
Overview of the IBM
Java Just-in-Time
Compiler

by T. Suganuma
T. Ogasawara
M. Takeuchi
T. Yasue
M. Kawahito
K. Ishizaki
H. Komatsu
T. Nakatani

We present the design and implementation of
several optimizations and techniques included in
the latest IBM JavaTM Just-in-Time (JIT) Compiler.
We first discuss some of the modifications we
have applied to Sun Microsystems’ reference
implementation of the Java Virtual Machine
(JVMTM) Specification to increase the
performance, including a change in the object
layout. We then describe each of the
optimizations, referring to what had to be taken
into account because of both the just-in-time
nature of the compiler and the requirements of
the Java language specification, such as
exception checking. We also present code
generation techniques targeting Intel
architectures, describing the register allocation
schemes, exception handling, and code
scheduling. Finally we report on the performance
of the IBM JIT compiler, showing both the
effectiveness of the individual optimizations and
the competitive overall performance of the JIT
compiler in comparison with a competitor, using
industry-standard benchmarking programs. All
the techniques presented here are included in
the official product (JIT Compiler version 3.0),
which has been integrated into the IBM
Developer Kit for WindowsTM, Java Technology
Edition, Version 1.1.7.

The Java** language1 has rapidly been gaining
importance as a standard object-oriented pro-

gramming language since its advent in late 1995. Java
source programs are first converted into an archi-

tecture-neutral distribution format, called Java byte-
code, and the bytecode sequences are then inter-
preted by a Java virtual machine (Jvm)2 for each
platform. Although its platform-neutrality, flexibil-
ity, and reusability are all advantages for a program-
ming language, the execution by interpretation im-
poses an unacceptable performance penalty, mainly
on account of the run-time overhead of the bytecode
instruction fetch and decode. One means of improv-
ing the run-time performance is to use a just-in-time
(JIT) compiler, which converts the given bytecode se-
quences “on the fly” into an equivalent sequence of
the native code of the underlying machine. It sig-
nificantly improves the performance, but the over-
all program execution time, in contrast to that of a
conventional static compiler, now includes the com-
pilation overhead of the JIT compiler. It is therefore
very important for the JIT compiler to be fast and
lightweight, as well as to generate high-quality na-
tive code.

There are several reasons for the poor execution per-
formance of programs written in the Java language.

rCopyright 2000 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 0018-8670/00/$5.00 © 2000 IBM SUGANUMA ET AL. 175



First of all, because of the standard object-oriented
programming practices, there tend to be many rel-
atively small methods that lead to more frequent
method invocations than is the case in other lan-
guages. For example, there may be a method solely
for accessing a private field variable. An object con-
structor method is also automatically created in Java
even if it is not explicitly written in the program, and
consequently there are many empty object construc-
tor methods. Polymorphic method invocations3 cre-
ate another performance problem because of the
overhead of indirectly calling through a dynamic
method table lookup. This problem is aggravated by
the reusability of object-oriented code, since pro-
grammers are encouraged to incorporate general
class libraries or existing frameworks designed for
general use into new programs to increase their pro-
ductivity, and this practice in general has resulted in
the creation of many polymorphic method invoca-
tion sites. Even if the class is actually not overridden
in a particular program, the polymorphic method in-
vocation overhead is still imposed; it likely occurs in
many cases. All these problems are inherent in ob-
ject-oriented programming and can be an important
factor in the overall performance.

Second, the Java language specification requires run-
time exception checking to ensure the validity of
accesses to objects and arrays. If a reference or an
operation is invalid, an exception must be thrown,
and the environment, such as local variables, has to
be preserved and made available to an exception
handler that catches the exception. This condition
imposes a large penalty in program execution and
prevents the application of conventional loop
optimization techniques. The type inclusion test is
another factor in the run-time overhead of check-
ing type conformance, which not only results
from an explicit request by the programmer using
instanceof operations, but is implicitly required by a
statement assigning an object to another type.

Third, the synchronized methods or synchronized
blocks, which are used to ensure the atomicity for
a set of operations in a region, cause run-time over-
head by locking a given object for the duration of
the execution. Again, the reusability of object-ori-
ented code makes this problem worse, since general-
purpose class libraries are designed for use in the
multithreaded environment, and synchronized meth-
ods or blocks are heavily used where thread safety
must be guaranteed. When these libraries are used
by single-threaded programs, there will be substan-

tial performance degradation caused by unnecessary
synchronization.

We address all these problems in the IBM JIT com-
piler by optimizing the original bytecode sequences
and applying various code generation techniques,
such as method inlining, loop versioning, fast type
inclusion testing, and others, while keeping the orig-
inal program semantics. Special care must be taken
to ensure that any optimization here allows any ex-
ceptions that would have been thrown in the orig-
inal program to still be thrown in the optimized code.
That is to say, the exceptions must be thrown in pre-
cisely the same order with respect to the rest of the
program execution.

The next section of this paper describes the overall
structure of the IBM JIT compiler and some of the
modifications we applied in Sun Microsystems’ ref-
erence implementation of the Java Virtual Machine
(JVM**) Specification. The third section discusses
each of the bytecode-level optimizations. The code
generation technique, including the register alloca-
tion scheme, is described in detail in the fourth sec-
tion. The fifth section presents some measurements
obtained by using some industry-standard bench-
marking programs and shows both the effectiveness
of each of the optimizations presented in this paper
and the overall performance of the compiler in com-
parison with those of a competitor on platforms
based on Intel processors. The sixth section summa-
rizes related works, and the final section concludes
the paper.

Overview

We first present an overview of the JIT compiler be-
fore some of the details are described.

JIT compiler structure. The overall flow diagram of
the IBM JIT compiler is shown in Figure 1. The struc-
ture is basically similar to that used in typical static
compiler environments. First, in the flow analysis
phase, the basic blocks and the loop structures are
generated by performing a linear-time traversal of
the given bytecode sequences. The given bytecode
is then converted into an internal representation,
called extended bytecode, with some new opcodes
introduced to represent operations resulting from
the optimizations. An example of the new opcodes,
which are produced by common subexpression elim-
ination, is one to obtain the array object interior
pointer for a common effective address. It allows con-
secutive array elements to be accessed by simple

SUGANUMA ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000176



load-and-store instructions without indexing each el-
ement.4 The extended bytecode, where stack seman-
tics are still retained as in the original bytecode, is
chosen as the internal representation in order to
avoid the conversion cost in the compilation process.
The optimization phase then starts, and several tech-
niques are applied to this internal representation:
method inlining, exception check elimination, com-
mon subexpression elimination, and loop version-
ing, in that order (all described in detail in the next
section). Optimizations based on dataflow analysis,
such as constant propagation and dead code elim-
ination, are also applied to the internal representa-
tion. The variables in stack computation are then sep-
arately mapped to each of the logical registers for
integer and floating-point calculation by traversing
bytecode stack operations. The region for register
allocation of local variables is also defined, and the
number of accesses of local variables in each region
is counted.

Finally, native code is generated on the basis of the
optimized sequences of extended bytecode by allo-
cating physical registers for each stack and local vari-
able. To reduce the compilation time, there is no in-
dependent single pass for the register allocation; that
is, the register allocation runs synchronously with the
code generation. Simple code scheduling within a
basic block is applied to reorder the instructions so

that they best fit the requirements of the underlying
machine. The JIT compiler has a potential advantage
over the traditional compilation technique in that it
can identify the type of machine it is running on, and
we make use of this information in both code gen-
eration and code scheduling.

