the exception. It is expressed with the sequence of
a pair of the method and the program counter of the call
sites. Whenever the runtime library traverses the stack
to find the method that catches the given exception, it
registers the exception path and increments the count.
After identifying a particular exception path that is
executed frequently enough, EDO drives recompilation for
the exception-catching method with a request to inline all

of the methods along the call sequence corresponding
to the exception path down to the exception-throwing
method.

After exception paths are inlined, the compiler
examines each athrow instruction that can be eliminated
by linking the source and destination of the exception
paths within the same compilation scope. This consists of
three steps. For the first step, we perform exception class
resolution, in which we identify the class of every possible
exception object that can be thrown at each athrow
instruction using the typeflow analysis. In the simplest
case, the exception object is explicitly created immediately
before the athrow, and thus the class can easily be
identified. In a more challenging case, the exception object
is created and saved in a class field and is used repeatedly
by loading the class variable before the athrow. Even in
this case, we can determine the set of possible classes
using the current class hierarchy structure.

For the second step, we perform the exception-handling
analysis within the current method. When we identify the
exact class of the exception object, we can find the
corresponding catch block. When we determine the
multiple exception classes under a class hierarchy in the
previous step, we find the corresponding catch block for
each of the possible exception classes.

For the third step, we perform the conversion of
the athrow instruction to either an unconditional or a
conditional branch instruction, depending on whether
or not the exact class of the exception object has been
identified. If necessary, to create a separate entry point
for the branch instruction, the entry basic block for the
target catch block is divided into two: one for loading the
exception object and the other for the body of the catch
block. The athrow instruction itself may remain in a
branch of a conditional statement if we cannot find the
catch block for all possible exception classes in the current
method. After the conversion, the exception object may no
longer be accessible if there is no reference within the
catch block. In this case, the explicit object allocation
before raising the exception will be eliminated in a
subsequent phase of dead code elimination.

Optimizations on DAGs
The sequence of optimizations performed on DAGs is
shown in Figure 1.

Loop optimizations
We perform two kinds of loop optimizations: loop
versioning and loop simplification. Loop versioning [1, 17]
is a technique to eliminate the exception-checking code
within a loop by creating two versions of the loop: an
optimized loop and an unoptimized loop. Guard code is
provided at the loop entry for checking the possibility of
raising an exception within the loop, and— depending on
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the result of the entry check— either the optimized loop
or the unoptimized loop is selected at runtime. The guard
code is provided for both null pointer checks and the
array bound checks for the entire range of the loop
index. The exception-checking code is eliminated in the
optimized loop, while the unoptimized loop retains the
exception-checking code. Figure 9(a) shows an example
of this transformation. We can expect the optimized loop
to be executed for most of the time, since exceptions
are rarely thrown in practice.

For nested loops, we apply loop versioning to both
outer and inner loops by creating only two versions of
the loop: the optimized version for both outer and inner
loops and the unoptimized version for both loops. The
unoptimized version is executed upon any failure of the
entry tests for both the outer loop and the inner loop.
Otherwise, the optimized loop is executed.

In the optimized loop, this optimization not only
eliminates the runtime overhead of the exception checking
code, but also eliminates barriers for code motion and
thus creates more optimization opportunities in the later
phases. On the other hand, code growth is the major
drawback of this transformation. In order to avoid an
unacceptable level of code growth and to limit the
compilation overhead, we check the number of basic
blocks and instructions within the loop body, and proceed
only if it is within a predetermined threshold.

Loop simplification is another optimization we perform
in this phase. As shown in Figure 9(b), this transformation
unfolds the loop completely if we know the start and end
of the loop index at compile time. Again, code growth is

the main limiting factor of this transformation, and we
check the size of the loop body before its application.

Prepass code scheduling
Finally, we perform prepass code scheduling within each
basic block using a simple list-scheduling algorithm [18].
We integrated register minimization into list scheduling
in order to avoid the pass-ordering problem between the
register allocation and scheduling. The prepass scheduler
traverses the DAG in its topological order. It selects the
node that has the highest scheduling priority among ready
nodes and appends the selected node to the end of the
sequence of scheduled nodes. During scheduling, the
scheduler also maintains a set of currently used
registers.

Our algorithm uses two different scheduling policies:
maximization of instruction-level parallelism (ILP) and
minimization of the number of used registers. When there
are plenty of available registers on the target architecture,
the scheduler prefers a node on the critical path of the
DAG to maximize the parallelism. When the number of
available registers falls below a certain threshold, the
scheduler then invokes the second list-scheduling routine
to minimize the register usage; that is, it prefers the node
that will release the largest number of registers. In the
final phase of the scheduling, we reduce the number of
local variables by assigning the same variable when
the lifetime of the two variables does not overlap.