Base Jvm modifications. Among a number of en-
hancements included in the IBM Jvm that have been
applied to Sun’s reference implementation, two are
major changes introduced to improve the overall per-
formance of the JIT compiler: a change in the object
layout and the execution of the static initializer.

Figure 2 shows the change in the object layout for
both ordinary objects and array objects. An object
is originally pointed to through a handle, causing an
extra level of indirection every time object fields and
array elements are accessed. In the new object lay-
out, handles are removed, and each object has a two-
word header instead of a handle. With this change,
we can directly access instance fields simply by add-
ing an extra offset to the object pointer. Furthermore,
the element size now occupies the first word of the
array object header, which allows the JIT compiler
to generate array index out-of-bounds checking code
by issuing just one instruction, whereas several in-
structions were required, including load and shift op-
erations, with the original object layout. This is a

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 SUGANUMA ET AL. 177



great advantage in terms of code generation effi-
ciency, since the array bound exception checking has
to be done every time an array element is accessed,
unless it has been proved to be safe. The space over-
head per object is unchanged by this modification,
two words for a header and one word for heap main-
tenance, and the space reserved for the handle ar-
ray is totally unnecessary now.

The other important change we have made to the
reference implementation of the JVM specification
is to separate the resolution of a class from the ex-
ecution of its static initializer. In the original Jvm
implementation, whenever a class is resolved, an at-
tempt is always made to run its static initializer. This
action is good for the interpreter execution, because
the attempt to resolve a class is always made at run
time, which is exactly the time at which the static ini-
tializer is run. But from the standpoint of the JIT com-
piler, a class needs to be resolved at compile time
as much as possible in order to obtain the addresses
of methods and object fields and thus to generate
better code. Otherwise, code has to be generated for
calling the run-time class resolution routine, and dy-
namic code patching is required at run time. Since
running a static initializer entails a side effect, it can-
not be run speculatively at compile time. By sepa-
rating the class resolution and the execution of its
static initialization, the JIT compiler has more op-

portunity to generate faster code, using run-time calls
if necessary to run the static initializer. Thus, the use
of class resolution without static initialization is a very
important modification for high-performance JIT
compilers.

Other enhancements in the IBM version of the Jvm
include object allocation, monitor optimization,5 and
class libraries. The IBM JIT compiler also takes ad-
vantage of these enhancements. The monitor opti-
mization dramatically improves performance for
the majority of object synchronization operations,
namely locking an unlocked object or locking an ob-
ject already locked by the current thread a small num-
ber of times (shallow nested locking), by attaining
the operation with just a few machine instructions.
This optimization takes advantage of the new ob-
ject layout just described and uses a portion of the
second word of the object header for encoding var-
ious information, such as the thread identifier, the
nested lock count, and the inflation bit. The inflated
locks support the general case of heavyweight locks,
where contention can occur between multiple
threads.

Selective compilation. Since JIT compilation occu-
pies a part of the application run time, it is not nec-
essarily beneficial to compile all the methods being
invoked. For example, when a method is executed

SUGANUMA ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000178



only once and does not contain any loops, the
overall performance might be degraded if it is
JIT-compiled. The cost of the JIT compilation needs
to be offset by the performance gain achieved by run-
ning the native code in terms of both time and space.
The IBM JIT compiler and Jvm allow efficient mixed-
mode execution of interpreter and JIT-generated
code by sharing the execution stack and exception-
handling mechanism. By adopting an appropriate
way of identifying and choosing “hot” methods that
deserve JIT compilation, it is expected to achieve high
performance in running real applications as well as
benchmarking programs.

The notion of mixed execution of interpretation and
compiled code was considered as a continuous com-
piler or smart JIT approach in Plezbert and Cytron.6

In deciding when a given compilation unit should
be translated to native code, they propose a model
for making the choices on the fly based on some ex-
periments. Our current strategy for selecting hot
methods to be compiled is quite simple. A method
invocation count is provided for each method and
initialized as a certain threshold value. Whenever the
method is executed by the interpreter, the invoca-
tion count is decremented. When the count reaches
zero, it is determined that the method has been in-
voked frequently enough, and JIT compilation starts
for the method. If the method includes a loop, how-
ever, it is considered to be very JIT-sensitive and han-
dled in a different way. When the interpreter detects
a loop backedge, it “snoops” the loop iteration count
on the basis of a simple bytecode pattern-matching
sequence, such as iload/sipush/if_cmp_lt, and then ad-
justs the amount by which the invocation count is
decremented, depending on the iteration count. In
the extreme case, where the iteration count is large
enough, the control is immediately transferred to the
JIT compiler from the partially interpreted code by
dynamically changing the frame structure for the JIT
use and jumping to a specially generated padding
code. The JIT compilation for such methods can be
done without sacrificing any optimization features.

The run-time trace information is another benefit
of mixed mode execution for the JIT compiler. For
any conditional branches encountered for the first
time, the interpreter keeps information on whether
the branch is taken or not taken to provide the JIT
compiler with a guide for what direction to take at
basic block boundaries. The branch instruction is
then converted to the corresponding quick instruc-
tion so that this operation, including the detection
of the loop backedge, is not executed a second time

to minimize the performance penalty. The trace in-
formation is used by the JIT compiler for ordering
basic blocks so that the code can be generated in a
straightline manner between basic blocks guided by
the taken branch. This information also makes a dif-
ference in how a program is cut into tiles, in which
registers are allocated to variables, as described in
detail later.

Optimizations on extended bytecode

In this section, we describe each of the optimizations
for transforming the extended bytecode, namely, the
internal representation. All the optimizations applied
at this level will be transparent for the final code-
generation phase.

Method inlining. As explained earlier, the method
invocation overhead is one of the major reasons for
the poor performance of Java. We deal with this
problem by method inlining (which replaces calls to
methods by copies of their bodies). At the bytecode
level, the interpreter in Sun’s Java Development Kit
(JDK**) reference implementation does inline some
simple methods, if the bytecode they contain fits into
the space for method invocation or converts the calls
to empty constructor methods to invokeignored_quick
instruction. The JIT compiler can apply the technique
in a more aggressive way. However, excessive appli-
cation of this optimization causes an unacceptable
level of code expansion, which can itself degrade the
performance because of the instruction cache inef-
ficiency. Our basic strategy is to apply method in-
lining only to hot spots to reduce the invocation over-
head while avoiding explosive growth of the code
size. By a hot spot, we mean a method invocation
within a loop or an indirect method invocation from
a loop.

In the case of static and nonvirtual method invoca-
tions, the problem is typically caused by empty meth-
ods, many of which come from object constructors,
and small access methods, where the invocation and
frame allocation costs outweigh the execution time
of the method body. Since inlining these methods
does not cause a code size problem, they are always
inlined regardless of the hot spot. In other cases, sev-
eral conditions are set as inlining criteria on the ba-
sis of (1) the nest level of invocations in the inlining
analysis, (2) the number of total bytecode instruc-
tions to be inlined, (3) the number of local variables
and stack variables increased in the inlining method,
(4) the existence of exception tables in the inlined
method, and (5) no native or virtual methods found

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 SUGANUMA ET AL. 179



in the call tree in the inlining analysis. We also op-
timize the recursive method invocation. A method
call is replaced by the body of the method itself, re-
ducing the number of method calls and the frame
allocation cost. The tail recursion elimination, a spe-
cial case of tail call optimization, converts the method
invocation into the branch to the beginning of the
method, eliminating the method call overhead. An
example is shown in Figure 3A.