Figure 10 shows quadruples after we assigned
pseudoregisters in the example shown in Figure 3. We
denote an integer register as Rn and a floating-point

Figure 9

An example of (a) loop versioning and (b) loop simplification.

public int foo (int[] a, int[] b,
               int start, int end) {
    for (int i = start; i < end; i++) {
        a[i] = a[i] + b[i];
    }
}

(a)

(b)

if ((a != null) && (a.length >= end) &&
    (b != null) && (b.length >= end) &&
    (start >= 0)) {
    /* optimized loop */
    for (int i = start; i < end; i++) {
        /* without exception checking code */
        a[i] = a[i] + b[i];
    }
} else {
    /* unoptimized (original) loop */
    for (int i = start; i < end; i++) {
        /* with exception checking code */
        a[i] = a[i] + b[i];
    }
}

static final int start = 0;
static final int end = 3;
public int foo (int[] a, int[] b) {
    for (int i = start; i < end; i++) {
        a[i] = a[i] + b[i];
    }
}

    a[0] = a[0] + b[0];
    a[1] = a[1] + b[1];
    a[2] = a[2] + b[2];
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register as Fn. Figure 10(a) shows the result with the
original instruction ordering. This ordering maximizes ILP
and requires nine floating-point registers. Figure 10(b)
shows the result when we applied prepass scheduling with
the minimal register usage policy. After the node e is
scheduled, the ready nodes are node f and node k. While
node f requires another floating-point register to hold the
loaded value, node k does not increase the number of
used registers. Thus, the scheduler selects node k after
node e. In this case, the resulting instruction ordering
requires only seven floating-point registers.

Platform-specific optimizations
This section describes IA-32-specific optimizations
implemented in the code generation phase. The sequence
of optimizations is shown in Figure 1. First the architecture
mapping takes the platform-independent IR (quadruples)
and converts it to a form suitable for the target architecture.
For IA-32, we have two phases. One is to convert it from a
three-operand format to a two-operand format as required
by the architecture, except for the case in which we can
exploit the lea instruction for three-operand addition
and subtraction operations. We insert an additional copy
instruction for each statement to be converted. The other
phase is to specify where we can use memory operand
instructions in the code generation. For each memory
load instruction, we examine three conditions:

1. Whether the corresponding use for the loaded value is
single.

2. Whether the instruction using the value allows the
memory operand format.

3. Whether the source operands for the load instruction
are all live at the corresponding use.

If these conditions are met, we mark both the definition
and the use of the variable with an attribute indicating
that the load instruction can be skipped by using the
memory operand instruction at the corresponding use
statement. A typical example is an array bound check,
which usually consists of loading the array size followed by
comparing it with a given index. If the size of the array is
not used after the bound check, both the definition and
the use of the array size variable are marked as a memory
operand.

After the architecture mapping, we perform a set of
optimizations for efficient usage of the registers. Since
we do on-the-fly local register allocation during the code
generation phase for IA-32, 4 it is important to provide the
register manager with a global view regarding the use of
registers in order to avoid inefficient register shuffling or
spilling code. The next sections show how the decision for
spill candidate is made by the register manager, describe
how the register preference is used for allocating registers,
and describe our technique in the code generation phase
for increasing the number of available registers.

Mean-time-to-next-use analysis
When no register is available, the register manager has to
decide which register should be spilled out into memory.
With the stack-based IR (EBC), as in the previous version
of the compiler, we first searched for the appropriate one
from the local variable registers and then from the stack
variable registers, on the basis of the assumption that
stack variables are generally short-lived and thus more
likely to have a shorter interval to the next reference.
With the register-based IR (quadruples), the register
manager has to know how soon each of the local variables
is accessed next from the current instruction in order to
make the right decision for spill-out registers. We call this
information the mean time to next use.

We compute the mean time value as the number of
quadruple instructions between each definition and
reference of the local variables by using the backward
dataflow analysis. In the local analysis, the local
propagator initializes a counter whenever it encounters
a reference to a new local variable. It increments all
of the active counters as it scans each instruction in the
quadruples. When it reaches a local variable reference
with an active counter, it updates the mean time value of
the operand with the counter value. The counter is cleared

4 We use different register allocation schemes depending on the target platform:
a register manager for IA-32, a linear scan allocator [19] for PPC, and a graph-
coloring allocator [20, 21] for IA-64. This is based on the consideration of both
the number of available registers and the restrictions on register usage for each
platform.

An example of prepass code scheduling. (a) Instruction ordering with 

maximum instruction-level parallelism. (b) Instruction ordering with 

minimal register usage.

Figure 10

(a) (b)

a: faload F5 = R1, R2
b: faload F6 = R3, R2
c: fmul F7 = F5, F6
d: fadd F1 = F1, F7
e: faload F7 = R4, R2
f: faload F8 = R5, R2
g: fmul F9 = F7, F8
h: fadd F2 = F2, F9
i: fmul F5 = F5, F8
j: fadd F3 = F3, F5
k: fmul F6 = F7, F6
l: fadd F4 = F4, F6
m: iadd R2 = R2, 1
n: iflt R2, R6

a: faload F5 = R1, R2
b: faload F6 = R3, R2
c: fmul F7 = F5, F6
d: fadd F1 = F1, F7
e: faload F7 = R4, R2
k: fmul F6 = F7, F6
l: fadd F4 = F4, F6
f: faload F6 = R5, R2
g: fmul F7 = F7, F6
h: fadd F2 = F2, F7
i: fmul F5 = F5, F6
j: fadd F3 = F3, F5
m: iadd R2 = R2, 1
n: iflt R2, R6
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at its definition point. In the global analysis, the results
from local analysis are combined by selecting the smallest
mean time value. In the case of loop back edges or edges
with biased branch frequencies, the local result on a
particular single basic block is selected. We iterate the
local and global dataflow analysis several times with a
certain limit on the mean time value.

In the code generation phase, the register manager uses
the mean time value by updating its internal register table.
It copies the value from the operand for the variable
defined or referenced in the current IR instruction, or
otherwise decrements the value within the table for the
variables not currently referenced. Thus, the register
manager keeps the mean time value up to date in the
register table throughout the code generation and uses the
information for making spill decisions. In addition, when
a local variable reference is in its last use, the mean time
value in the operand is zero, and the register manager can
invalidate the corresponding register immediately after its
code generation and put it in the list of available registers.

Register constraint propagation
There are constraints for the use of registers for some
IA-32 instructions; that is, a particular operand must reside
in a designated register. For example, the shift instructions
require ecx to be the second operand. The integer division
instructions are another example. Also, only four of the
eight general-purpose registers can hold 8-bit values. We
have to satisfy these requirements during code generation
by moving values between registers or between registers
and memory, if necessary. Traditionally, the register-
coalescing technique [22] in the graph-coloring register
allocation addressed this problem by merging nodes
representing local variables and physical registers in order
to eliminate redundant moves. The register constraint
problem was also discussed in the linear scan register
allocation, where register-preallocated live ranges [19]
were used. We use the register constraint propagation to
help the register manager assign the optimal registers [23].

Since the register manager works from the top to the
bottom of the program, registers are assigned to local
variables at their definition and released at their last
use. To track the register constraint information for the
register manager, we first add the register constraint
seed information to the source operands of the given
quadruples and then propagate the information backward
for the corresponding definitions. We currently use the
following as the seeds of the register usage constraints:

● Calling convention: We follow the calling convention
to use eax, edx, and ecx for the first three integer
parameters (long parameters are treated as two integer
parameters) for method invocations. The return of

integer-type values is through eax and the return of
long-type values is through eax and edx.

● IA-32 architectural requirements: The integer division,
integer multiplication, and shift instructions require
specific registers to be used for some operands. The
compare-and-swap instruction, which we use for
generating code for the synchronization operation,
requires that its operands reside in specific registers.
Instructions dealing with 8-bit values for byte-type
operations (e.g., baload) allow use of only four of
the eight general-purpose registers.

● Preference for variables referenced across method calls:
For local variables whose live ranges cross a method call
or a C-runtime library call, it is preferable to assign
nonvolatile registers to reduce the cost of saving and
restoring registers over the call. In contrast to the above
two requirements, which we have to satisfy in the code
generation, this is just a preference.

We use a bit vector representation with the number
of available registers to express the register constraint
information. The constraint expression can be either
positive or negative; that is, we can specify that a local
variable be assigned with a certain specific register,
or not be assigned with specific registers. This negative
specification is important to avoid a situation in which the
specified register is occupied by another variable whose
live range overlaps the live range of the target variable.

Second, we propagate the seed information within each
basic block. The local propagator manipulates the array of
the register constraint bit vector for local variables and
a temporary called the currently occupied register bits
(CORB) as it scans the code from the bottom to the top.
If it encounters a local variable reference with a positive
register constraint, it updates the array for the local
variable with the bits indicating the specified registers and
then clears the bits for all of the other local variables. The
CORB status also reflects the corresponding register bits.
Likewise, if it encounters a local variable reference with
a negative constraint, it updates the array for the local
variable with the inverse bits of the CORB. If it reaches
a local variable definition, it clears all of the bits in the
array for the local variable and the corresponding bits
in the CORB. Figure 11 shows an example of the local
constraint propagation. The register constraints, both
positive and negative, are expressed in the bit vectors as
shown in the figure. Each bar represents the live range of
a local variable within a basic block, and two of them have
seed information at the reference points. After the local
propagation, each live range has the propagated register
constraint information at its definition point.

Finally, the local information is propagated across the
entire method using backward dataflow. The aggregation
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function in the dataflow equation is a bitwise operation
between the constraints of successors for each local
variable, as follows:

● If the constraints of the successors are all positive,
perform a bitwise OR operation.

● If the constraints of the successors are all negative,
perform a bitwise AND operation.

● If the constraints of successors are mixed positive and
negative, perform a bitwise AND operation and set the
positive flag.

We iterate the local and global dataflow analysis several
times. In our current implementation, we iterate as many
times as the maximum depth of the loop nest existing in
the method.

Code generation
Since the number of registers is limited on IA-32, we
must use these scarce resources efficiently to achieve high
performance. We use three techniques: reclamation of
the Frame Pointer register, fast accesses to the thread
local storage without using a dedicated register, and
management of two different sets of floating-point
registers.

Frame Pointer register
We reclaimed the Frame Pointer register and freed up
ebp to be used as a general-purpose register. All of the
local variables in memory are accessed through the stack
pointer. The method prologue and epilogue code become
simpler and more efficient just by increasing or decreasing
the stack pointer with the current frame size. If there is
no stack memory operation within the method, we can
even skip creating the stack frame, saving the two

instructions for sliding the stack pointer. We reorder local
variables that require spill code within the stack frame
on the basis of the access count, so frequently accessed
variables are located within the 1-byte offset from the
stack pointer.