For virtual method invocations, we take advantage
of the fact that the target class is frequently not over-
ridden and that some virtual call sites actually ex-
ecute only one method, namely monomorphic rather
than polymorphic. We inline the target virtual
method by versioning the fast path of the inlined code
and the slow path of the original virtual method call
in order to decrease the indirect call overhead
through method table lookup, as illustrated in Fig-
ure 3B. The run-time checking code is provided to
guard the inlined code to ensure that it is correct to
execute for the current receiver object. Namely, the
fast path inlined code is executed if the method in

the receiver object method table matches the target
method inlined, otherwise normal virtual invocation
is performed. If the target method is only one for
the virtual call site at compile time, and the class is
not overridden during the course of execution, then
the fast path inlined code can always be executed.
The guard code is generated to test against the tar-
get method, rather than the target class, as a result
of its efficiency. This method is used because the test
can cover even those receiver objects whose classes
are an extension of the target class, if the method
inlined is not overridden by those classes. The de-
tailed discussion and evaluation between method
tests and class tests for guarding the inlining of vir-
tual invocations is provided in Detlefs and Agesen.7

We also optimize the interface method invocation,
which is for classes with multiple inheritance. Again,
we take advantage of the fact that the number of in-
herited classes is only one in many cases, and there-
fore we can skip searching the table for the imple-
mented class. When the inlined fast path is executed,
the method invocation cost for the interface class will

SUGANUMA ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000180



be almost the same as that for virtual method invo-
cations.

Exception check elimination. One of the perfor-
mance problems in executing Java programs results
from the requirement of run-time exception check-
ing to ensure the safety of program execution. Ex-
ception checking, both null pointer checking and ar-
ray index out-of-bounds checking, can be eliminated
if it can be proved that an exception cannot occur,
namely, that the exception has already been tested
somewhere along the data flow, or that the array ac-
cess can be guaranteed within its bound. For the In-
tel-based platform, the null pointer exception can
be detected by a hardware trap, as described in the
later subsection on exception handling, for most of
the instructions required; however, for those byte-
code instructions where the object will not be
touched in the generated code, such as invokenon-
virtual and athrow, the explicit null pointer checking
code still has to be generated for dynamic checking
for the current object. Thus the elimination of null
pointer checking is beneficial for Intel-based plat-
forms as well.

The JIT compiler can eliminate null pointer check-
ing by solving the simple data flow. Whenever an ob-
ject is null-pointer-checked, regardless of whether
the checking is done explicitly or implicitly in the ac-

tual code generation, a flag indicating that it has al-
ready been tested is simply propagated along the data
flow. For array bound checking, in contrast, we de-
veloped a new algorithm by extending Gupta’s al-
gorithm8 and eliminated a broader range of cases
of array access. Gupta’s method basically propagates
the checked index set forward and backward, using
data flow analysis; however, when an index variable
is updated, it is treated as KILL,9,10 and hence, the
checked index set for the variable has to be reset.
In the algorithm we developed, the exact range of
the checked index set can be determined, including
the maximum and minimum constant offset from the
index variable, and this set of information is then
propagated along the data flow. Even when the ac-
cess index is updated by adding or subtracting a con-
stant, it is not treated as KILL, but the checked index
set is updated by offsetting the constant value. Con-
sequently, the new algorithm can eliminate more ex-
ception checks for array accesses, especially for those
with a constant index value. The example in Figure
4 shows one advantage of the algorithm, where the
array index exception check required is explicitly in-
dicated by italicized statements. 11 The number of ex-
ception checks, which was originally 11 (the num-
ber of array accesses), was reduced to six by the
existing method and is further reduced to only three
by the new method. The detailed algorithm and ex-

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 SUGANUMA ET AL. 181



perimental result will be reported in a future pub-
lication.

Common subexpression elimination. We apply three
techniques for common subexpression elimination
(CSE) to reduce the overhead of array and instance
variable accesses: scalar replacement, common effec-
tive address generation, and partial redundancy elim-
ination. Other techniques such as global value num-
bering,12,13 which heavily relies on the static single
assignment (SSA) form, are considered too expen-
sive in our just-in-time compilation environment.

Scalar replacement replaces subscripted variables by
local variable references and makes them available
for register allocation when the array object and the
index variable are not updated in the scope in which
it is being applied. Common effective address gen-
eration produces an instruction pointing to the in-
ternal element of the array for consecutive array ref-
erences, which typically appears in many sorting
programs. This method is quite effective for reduc-
ing the register pressure, but the array object pointer
needs to be retained so that it is not subject to gar-
bage collection. In both cases, the code can be moved
out of the loop if it is loop-invariant. Since a depen-
dence DAG (directed acyclic graph) has to be con-
structed in order to apply both of these techniques,
and this is quite expensive, we limit their applica-
tion to loops, in view of the costs and benefits.

Partial redundancy elimination14 is also used to re-
duce the number of accesses to instance variables.
It eliminates all but one identical access on some ex-
ecution path through a flowgraph and also moves
invariant accesses out of loops. The instance vari-

able accesses are then mapped to local variables,
which can be allocated to physical registers in the
code generation phase. An example of how redun-
dancy elimination is applied is given later.

Loop versioning. Loop versioning is a technique for
hoisting an individual array index exception check
outside a loop by providing two copies of the loop:
the safe loop and the unsafe (original) loop. The ex-
ception checking code is first created at the entry of
the loop by examining the whole range of the index
against the bound of the arrays accessed within the
loop. Two versions of the target loop are then gen-
erated: one for the safe loop, which no longer re-
quires exception checks within the loop, and the
other for the original unsafe loop, with all exception
checks retained, as shown in Figure 5. Depending
on the result of the index range test at the time of
entry, either the safe loop or the unsafe loop is se-
lected for execution at run time. For the application
of this transformation, the order of any exceptions
that might be raised during the loop execution and
any side effect that might occur at the time of an ex-
ception must be guaranteed to be unchanged. The
current criteria for applying this optimization are as
follows: (1) no method invocation exists within the
loop; (2) there is a loop induction variable whose
initial value and final value are both loop-invariant
and whose stride is constant; and (3) for all the ar-
ray accesses within the loop, the array object must
be a local or a class variable that is loop-invariant,
and the array indices must be constants, loop-invari-
ant variables, or loop induction variables with con-
stant offsets. Application of this optimization is also
limited by the size of the target loop body, in view
of the increase in code size.

SUGANUMA ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000182



The safe loop created by this optimization not only
eliminates the exception checking code itself but im-
poses fewer constraints in the work on register al-
location and code scheduling, thus producing better
code. Also, the safe loop will allow the JIT compiler
to apply other loop optimizations in the future, be-
cause the array exception checking and the array of
array implementation for multidimensional arrays
in Java are considered two major factors preventing
the application of traditional loop optimizations and
thus slowing down the execution of loops. Therefore,
this technique, together with the use of rectangular
multidimensional dense arrays, can pave the way for
more aggressive loop optimizations, such as loop un-
rolling, loop interchange, and loop blocking, which
should be effective for programs with numerically
computation-intensive loops.15

Code generation details

Prior to the code generation phase, the given pro-
gram is divided into several pieces, called tiles, each
of which is used as a block for allocating registers.
The tile cutting is done on the basis of the loop struc-
ture existing in the program; a loop is identified as
a tile, and code between loops is treated as another
tile. This heuristic is simple and appropriate for slic-
ing a program in the absence of relative strength of
edges between basic blocks. Information on local
variable usage is then collected within each tile, and
a local variable table sorted in decreasing order of
access count is generated. For a nested loop, a local
variable table is prepared for each level of loop nest,
so that the local variables with the highest access
counts in each nest level can be cached on registers.

In the code generation, several modes of addressing
register operands, memory operands, and immedi-
ate operands provided by the IA32 architecture16 are
exploited. Different machine instructions are se-
lected, depending on the underlying processor type
for some bytecode instructions. In general, memory
operand instructions are preferentially used with the
Pentium Pro** family of processors to exploit its ca-
pability of out-of-order instruction execution and
hardware register renaming. The instruction cache
efficiency is also taken into account by generating a
slow and rare path at the bottom of the code and
compacting the fast execution path as much as pos-
sible.

Register allocation. As explained earlier, no inde-
pendent single pass is used for the global register
allocation in order to reduce the compilation time.

We consider expensive register allocation algorithms,
such as graph coloring,17 to be inappropriate, owing
to the just-in-time nature of the JIT compiler. Instead,
we use a simple and fast algorithm for allocating reg-
isters that does not require an extra phase in the com-
pilation process.

The register allocator, better called the register man-
ager, allocates registers for stack variables as a first
priority and then allocates the remaining available
registers to local variables based on the usage count
within each tile. During the course of the code gen-
eration, other local variables may be left unchanged
in the registers by assigning stack computation re-
sults to them. Thus we have three types of registers:
stack variable registers, permanent cached local vari-
able registers, and temporary cached local variable
registers. In deciding which of several available reg-
isters to allocate, the register manager adopts the
circular allocation policy, returning the least recently
allocated register. This policy likely results in the
code sequences being less dependent on the sur-
rounding code with respect to register usage and,
hence, creates more opportunities for code sched-
uling work. When the code generator requires an
additional register and none is available, the regis-
ter manager searches for one, first in temporary lo-
cal variable registers, and then in permanent local
registers and stack variable registers, in that order.
This simple heuristic is based on the assumption that
the stack variables are generally short-lived and
therefore most likely have the shortest interval to
the next references. It is used to avoid the expensive
computation needed to choose the optimal spill can-
didate.

There are some conventions regarding register us-
age for method call argument and return value pass-
ing. In order to prevent unnecessary copy instruc-
tions from being generated, designated registers can
be allocated for those instructions that set method
parameters or return values. Liveness information
on local variables, obtained by data flow analysis, is
also used to avoid generating unnecessary spill codes.
Whenever a reference to a cached local variable is
known to be the last use, the register is invalidated
immediately after generation of the relevant code
and is given back to the register manager to be added
to the list of available registers.

Idioms in bytecode sequences. We provide a table
of frequently appearing bytecode sequences as id-
ioms to mitigate the inefficiency in code generation
caused by stack semantics. The purpose of the id-

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 SUGANUMA ET AL. 183



iom table is to locally eliminate the stack semantics
and to exploit the local variable cache registers by
avoiding unnecessary move instructions between lo-
cal and stack variables. Many of the idioms work
around the stack manipulation bytecode instructions
to reduce the stack height of expression evaluation,
thus reducing the number of stack variable registers
needed and allowing more local variables to be
cached. The total number of idioms provided is more
than 80, and some examples of these idioms and their
corresponding Java source statements are shown in
Table 1. A similar approach is discussed in Proeb-
sting,18 where frequently appearing bytecode pat-
terns are synthesized as superoperators and where
a heuristic method for inferring a good set of super-
operators is proposed.

The bytecode sequences generated for a specific code
fragment in Java sources, of course, depends on the
Java source compiler. A different Java compiler may
produce different bytecode sequences for the same
source programs. Therefore, some of the idioms pro-
vided may not be applicable to some class files if their
underlying Java compiler for the class files is differ-
ent.

Type inclusion test. The type inclusion test is a pro-
cedure for checking whether two given types are re-
lated by a subclass relationship and will result from

either an explicit or an implicit requirement by pro-
grammers. Explicit type checking can be specified
by using the construct instanceof in the source pro-
gram, and the type conformance test is implicitly im-
posed for a statement assigning an instance to a dif-
ferent type of local variable or array element. This
run-time overhead can be a significant performance
bottleneck in many Java programs.

In the past, several techniques have been proposed
for conducting efficient type inclusion tests19 by en-
coding class hierarchies in a small table, which is re-
ferred to by the inlined checking code. The speed
and space efficiency varies depending on the encod-
ing type of the subclass relations. However, new
classes and interfaces can be loaded in Java at ar-
bitrary points in the program execution, and the ta-
ble has to be recomputed for the new encoding when
classes are loaded dynamically. Although we did not
explore the possibility of this scheme in terms of per-
formance benefit and the recomputation cost in our
environment, we chose to implement a simple and
effective caching mechanism for type inclusion test-
ing and inlined the fast path of the code as shown
in the pseudocode for the checkcast instruction in
Figure 6.

First, the given object is tested to determine whether
it is null. Since a null object can be cast to any type

Table 1 Examples of bytecode idioms

Bytecode Idiom Corresponding Java Source Statement

dup / getfield / iload / iop2 / putfield Obj.field 15 var;
dup2 / iaload / iload / iop2 / iastore Array[i] 15 var;
dupx1 / putfield if(Obj.field 5 val) . . .
aload / iload / iinc / iaload . . . 5 Array[i11] 1 . . .

SUGANUMA ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000184



of object, no operation is required in this case. The
object class is then compared with the value of the
cache that holds the successful class from the pre-
vious test. If these tests fail, then the Jvm-supplied
run-time library is called to traverse the class hier-
archy to check subclass relations, and if it succeeds,
the cache value is updated with the new object class.
In the code generation, only the first and second tests
are inlined in the fast execution path, and the re-
maining operations are placed at the bottom of the
code. We also hold another cache holding failure
class for the instanceof instruction, and the object
class is compared with the value of the cache as well.
This action is taken because the instanceof instruc-
tion returns either true or false depending on the
result of the test, instead of just throwing the class-
cast exception as in the case where the checkcast in-
struction fails.

Exception handling. Since using exceptions can be
one of the normal programming practices in Java,
the exception-handling mechanism must be efficient
in the JIT implementation. For example, a program
may contain an infinitely running loop that exits only
through an array index out-of-bounds exception. We
rely on the hardware trap and system-level exception-
handling mechanism to detect and handle some Java
exceptions, namely, the null pointer exception, arith-
metic (division by zero) exception, and stack over-
flow exception, to achieve high performance by elim-
inating the code for explicitly checking the exception
condition. Once an exception of this type has been
raised, the system-level exception handler directly
calls the user-level handler, which is registered
through the exception registration record. The ex-
ception registration record is created in the execu-
tion frame only for those methods that have an
exception table, namely, a try-catch block, and is
registered and deregistered to the system during the
course of program execution. Thus an exception
chain is maintained for each thread, always indicat-
ing the list of exception records with the topmost one
as the anchor. The user-level handler will then tra-
verse along this exception chain to find an appro-
priate address to be resumed, instead of unwinding
the entire stack frame linearly.