When a hardware trap or a software exception is raised
at runtime, the exception handler and the stack walker
must know the frame base address in order to unwind the
chain of stack frames. We create a map for the runtime to
indicate the current stack offset from the base for each
instruction. Throughout code generation, we maintain the
current offset value of the stack pointer, and at the end of
the compilation we create the mapping table for every
instruction in the method that potentially raises an
exception and where the stack offset value is changed.
Each entry in the map includes a pair of the stack offset
value and the corresponding instruction address. Since
our frame size is basically fixed and varies only when the
arguments are pushed for method calls or C-runtime
calls, the map can be kept reasonably small. With an
appropriate compression technique, the map size is kept
within 10% of the generated code size for most methods.

The MMI- and JIT-generated code share the same
execution stack in our system. Since the MMI uses ebp
as a frame pointer, the exception handler first identifies
which type of frame, MMI or JIT, is currently on the
stack, and then extracts the frame base address
accordingly.

Thread local storage pointer
Instead of having a dedicated register as a pointer to the
JVM/JIT thread local storage, we use the FS segment
register (one of the four segment registers for pointing
to data segments in IA-32 architectures). The segment
register is usually reserved for use by the operating system
for its own purposes and cannot be used arbitrarily by
applications. Microsoft Windows** maintains a thread
information block (TIB) structure for every thread by the
FS segment register. The first entry in this structure is a
pointer that contains the head of the exception-handler
chain. We create an exception-handler record when
starting the execution for each thread and register with
the system by setting the pointer to the offset 0 into the
segment pointed to by the FS register. Our JIT compiler
then uses one entry in this structure as the pointer to our
own thread local storage. Thus, we can obtain the thread
local storage address through one indirection of memory
access.

On Linux, the FS segment register is not reserved for
use for any particular purpose, and thus any application
can use the segment register for improving its own
performance, which means that using the segment register
in our JIT compiler can cause an unexpected conflict with
other applications. Instead, we use the topmost entry of

An example of local constraint propagation (a) before and (b) 
after local propagation. Each bar represents the live range of a 
local variable associated with a register constraint value.
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the stack space for the pointer to the thread local storage.
The entry can be accessed by masking the stack pointer so
that we can still reach the thread local storage through
one indirection, as in the Windows implementation.

Floating-point registers
We use streaming single-instruction multiple-data (SIMD)
extensions (SSE and SSE2) when they are supported by
the underlying machine and the operating system. We can
generate more efficient code using these new instructions,
first because the associated XMM registers are designed
to be flat, in contrast to the existing x87 floating-point
stack registers; second, because the instructions are
divided between single-precision and double-precision
operations, we do not have to do extra precision control
operations. On the other hand, we have other kinds of
challenges for register allocation and code generation,
as follows:

● SSE/SSE2 instructions do not support all of the
existing floating-point functions (such as the remainder
operation and transcendental functions) using the x87
registers, and we have to move values from one register
set to another for those operations.

● In some operations, such as the conversion from a
floating-point number to an integer number, SSE/SSE2
instructions are much faster than x87 instructions. We
want to generate the faster code, even if we pay extra
for memory operations that transfer values between
registers.

● When there are more than eight live floating-point
variables, it is better to use both register sets rather
than sticking to one register set and generating memory
operations for the extra variables. Thus, we have to deal
with two kinds of instructions and registers for efficient
floating-point code generation.

We follow lazy migration policy for transferring values
between the two sets of registers. When the source
operands are in only one of the sets of registers, we use
the instructions available for those registers, except for
those operations having constraints or special preferences,
as mentioned above. When the source operands are mixed
between the two register sets, we basically move values
to XMM registers, if available, and generate SSE/SSE2
instructions.

It is possible to apply the register constraint back
propagation, as we did for integer registers. We can
assign seed registers for those operations with the register
constraints and preferences, and if we choose to pass
floating-point parameters via XMM registers, we can
include parameter-setting operations as well. Currently
we do not do this, but the constraint propagation would

provide useful information for avoiding inefficient register
move operations, since we cannot directly transfer values
between the two sets of registers, but have to use expensive
memory operations.

Experimental results
This section presents some experimental results. We first
outline our experimental methodology and then present
and discuss our results for performance improvement and
compilation overhead of individual optimizations and for
the effectiveness of our dynamic optimization framework.
The last two sections below present the history of
performance improvement with each release of our JIT
compiler.

Benchmarking methodology
All of the performance results presented in this section
were obtained on an IBM IntelliStation* M Pro 6850
(Intel Xeon** 2.8-GHz uniprocessor with 1024-MB
memory), running Windows XP SP1. We used the
JVM of the IBM DK for Windows, Java Technology
Edition Version 1.4.0 prototype build, except for the
results reported in the section on the evolution of
performance improvement, where we used each version
of the JVM/JIT combination. We used SPECjvm**98
and SPECjbb**2000 [24] as common benchmarks
for evaluating our system in all of the experiments.
SPECjvm98 was run in the test mode with the default
large input size, and in the autorun mode with ten
executions for each test. Each distinct test was run with
a separate JVM with the initial and maximum heap size
of 128 MB. SPECjbb2000 was run in the fully compliant
mode with one to eight warehouses, with the initial and
maximum heap size of 256 MB, and we reported the
best scores among these runs. To evaluate our dynamic
optimization framework in more detail, we also present
results for larger benchmarks—Java Grande [25],
XSLTMark [26], and SPECjAppServer**2002 [24]—in the
section on evaluation of the dynamic optimization framework.
The system configuration and parameter settings for
measuring these benchmarks are described in that section.

When measuring the compilation overhead, we use a
separate thread for compiling all methods. The compiler
is instrumented with several hooks for each part of the
optimization process to record the processor timestamp
counter value. The priority of the compile thread is set
higher than the priority of the normal application threads.
We measure the time difference between the beginning
and the end of the compilation from the timestamp
counter.

Evaluation of individual optimizations
We first evaluate how much benefit each optimization
brings to the system at what compilation cost. We disable
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each optimization individually and examine how much
impact it has on both performance and compilation
overhead. We use a single optimization level for this
measurement, instead of using the three-optimization-level
recompilation system, to get a clear picture of the cost
and benefit of each optimization before classifying them
into the three optimization levels. We evaluated the
eight variations shown in Table 1. The baseline of the
comparison is the configuration with all optimizations
enabled within the system.

Figure 12 shows changes in both performance and
compilation overhead when each optimization is disabled.
We use three metrics for compilation overhead:
compilation time, compiled code size, and compilation
time peak work memory usage. A smaller bar indicates
a larger impact from that optimization for the system.
The peak memory usage is the maximum amount of
memory allocated for compiling methods. Our memory
management routine allocates and frees memory in
1-MB blocks.

There are several observations for these measurement
results. First, the static-heuristics-based inlining (leftmost
bar) contributes an average of 10% performance
improvement but causes a large compilation overhead.
Without the aggressive inlining, the overhead is halved
or reduced to less than half for all three metrics. In
particular, the compilation time in jess, db, the code
size in jess, and the work memory usage in db, javac,
and SPECjbb are all reduced by more than 60%. The
performance impact for jack is larger than that for
the others because EDO cannot effectively optimize
frequently raised exception paths without performing
aggressive inlining.

Second, the DAG-based optimization (second bar from
the right) shows the next largest compilation overhead.
This occupies an average of 20 to 30% of the total
compilation overhead, depending on the metric. In
particular, this creates large overheads for db and
SPECjbb in both compilation time and work memory
usage. Furthermore, the performance contribution of this
optimization is limited to only a few programs, such as
mpegaudio. We have to apply this expensive optimization
very carefully.

Third, the largest performance contributor is the
dataflow iteration (fourth bar from the right). It improves
the performance by an average of 20% and up to 50% for
mpegaudio. The kernel of this benchmark is a heavily
iterated, doubly nested loop that accesses several two-
dimensional arrays. The null check elimination, array
bound check elimination, common subexpression
elimination, and memory access privatization are all
effective for optimizing this kernel loop. The compilation
time overhead with this optimization is around 10 to 20%,
except for mpegaudio, for which the compilation time is
significantly increased with the dataflow iterations turned
off. This anomaly is due to DAG-based optimization, by
which compilation time is increased more than fourfold.
This is because the implementation of DAG-based
common subexpression elimination is not very efficient,
but it is invoked when the quadruple-based common
subexpression elimination within the dataflow iterations
is disabled.

Fourth, the typeflow analysis (third bar from the right)
contributes to both performance improvement and reduction
of compilation overhead. In particular, it has a large impact
on mtrt, nearly 10% for performance and 20 to 40% for

Table 1 Variations for evaluating cost and benefit of individual optimizations. These correspond to the bars in Figure 12 from
left to right.

Abbreviation Description

No-AggrInline This disables all of the static heuristics for aggressive inlining. Tiny methods are always inlined.

No-IdiomSwitch This disables both the idiomatic translation and the switch optimizations.

No-ExceptionCheck This disables the exception check (null check and array bound check) elimination at the EBC level.

No-Escape This disables escape analysis. No scalar replacement or stack object allocation is performed.

No-DataflowIter This disables the iteration of dataflow analyses performed at the quadruple level. It also disables
the platform-dependent nullcheck elimination.

No-Typeflow This disables the typeflow analysis performed at both the EBC and quadruple levels. The
optimizations using this analysis result, backup path elimination, redundant type checking
elimination, and arraycopy JNI call conversions, are not performed.

No-DAGOpt This disables the DAG-based optimizations (loop optimizations and prepass code scheduling). The
IR conversions from quadruples to DAGs and then back to quadruples are not performed.

No-RegOpt This disables optimizations performed in the code generation phase, that is, mean-time-to-next-use
analysis, register constraint propagation, the reclamation of the frame pointer register, and the
use of XMM registers.

T. SUGANUMA ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

784



Figure 12

Evaluation of individual optimizations for both performance impact in (a) and compilation overhead in (b) to (d). Each bar indicates the 

relative number against the baseline, the configuration with all optimizations enabled. SPECjvm**98 consists of seven benchmarks: mtrt, 
jess, compress, db, mpegaudio, jack, and javac. G.M. � geometric mean.
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compilation overhead, primarily by enabling the
elimination of devirtualized code backup paths. This
optimization consistently contributes to many programs
other than mtrt without causing any extra compilation cost.