The try region at the time of the exception has to be
identified by the exception handler in determining
the corresponding catch block where the execution
is possibly resumed. This is originally given as the
range in the bytecode sequences; however, it is not
appropriate for the JIT compilation, since the code
generation does not take place in the order of given

bytecode sequences, but takes advantage of the ba-
sic block ordering that results from various bytecode-
level optimizations and the run-time trace informa-
tion from the mixed mode interpreter. We therefore
provide an extra local variable to keep the current
try region identification: Whenever the execution en-
ters or exits a basic block and the corresponding try
region identification becomes different, the local vari-
able is updated so that the exception handler can
locate the corresponding catch blocks correctly to
check whether the execution can be resumed.

For those exceptions that require code to be gen-
erated explicitly for checking exception conditions
such as array index out-of-bounds, we generate a con-
ditional instruction to jump to the bottom of the code

when the exception condition is met, so that the ex-
ecution falls through the jump instruction in normal
cases.20 The actual exception-throwing instructions
are placed at the bottom of the code. This placement
is to avoid an instruction cache miss caused by the
loading of an exception-throwing code that is unlikely
to be executed, and also to take advantage of the
processors’ static branch prediction of any forward
conditional branches not to be taken.21

Code scheduling. Code scheduling is a well-known
technique for optimizing code by scheduling or re-
ordering given instructions to best fit the require-
ments imposed by the underlying machine architec-
tural characteristics. Since many machines nowadays,
including Intel processors,21 have multiple pipelines
and expose instruction-level parallelism to the users,
it is essential that the code for such machines be or-
ganized in a way that takes best advantage of pipe-
lines present in an architecture or implementation.
The code scheduling technique was developed for
static compilation, and therefore the compilation
time was not a major consideration. Even with the
simple list scheduling technique for the basic block
range, it is necessary to construct a dependence DAG.

The exception-handling
mechanism must be efficient
in the JIT implementation.

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 SUGANUMA ET AL. 185



The worst-case running time is O(n 2), where n is
the number of machine instructions in the basic
block.6 In the IBM JIT compiler, we have implemented
a different way of scheduling code within a basic
block, running in C p n, where C is the size of the
lookahead to be scheduled, in view of the compila-
tion time constraint.

The code scheduler works synchronously with the
code generator within a basic block range. A table,
whose columns show the number of pipelines and
whose rows show the number of clocks, is provided
to serve as a buffer for reordering instruction se-
quences. When a native code is generated, it is given
to the scheduler together with some attributes for
the generated code, such as reference registers, an
updated register, an address and the type of mem-
ory access, restrictions on executable pipelines, and
a flag indicating whether an exception can be raised
with this instruction, all represented by bit vectors.
The scheduler then considers all the requirements
and dependencies between the new generated in-
struction and existing instructions in the buffer, in-
cluding the number of clocks for address generation
interlock (AGI), and places the instruction at a slot
with the earliest possible clock number in the buffer.
When there are no available slots in the buffer or
the code scheduling scope has ended, the instruc-
tions in the buffer are emitted into the actual code
space in the scheduled order.

The type of memory access given to the scheduler
is categorized on the basis of the language specifi-
cation to ensure that there is no interference between
those memory access instructions with different types.
Even though the instructions have the same type of
memory access, the different offset means the ac-
cesses are for different memory locations, since gen-
erated instructions should not have the interior
pointer of an object, unless common subexpression
elimination has been applied. Our code scheduler
takes advantage of the fact to reorder instructions.

The scheduler cannot reorder any two instructions
that may raise exceptions or produce side effects
when executed, in order to guarantee that the cor-
rect exception can be thrown and the environment
at the time of the exception is preserved. This is why
the information indicating whether the given instruc-
tion can raise an exception or not is necessary for
the scheduler. For array index out-of-bounds excep-
tion checking, we treat compare and jump instruc-
tions as a single complex instruction and include it
in the scheduling scope, unlike the traditional basic

block range scheduler, in order to make the sched-
uling scope long enough.

Since all the requirements and dependencies among
instructions are solved by using bit vectors, an ap-
propriate slot in which to place an instruction can
be found quickly. The limitation of our approach is
that there may be more appropriate instructions to
be placed among the succeeding instructions that will
be generated, since the first-fit strategy is used to
place the given instruction in the buffer; that is to
say, it is placed in the available slot with the earliest
possible clock number. The architectural character-
istics are largely different between the Pentium**
processor and Pentium Pro processor family (Pen-
tium Pro, Pentium II, and Pentium III processors),
and the code scheduling is available only for Pen-
tium processors in the current version of the JIT com-
piler. It will be enabled for the Pentium Pro processor
family as well in the next version of the JIT compiler.

Example. Figure 7 shows an example from the bub-
ble sort sample program. We use this example to il-
lustrate common subexpression elimination and its
resulting extended bytecode, native code generation
using the bytecode idioms, and register allocation.
Through bytecode-level optimization, common sub-
expression elimination is applied to the original pro-
gram (Figure 7A), and it is transformed into the
equivalent sequence of extended bytecode, for which
the pseudocode can be shown in Figure 7B. The in-
stance variable access for the array object is local-
ized and moved out of the loop. An effective com-
mon address is then generated for the array accesses
with consecutive indices. The italicized statements
in Figure 7B correspond to the extended bytecode
added or modified through this optimization.

The resulting extended bytecode for the innermost
loop is shown in Figure 7C with some labels show-
ing the basic block boundary. Each instruction is
numbered with its index in all the sequences of the
extended bytecode. New bytecode instructions, such
as eaddress, eaload, and eastore, are added in our
internal representation to express the operations ap-
plied by redundancy elimination. These instructions
denote generating an effective address, loading a
value from the specified effective address, and stor-
ing a value to the specified effective address, respec-
tively. The number in parentheses in the figure for
eaload and eastore indicates the offset from the effec-
tive address to be accessed.

SUGANUMA ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000186



The extended bytecode sequences in Figure 7C are
combined by idioms, based on which native code gen-
eration is performed. When the innermost loop is
entered, the local variables i, j, and la[ ] are assigned
permanent local registers according to the access

counts for those variables. Numbers shown in gen-
erated native codes (Figure 7D) correspond to the
numbers in the extended bytecode (Figure 7C). In
the code generation for eaddress (numbered 15), ar-
ray index out-of-bounds checking code is produced

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 SUGANUMA ET AL. 187



for the range of indices accessed through the effec-
tive address generated; that is, two checks are gen-
erated for the lower and upper offsets of the inter-
val against the lower and upper bounds of the array
respectively. In this case, the interval [0, 1] is given
as the index offset to be accessed from the effective
address, and two checking instructions are generated
without changing the index variable in the register
edi.

Experimental results

To evaluate the effectiveness of the optimizations
and techniques presented above, we performed
two experiments of different kinds: one that
focused on individual optimizations to check their
benefits and contributions to the speedup, and
another that measured the total performance
to examine the overall competitiveness of the
IBM JIT compiler relative to those of a major com-
petitor.