The two EBC-level optimizations, idiom/switch
optimizations and the exception check elimination (second
and third bars from the left), cause little increase in
compilation overhead, but they improve performance in
some benchmarks. In particular, idiom/switch optimization
contributes to performance improvements in mtrt and
javac. The register usage optimization in the code
generation phase (rightmost bar) also contributes to a
significant performance improvement, more than 20%
for mtrt and mpegaudio, while it causes little additional
compilation overhead. The escape analysis improves
performance only for mtrt by about 10%, but causes
around 10% of compilation time overhead for all
benchmarks.

Evaluation of dynamic optimization framework
In this section, we evaluate our dynamic optimization
framework. In the measurements, the timer interval for
the sampling profiler for detecting hot methods was set
to five milliseconds, and the list of hot methods was
examined every 200 sampling ticks.

Figure 13 compares both performance and compilation
overhead with our dynamic optimization framework
(MMI-L1/L2/L3) against those in three single-level
compilation configurations: MMI to L1 only, MMI to L2
only, and MMI to L3 only. The performance with MMI-
L1/L2/L3 is slightly less than that of the best-performing
configuration, MMI-L3. The difference is up to 4% and,
on average, 2%. For the compilation overhead, MMI-
L1/L2/L3 shows a significant advantage over both MMI-L2
and MMI-L3 configurations. In the best case, the overhead
is almost equal to the baseline (MMI-L1). In the worst
case, with SPECjbb, it is around 3.5 times the baseline
for the compilation time. On average, the overhead
is less than twice the baseline in all three metrics,
and is around 30 to 70% of that with MMI-L3
configuration.

Figure 14 shows the corresponding results for the larger
benchmarks, Java Grande section 3, XSLTMark Version
2.1.0, and SPECjAppServer2002. Java Grande section 3
consists of five benchmarks, Euler, MolDyn, MonteCarlo,
RayTracer, and Search. We ran each of these benchmarks
separately with the “Size B” problem (large dataset) and
with the initial and maximum heap sizes of 512 MB.
Unlike SPECjvm98, this benchmark includes the JIT
compilation time in the best execution time. XSLTMark
consists of 40 test cases designed to assess a variety
of functional areas of extensible stylesheet language

transformation (XSLT) processors. We used Xalan–Java
Version 2.5.2 [27] as the XSLT processor, and measured
the performance using the aggregated result of all of the
test cases. SPECjAppServer2002 models the representative
business process used at a Fortune 500 company, and its
workload emulates heavyweight manufacturing, supply
chain management, and order/inventory systems. We
configured a three-tier system (Figure 15) by providing a
separate machine for a database tier (using DB2* 8.1.4)
and an application server tier (using WebSphere*
Application Server Version 5.0.2). We used version 1.3.1
of the IBM DK, not version 1.4.0, for this benchmark,
because of the product restrictions of this version of
WebSphere, but we used the same code base for the JIT
compiler as that used in the other benchmarks. We ran
the application server with the initial and maximum
heap sizes of 1200 MB and compared the self-reported
score (transactions per second) for each of the four
configurations. The ramp-up time, steady-state time, and
ramp-down time were set to 300, 300, and 150 seconds,
respectively.

Figure 14 shows the same overall characteristics as does
Figure 13, but there are some interesting differences.
First, MMI-L1/L2/L3 is the best performer for four
benchmarks, and among them MMI-L1 is the second best
for MolDyn and SPECjAppServer. Although we have not
investigated the reasons in detail, we believe that the
aggressive method inlining performed in L2 and L3 may
cause code locality to be decreased. In fact, by disabling
the aggressive method inlining in MMI-L2 and MMI-L3
configurations, performance is restored to a level higher
than that with MMI-L1 for both of these benchmarks.
Second, MMI-L1/L2/L3 shows a compilation overhead
similar to or larger than that of MMI-L3 in all three
metrics for Euler and Search. For these benchmarks, the
recompilation system correctly picked up performance-
critical methods to promote to higher optimizations, but
their code size happens to be quite large after inlining. In
some cases, those methods were compiled through all
optimization levels, L1, L2, and then L3, and thus the
overhead of repetitive compilation for those selected
methods exceeded the overhead caused by compiling
all methods with L3 optimization under MMI-L3
configuration. For other benchmarks, MMI-L1/L2/L3
works effectively to reduce the total compilation overhead.

Overall, our dynamic optimization framework performs
best when both performance and compilation overhead
are considered. These are the results even without
enabling any profile-directed optimizations. The MMI-
L1/L2/L3 is the only configuration that can enable those
additional optimizations; thus, it has the potential to
outperform other configurations even more without
causing any significant increase in compilation overhead.
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Figure 13