Evaluation for individual optimization. We chose
three industry-standard client benchmarking pro-
grams for the evaluation of individual optimi-
zation: CaffeineMark** 3.0,22 JMark** 2.0,23 and
SPECjvm98.24 For JMark 2.0, only the six computation-
intensive tests were selected, since the other tests in
the benchmark mainly focus on the performance
related to AWT (Abstract Window Toolkit), which
is not very JIT-sensitive. The measurement for
SPECjvm98 was conducted in the test mode with a
count of 100 in this set of experiments by running
the test as a local application, not through the Web
server as specified in the SPEC-compliant mode. Since
these experiments are to measure the effectiveness
of the JIT optimizations, the selective compilation
switch is turned off; that is, all the methods are
JIT-compiled (the switch is a development and
tuning aid and not made public). The JIT compila-
tion time is or is not included, depending on
how each test of benchmarks is organized. For
SPECjvm98, we took the best time for each test that
resulted from autorun; the compilation times were
not counted in this comparison. All the experiments
described below were conducted on a Pentium II 375
MHz processor with 256 MB of RAM, running Win-
dows NT** 4.0 Service Pack 3.

Figure 8 shows the relative performance when we
turn off one of the optimizations described above to
examine its effectiveness in each of the benchmark
tests. The bar graphs for each test show how much
performance is lost when we turn off each optimi-

zation—method inlining (NO INLINE), common
subexpression elimination (NO CSE), loop version-
ing (NO LOOPVER), exception check elimination
(NO EXC), fast type inclusion testing (NO TYPE), and
idioms in bytecode sequences (NO IDIOM), respec-
tively, from left to right—compared with the per-
formance when we run the compiler fully optimized.
As a reference, the performance with all the opti-
mizations disabled is also shown as the right-most
bar graph (NO OPT).

As we can easily see, method inlining is the most
effective in the CaffeineMark 3.0 method, the JMark
2.0 processor, and several SPECjvm98 tests. Recursive
method inlining is the biggest contributor to improv-
ing the method test score, whereas virtual method
inlining is actually effective for improving the pro-
cessor and SPECjvm98 mtrt test performance. Com-
mon subexpression elimination is effective when ap-
plied to the CaffeineMark 3.0 loop and float and to
the JMark2.0 fast Fourier tests, all of which have ar-
ray-manipulation-intensive loops. Loop versioning
also makes a modest contribution in the same set of
tests. These two optimizations have almost no effect
on any tests in SPECjvm98, probably because in these
tests there is no single hot spot where the optimi-
zations applied for some loops contribute to the to-
tal performance. Exception check elimination seems
to be effective only for the CaffeineMark 3.0 logic
and string and for SPECjvm98 mtrt and mpegaudio
tests in this limited set of benchmark tests. Fast type
inclusion testing is quite effective when applied in
several SPECjvm98 tests and contributes the improve-
ment in performance, up to 20 percent for the jess
and db tests. Idiom-based code generation is widely
effective for many of the benchmark tests.

Total performance evaluation. Figure 9 shows the
results of the overall performance measurements for
SPECjvm98, comparing the IBM Developer Kit for
Windows, Java Technology Edition, Version 1.1.7,
which includes the JIT compiler we developed with
Sun’s reference implementation of JDK 1.1.7 (JDK
1.1.7B 003 for Windows),25 which features the Sy-
mantec JIT compiler. This measurement was con-
ducted in the SPEC-compliant mode on a machine
with a Pentium II 350 MHz processor, 512 MB mem-
ory, running Windows NT Server 4.0 Service Pack 4
and the Apache Web server 1.3.4. The relative per-
formance is computed from the best data (elapsed
time) produced by the autorun, so the higher bar
means the better performance.

SUGANUMA ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000188



IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 SUGANUMA ET AL. 189



The IBM Jvm and JIT compiler outperform Sun’s JDK
1.1.7 in all of the tests in this benchmark, and for
some tests our score is more than double. An attempt
to run the latest version of Microsoft Java execution
environment Software Development Kit (SDK) 3.2
(build 3186, released August 24, 1999)26 was also
made on the same machine environment, but
the valid result could not be obtained in the
SPEC-compliant mode. In the comparison done un-
der the test mode, the IBM Jvm and JIT compiler per-
form better than SDK 3.2, although the differences
are smaller than those against Sun’s JDK 1.1.7. Un-
fortunately, the comparison between different Java
environments based on the measurement in test
mode cannot be published by the term of our SPEC
membership. Overall, the IBM Jvm and JIT compiler
can be considered a top performer among major Java
environments available for platforms based on Intel
processors.

Related work

There have been several reports of optimizations and
code generation techniques for fast and efficient
compilation in product-level Java compilers. The In-
tel JIT compiler20 exploits lazy code selection as a
fast and effective way of folding Java stack operands
by propagating information about operands via an
auxiliary data structure called the mimic stack. Since

it took a lightweight approach to having no internal
representation, the optimization features are limited
to extended basic blocks. Both the Microsoft JIT com-
piler26 and CaCao27 have their own internal repre-
sentations for optimizations, but the details of their
JIT optimizations are not clearly described. For static
compilers, JOVE,28 TowerJ,29 and HPCJ30 are now
products and available, and they all exploit traditional
optimization techniques such as static single assign-
ment (SSA) representation, SSA-dependent optimi-
zations, and global register allocation based on graph
coloring. Marmot31 is a complete system of a native
compiler and run-time system, implementing stan-
dard scalar and object-oriented optimizations, such
as call binding based on class hierarchy analysis.
Ninja15 is another static compiler, a research pro-
totype that addresses optimizations for technical
computing to make Java competitive with FORTRAN
and C11.

Jalapeno32 is a Jvm implemented in Java itself, de-
signed to satisfy some critical requirements for serv-
ers. It takes a compile-only approach for program
execution with three different dynamic compilers, in-
stead of providing both interpreter and a JIT com-
piler as in most other Jvms. Some interesting opti-
mizations, such as profile-directed method inlining
and escape analysis, are being implemented in the
most aggressive version of the compiler.

SUGANUMA ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000190



A fast and lightweight register allocation method was
proposed in Poletto and Sarkar33 and Traub et al.34;
it consists of scanning all the live ranges of local var-
iables and allocating registers to them in a greedy
fashion. It is reported that the compile time speed
is several times faster than the fastest graph color-
ing method, yet the quality of the generated code is
comparable. Since the register allocation should be
the key to improving JIT compiler performance fur-
ther, it may be worth investigating a similar idea or
an extension of this idea for the IBM environment.

The problem of unnecessary synchronization in Java
is addressed in Bogda and Hölzle35 by removing syn-
chronizations for those objects reachable from only
a single thread. The analysis first identifies objects
that will be local to a thread by dereferencing the
field of the thread local object, if necessary, and then
transforms the program by introducing nonsynchro-
nized versions of optimizable classes. This work is
in contrast to our effort of alleviating the synchro-
nization cost by speeding up the majority of synchro-
nization cases. Although this work is done for a static
environment where the whole program is available
to be analyzed, the idea behind the work will be ap-
plicable in the IBM environment. The analysis can
also be used for determining objects that can be al-
located on the stack, instead of heap, which will re-
duce the cost of both object allocation and garbage
collection.

Concluding remarks

In this paper, we have presented the design and im-
plementation of the IBM Java JIT Compiler version
3.0 for platforms based on Intel processors. Follow-
ing an overview of the overall structure and the base
Jvm modification, we discussed each of the optimi-
zations and the code generation techniques included
in the JIT compiler in detail, and then presented a
performance comparison using three industry-stan-
dard client benchmarking programs. It was shown
that each of the optimizations is very effective for
some type of program, and that overall the IBM JIT
compiler combined with IBM’s enhanced Jvm is one
of the top performing Java execution environments
on Intel-based platforms.

The discussion in this paper has been centered
around an Intel-based platform; however, most of
the optimizations and techniques are common to
other IBM platforms as well, such as those based on
the PowerPC* and S/390*, which the JIT compiler sup-
ports.36 Specifically, the bytecode level optimization

features described in the section on optimization and
the basic idea of register allocation and idiom-based
code generation in the section on code generation
are all applicable as cross-platforms. Also, all the
techniques presented here can be applicable regard-
less of the version of Java implementation; namely
not only for version 1.1.7 of Java as made generally
available, but also for the Java 2 implementation and
beyond.

Since the JIT compiler is a critical component of the
Jvm for achieving high performance, we will continue
to improve the JIT compiler to stretch the limit of
Java performance by balancing the compilation time
requirement and the quality of code generation. In
the next version of the JIT compiler, we will com-
pletely eliminate the stack semantics from the inter-
nal representation and will move into a register-
based representation for further improvement in the
quality of JIT-generated code. We also plan some ob-
ject-oriented specific optimizations, including class
hierarchy analysis and its use in method inlining and
direct binding for virtual invocation sites.36

Acknowledgments

We would like to thank Duc Vianney and Akihiko
Togami for their cooperation in measuring per-
formance of several Jvms for SPECjvm98 by
SPEC-compliant mode. We also thank the IBM Net-
work Computing Software Division System Perfor-
mance group in Austin for their helpful discussion
and analysis of possible performance improvements.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
Intel Corporation, Pendragon Software Corporation, Ziff-Davis,
Inc., or Microsoft Corporation.

Cited references and notes

1. J. Gosling, B. Joy, and G. Steele, The Java Language Spec-
ification, Addison-Wesley Publishing Co., Reading, MA
(1996).

2. T. Lindholm and F. Yellin, The Java Virtual Machine Spec-
ification, Addison-Wesley Publishing Co., Reading, MA
(1996).

3. A given call site may invoke several different actual methods
over the course of program execution, depending on the dy-
namic type of receiver object.

4. The concrete example appears in the fourth section in the
subsection labeled “Example.”

5. D. F. Bacon, R. Konuru, C. Murthy, and M. Serrano, “Thin
Locks: Featherweight Synchronization for Java,” Proceedings
of the ACM SIGPLAN’98 Conference on Programming Lan-
guage Design and Implementation (1998), pp. 258–268.

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 SUGANUMA ET AL. 191



6. M. P. Plezbert and R. K. Cytron, “Does ‘Just in Time’ 5 ‘Bet-
ter Late Than Never’?” Conference Record of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (1997), pp. 120–131.

7. D. Detlefs and O. Agesen, “Inlining of Virtual Methods,”
Proceedings of the 13th European Conference on Object-Ori-
ented Programming, Lecture Notes in Computer Science 1628,
Springer-Verlag (1999), pp. 258–278.

8. R. Gupta, “Optimizing Array Bound Checks Using Flow
Analysis,” ACM Letters on Programming Languages and Sys-
tems 2, No. 1–4, 135–150 (1993).

9. KILL is a term used in data flow analysis. If an instruction
redefines a variable, it is said to kill the definition, which means
the collected information regarding the variable cannot be
preserved after the point in the flow analysis.

10. A. V. Aho, R. Sethi, and J. Ullman, Compilers: Principles,
Techniques, and Tools, Addison-Wesley Publishing Co., Read-
ing, MA (1986).

11. Please note that index_check (3 , ub) in Figure 4B can be
eliminated in Figure 4C as a result of the fact that checking
(0 ,5 i 2 2) and (i 1 1 , ub) at the top results in (3 ,5
i 1 1 , ub).

12. C. Click, “Global Code Motion, Global Value Numbering,”
Proceedings of the ACM SIGPLAN’95 Conference on Program-
ming Language Design and Implementation (1995), pp. 246–
257.

13. S. S. Muchnick, Advanced Compiler Design and Implemen-
tation, Morgan-Kaufmann Publishers, San Francisco, CA
(1997).

14. J. Knoop, R. Oliver, and S. Bernhard, “Lazy Code Motion,”
Proceedings of the ACM SIGPLAN’92 Conference on Program-
ming Language Design and Implementation (1992), pp. 224–
234.

15. Ninja: Numerically Intensive Java, IBM Corporation, avail-
able at http://www.research.ibm.com/ninja/.

16. Intel Architecture Software Developer’s Manual, Order Num-
ber 243191-001, Intel Corporation, Santa Clara, CA (1997).

17. F. Chow and J. Henessey, “The Priority-Based Coloring Ap-
proach to Register Allocation,” ACM Transactions on Pro-
gramming Languages and Systems 12, No. 4, 501–536 (1990).

18. T. A. Proebsting, “Optimizing an ANSI C Interpreter with
Superoperators,” Conference Record of the 22nd ACM SIG-
PLAN-SIGACT Symposium on Principles of Programming
Languages (1995), pp. 322–332.

19. J. Vitek, R. Horspool, and A. Krall, “Efficient Type Inclu-
sion Test,” Proceedings of the ACM Conference on Object Ori-
ented Programming Systems, Languages & Applications,
OOPSLA ’97 (1997), pp. 142–157.

20 A.-R. Adl-Tabatabai, M. Cierniak, G.-Y. Lueh, V. M. Parikh,
and J. M. Stichnoth, “Fast, Effective Code Generation in a
Just-in-Time Java Compiler,” Proceedings of the ACM SIG-
PLAN ’98 Conference on Programming Language Design and
Implementation (1998), pp. 280–290.

21. Intel Architecture Optimization Manual, Order Number
242816-003, Intel Corporation, Santa Clara, CA (1997).

22. CaffeineMark3 Benchmarks, Pendragon Software Corpora-
tion, Libertyville, IL, available at http://www.pendragon-
software.com/pendragon/cm3/info.html.

23. JMark2.0 Benchmarks, Ziff-Davis, Inc., New York, available
at http://www.zdnet.com/zdbop/jmark/jmark20/applet/jmdocs/
jmarkdoc.htm.

24. SPECjvm98 Benchmarks, Standard Performance Evaluation
Corporation (SPEC), Manassas, VA, available at http://
www.spec.org/osg/jvm98.

25. JDK1.1.7B for Win32, Sun Microsystems, Inc., Palo Alto,

CA, binary available at http://java.sun.com/products/jdk/1.1/
index.html.

26. MS SDK for Java 3.2, Microsoft Corporation, Redmond, WA,
binary available at http://microsoft.com/java/vm/dl vm32.htm.

27. A. Krall and R. Grafl, “CACAO: A 64-bit Java VM Just-in-
Time Compiler,” Proceedings of the ACM PPoPP ’97 Work-
shop on Java for Science and Engineering Computation (1997).

28. JOVE Technical Report, Instantiations Inc., Tualatin, OR,
available at http://www.instantiations.com/jove/jovereport.
htm.

29. TowerJ, Tower Technology Corporation, Austin, TX, avail-
able at http://www.towerj.com.

30. High Performance Compiler for Java, now integrated in Vi-
sualAge for Java, IBM Corporation, available at http://
www.software.ibm.com/ad/vajava/.

31. Marmot: an Optimizing Compiler for Java, Microsoft Cor-
poration, Redmond, WA, available at http://www.research.
microsoft.com/apl.