Evaluation of dynamic optimization framework for both performance (a) and compilation overhead (b) to (d). The baseline of the comparison 

is MMI-L1.
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Figure 14

Evaluation of dynamic optimization framework for Java Grande, XSLTMark, and SPECjAppServer2002 benchmarks. The baseline of the 

comparison is MMI-L1.
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Evolution of performance improvement
Figure 16 shows the history of the performance
improvement with each release of our JIT compiler after
version 3.0. We have integrated the techniques described
in this paper over several versions of the JIT compiler and
have steadily improved the performance with every new
release. With the latest version of the JVM and JIT
compiler, we achieved on average more than a 30%
performance improvement. In particular, the performance
of SPECjbb nearly doubles. There have been significant
contributions from our efforts in enhancing JVM,
especially in the area of synchronization, object allocation,
and class libraries, as well as from those in enhancing the
JIT compiler for this achievement. Roughly speaking, half
of the performance improvement can be considered as due
to the JIT compiler, because the optimizations in JIT3.0
correspond approximately to the current L1 optimizations,
and thus the performance of JIT4.5 is estimated to be
about 15% better than JIT3.0, based on Figure 14(a),
without the effect of JVM improvement. This is due to
our rough estimate based on the average performance
improvements, and the actual percent of the contribution
differs greatly for each benchmark.

Figure 16 also shows an interesting trend that our
overall performance improvement gains less from the
improvement in the JIT compiler. In fact, the performance
gain by JIT4.5 is much smaller than that achieved by each
of the previous two releases. This is because we integrated
most of the techniques described here in JIT3.5 and
JIT4.0, including the two register-based IRs and a variety
of optimizations on those IRs, and JIT4.5 added only a
few remaining items. We currently believe that most of
the optimization techniques that do not use profile
information and are suitable for dynamic compilers have
already been included in our JIT compiler, though there
may be some additional opportunities we can find by
investigating a wider range of applications or with the

introduction of new architectural features. In the future,
we need to explore some profile-directed optimizations to
improve the performance further, as we have attempted
for prototyping [6, 10, 28].

Related work
Besides the IBM DK, there are four other major
Java virtual machines publicly available today. Sun
Microsystems** HotSpot and BEA Systems** JRockit**
are the two major production systems, whereas the IBM
Jikes* Research Virtual Machine (RVM) and Intel Open
Runtime Platform are the two major research virtual
machines. All of these systems employ dynamic
recompilation frameworks by using an interpreter and an
optimizing compiler or by using two different compilers in
order to focus the expensive optimization efforts only on
the hot methods of a program.

Figure 15

Experimental environment for running the SPECjAppServer2002 benchmark.
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(Xeon 2.4 GHz x 2, 2 GB memory)

Windows 2003 server
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Version 5.0.2
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Performance improvements for each release of the JIT compiler. 
The baseline of comparison is JIT3.0 [1].
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The HotSpot server [29] is a JVM product that uses
both an interpreter and an optimizing compiler to allow a
mixed execution environment, as in our system. It uses an
SSA-based IR for optimizations. The optimizer performs
all of the classic optimizations, including common
subexpression elimination, dead code elimination, constant
propagation, and loop invariant hoisting. In addition, it
employs more Java-specific optimizations, such as null
check and range check elimination. It also collects profiles
of receiver type distribution online in the interpreted
execution mode. The profile information, together with
CHA, is used when optimizing the code for virtual and
interface calls.

The JRockit [30] is another JVM product designed for
server applications. It takes a compile-only approach and
relies upon a fast JIT compiler for compiling methods
quickly at their first invocation, as opposed to interpretive
bytecode execution. If the system determines that a
compiled method is causing a performance bottleneck, it
reoptimizes the method with a secondary compilation with
full optimizations. While the details of the compiler
structure and contents of the optimizations are not
available, it seems to use an SSA-based IR for performing
most of the optimizations.

The Jikes RVM [31], formerly called the Jalapeño JVM,
is the most popular and widely used platform in the Java
virtual machine research community and is released under
an open source license. The system is implemented with
Java itself and supports a multilevel recompilation
framework using two different compilers: a baseline
compiler and an optimizing compiler. The optimizing
compiler has three IRs, all register-based, and performs a
variety of optimizations on each IR. The bytecode is first
translated to the high-level IR (HIR). The optimizations
performed on the HIR are method inlining, some simple
local optimizations within an extended BB, and flow-
insensitive optimizations. The HIR is then translated to
the low-level IR (LIR) by expanding some complex
operators, where intraprocedural flow-sensitive
optimizations based on the SSA form are performed by
exploiting new opportunities exposed in the lower-level
representation. The instruction selection then translates
the platform-independent LIR into machine-specific IR
(MIR) using a bottom-up rewriting system (BURS). The
MIR has a one-to-one mapping between IR operators and
the target instruction set architecture. Using MIR, the
system performs live analysis and linear scan register
allocation and then generates the native code. The
optimizations on both HIR and LIR are divided into
three levels in the optimizing compiler. The adaptive
optimization system drives recompilation based on the
estimated cost and benefit of compiling methods at each
optimization level [32].

The Open Runtime Platform (ORP) [33] is another well-
known RVM released as open source. It uses a compile-
only approach and implements the dynamic optimization
with two execution modes by providing two different
compilers: a fast code generator [34] and an optimizing
compiler [35, 36]. While the fast code generator produces
code directly from bytecode with only limited and
lightweight optimizations, the dynamic compiler uses an
IR to apply aggressive optimizations, such as method
inlining, global dataflow-based optimizations, and loop
transformations. The dynamic compiler also uses the
profile information collected in the first execution mode
to guide optimization decisions such as determining
the inlining policy, deciding where to apply expensive
optimizations, and deciding upon the code layout in the
final code emission.

The SELF system [37] was a pioneering work for
dynamic optimizations, some of which are the basis of the
techniques used today in many sophisticated JVMs and
JITs. Some examples include code splitting [38], receiver
class profiling and polymorphic inline cache [39], adaptive
optimization system using online profile information [40],
and dynamic deoptimization and on-stack replacement
[41]. In particular, the adaptive recompilation system
is now considered a standard feature for dynamic
optimization systems to reconcile the high performance
and low compilation overhead and is adopted in our
system and in all of the above Java virtual machines. This
also allows the system to exploit various kinds of profile
information in the higher optimization levels to better
guide optimizations using the dynamic behavior of a program.

Devirtualization of dynamically dispatched method
calls has been extensively studied in static compilation
environments. CHA [8] determines a set of possible
targets of a dynamic method call by using the statically
declared type of a receiver object and the class hierarchy
of the whole program. If a target method is proved to be a
single implementation, it can be inlined or the call site can
be replaced with a fast direct call. Rapid type analysis [42]
and variable type analysis [43] were proposed to be more
precise than CHA by tightening the static type constraints
on the receiver using object instantiation information.
When a call site is not monomorphic but turns out to
be almost monomorphic from receiver class profile
information, a class test is provided to guard the
devirtualized code [44]. All of these techniques were
developed to statically analyze dynamic method calls
under a closed-world assumption.

In the dynamic environment, dynamic class loading
may cause the result of the compile-time analysis to be
incorrect; thus, we need to provide guard code for all
devirtualized call sites (unless it is provably monomorphic)
and/or an invalidation mechanism to ensure safety in the
occurrence of class loading. On-stack replacement [41]
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is a technique to effectively invalidate currently executed
unsafe code and to transfer the control to another version
of the same method. HotSpot [29] uses this technique to
eliminate backup paths for devirtualized call sites. The
technique can be implemented with or without guard code
and eliminates the merge points from virtual call sites in
the control flow, improving the effectiveness of dataflow-
based optimizations. Preexistence analysis [11] is a simple
technique for invalidating unsafe code without requiring
on-stack replacement, but it is effective for only a small
portion of devirtualized call sites. Since methods are
guaranteed to be safe until the next invocation, the guard
code is not required with this technique. Our approach to
code patching [12] can completely remove the overhead of
executing guard code from any of the monomorphic call
sites, but the diamond-shaped control flow with backup
virtual dispatch still remains. Thin guards [45] reduce both
the cost of guard code and the penalty of optimization
restrictions by identifying regions of code for which
speculative optimization can be performed and by mapping
those multiple optimistic assumptions to a single guard.

Conclusions
We have described the design and implementation of
version 4.5 of our Java JIT compiler, specifically for
IA-32 platforms. Since the previous report [1], we have
introduced new register-based IRs (quadruples and
DAGs) and implemented more advanced optimizations to
further improve the performance. At the same time, these
optimizations were expected to cause high compilation
overhead, and we needed to apply these optimizations
more selectively and carefully than in the previous system.
We designed a dynamic optimization framework with
the interpreter and the system with three levels of
recompilation to keep the total compilation overhead
within an acceptable level.

We evaluated our approach using industry-standard
benchmarks. The results—measured in compilation time,
compiled code size, and compilation peak work memory
usage—showed both the effectiveness of the optimizations
on performance and the low compilation overhead with
our dynamic optimization framework.

As we add more advanced and sophisticated
optimizations in our JIT compiler, we have increasing
numbers of heuristics, such as method inlining decisions,
loop versioning decisions, the number of iterations for the
dataflow, and triggers for recompilation, for controlling
these optimizations. This is more or less inevitable,
especially for dynamic compilers, since we need to balance
two conflicting requirements: generating good-quality code
and minimizing compilation overhead. The tuning of these
heuristics is a difficult problem. We currently determine
these various parameters from the empirical results by
using a variety of industry-standard benchmarks, but we

will soon need to include more customer applications to
determine them.

In the future, we will further study the practical and
effective ways of performing dynamic compilation. Instead
of a predetermined optimization classification as currently
implemented, it is desirable to dynamically select a set of
suitable optimizations according to the characteristics
of the target method, so that we can apply only those
optimizations known to be effective for that method. In
the dynamic compilation environment, we should avoid
applying those optimizations that do not contribute to
performance improvements but rather result in a waste of
compilation resources. A possible way of doing this is to
estimate the impact of each costly optimization on the
basis of both the profile information and the structure
analysis of the given method. The notion of program
metrics [46] is one such attempt to achieve better
optimization decisions.

The profile-directed optimizations are another potential
route for future JIT evolution. Although we did not
address any of those techniques in this paper, we have
attempted some of them [6, 10, 28] in our framework, and
see a potential for significant improvements. On the other
hand, we believe that the introduction of the profile-
directed optimizations may pose additional challenges
from the reliability, availability, and serviceability (RAS)
point of view, especially in product quality and code
maintenance. When a problem arises around the profile-
directed optimizations, it is in general quite difficult to
reproduce the problem to trace back to the root cause.
Future JIT compilers should address this problem while
exploiting more of the profile information for advanced
optimizations.
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