32. M. G. Burke, J.-D. Choi, S. Fink, D. Grove, M. Hind,
V. Sarkar, M. Serrano, V. C. Sreedhar, H. Srinivasan, and
J. Whaley, “The Jalapeno Dynamic Optimizing Compiler for
Java,” Proceedings of the ACM SIGPLAN Java Grande Con-
ference (1999), pp. 129–141.

33. M. Poletto and V. Sarkar, “Linear Scan Register Allocation,”
ACM Transactions on Programming Languages and Systems
(1999).

34. O. Traub, G. Holloway, and M. D. Smith, “Quality and Speed
in Linear-Scan Register Allocation,” Proceedings of the ACM
SIGPLAN ’98 Conference on Programming Language Design
and Implementation (1998), pp. 142–151.

35. J. Bogda and U. Hölzle, Removing Unnecessary Synchroni-
zation in Java, Technical Report TRCS99-10, Department of
Computer Science, University of California, Santa Barbara,
CA (1999).

36. K. Ishizaki, M. Kawahito, T. Yasue, M. Takeuchi, T. Oga-
sawara, T. Suganuma, T. Onodera, H. Komatsu, and T. Na-
katani, “Design, Implementation, and Evaluation of Optimi-
zations in a Just-in-Time Compiler,” Proceedings of the ACM
SIGPLAN Java Grande Conference (1999), pp. 119–128.

Accepted for publication September 15, 1999.

Toshio Suganuma IBM Research Division, Tokyo Research Lab-
oratory, 1623-14, Shimotsuruma, Yamato-shi, Kanagawa-ken, 242-
8502, Japan (electronic mail: suganuma@jp.ibm.com). Mr. Su-
ganuma joined IBM in 1992 as a research member at the Tokyo
Research Laboratory, and since then he has worked on compiler
optimizations and code generation for the High Performance
FORTRAN (HPF) compiler and IBM Java Just-in-Time Com-
piler projects. His research interests are in the area of code op-
timization, parallel processing, and instruction scheduling. He re-
ceived the B.E. and M.E. degrees, both in applied mathematics
and physics from Kyoto University in 1980 and 1982, respectively,
and received the M.S. degree in computer science from Harvard
University in 1992. He is currently a research staff member in the
Network Computing Platform group.

Takeshi Ogasawara IBM Research Division, Tokyo Research
Laboratory, 1623-14 Shimotsuruma, Yamato-shi, Kanagawa-ken,
242-8502 Japan (electronic mail: takeshi@jp.ibm.com). Mr. Oga-
sawara works in the areas of optimizing compilers. He designed
and implemented the type inclusion test optimization, the method
invocation optimization, and the exception-handling mechanism
for the IBM Java Just-in-Time Compiler in the IA32 architec-

SUGANUMA ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000192



ture. He also contributed to the fixed-size buffer management of
the just-in-time compiler for Java-based thin clients. He joined
IBM in 1991 at the Tokyo Research Laboratory after receiving
the B.S. and M.S. degrees in computer science from the Univer-
sity of Tokyo. His research interests include code optimization
and memory management.

Mikio Takeuchi IBM Research Division, Tokyo Research Labo-
ratory, 1623-14 Shimotsuruma, Yamato-shi, Kanagawa-ken 242-
8502 Japan (electronic mail: mtake@jp.ibm.com). Mr. Takeuchi
joined IBM as a researcher at the Tokyo Research Laboratory
in 1993. He has been a member of the IBM Java Just-in-Time
Compiler project since 1996, where he has been working on the
platform-independent fast register manager and the code gen-
erator for platforms based on Intel processors. For this work, he
received a Division Award in 1998. His current research interests
are the implementation of dynamic languages (especially opti-
mizing compilers and programming environments) and object-
oriented technology (especially languages, tools, frameworks, and
design patterns). He received the B.E. and M.E. degrees in math-
ematical engineering and information physics from the Univer-
sity of Tokyo in 1990 and 1993, respectively.

Toshiaki Yasue IBM Research Division, Tokyo Research Labo-
ratory, 1623-14 Shimotsuruma, Yamato-shi, Kanagawa-ken 242-
8502 Japan (electronic mail: yasue@jp.ibm.com). Mr. Yasue re-
ceived the B.S. and M.S. degrees from the School of Science and
Engineering, Waseda University, in Tokyo in 1989 and 1991, re-
spectively. He joined IBM in 1995 and is currently a research mem-
ber in the Network Computing Platform group at the Tokyo Re-
search Laboratory. His primary research interests include
compiler optimization and parallel processing.

Motohiro Kawahito IBM Research Division, Tokyo Research Lab-
oratory, 1623-14, Shimotsuruma, Yamato-shi, Kanagawa-ken 242-
8502, Japan (electronic mail: JL25131@jp.ibm.com). Mr. Kawa-
hito received the B.S. degree from Waseda University in 1991.
He joined IBM in 1991 as a member of the AIX Systems group
at the IBM Yamato Laboratory. He developed the PC simulator,
5080 emulator, WABI, CMDS, and CATIA Viewer. He has been
a research member at the Tokyo Research Laboratory since 1997,
where he has been working on the exception check elimination,
constant propagation, dead store elimination, and class variable
privatization for the Java JIT compiler project.

Kazuaki Ishizaki IBM Research Division, Tokyo Research Lab-
oratory, 1623-14 Shimotsuruma, Yamato-shi, Kanagawa-ken, 242-
8502, Japan (electronic mail: ishizaki@trl.ibm.co.jp). Mr. Ishizaki
received the B.S. and M.S. degrees, both in computer science from
Waseda University in 1990 and 1992, respectively. Since joining
IBM in 1992 at the Tokyo Research Laboratory, he has worked
on the High Performance FORTRAN (HPF) compiler. He is cur-
rently involved with the IBM Java Just-In-Time Compiler. His
research interests include optimizing compiler and processor ar-
chitectures.

Hideaki Komatsu IBM Research Division, Tokyo Research Lab-
oratory, 1623-14, Shimotsuruma, Yamato-shi, Kanagawa-ken 242-
8502, Japan (electronic mail: komatsu@jp.ibm.com). Dr. Komatsu
received the B.S. and M.S. degrees in electrical engineering from
Waseda University in 1983 and 1985 and the Ph.D. in computer
science from Waseda University in 1998. Since joining IBM in
1983 at the Tokyo Research Laboratory, he has carried out re-

search activity in the areas of the optimizing compiler, Prolog com-
piler, data flow compiler, FORTRAN 90 compiler, High Perfor-
mance FORTRAN compiler, and the IBM Java Just-in-Time
Compiler. His research interests include compiler optimization
techniques (register allocation, code scheduling, and loop opti-
mizations) for instruction-level parallel architecture and loop op-
timizations for massively parallel computers. Dr. Komatsu is cur-
rently a research staff member in the Network Computing
Platform group.

Toshio Nakatani IBM Research Division, Tokyo Research Lab-
oratory, 1623-14, Shimotsuruma, Yamato-shi, Kanagawa-ken 242-
8502, Japan (electronic mail: nakatani@jp.ibm.com). Dr. Naka-
tani received the B.S. degree in mathematics from Waseda
University in 1975, and the M.S.E., M.A., and Ph.D. degrees in
computer science from Princeton University, in 1985, 1985, and
1987, respectively. He joined the Tokyo Research Laboratory as
a research staff member in 1987 and is currently manager of the
Network Computing Platform group. His research interests in-
clude architecture, compilers, and algorithms for parallel com-
puter systems.

Reprint Order No. G321-5722.

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 SUGANUMA ET AL. 193


