Challenges in Transition

Keynote talk at International Workshop on Software Engineering Methods for Parallel and High Performance Applications (SEM4HPC 2016)

Kazuaki Ishizaki

IBM Research – Tokyo kiszk@acm.org

What is this talk about?

- How we make a HPC platform consumable for non-HPC people?
 - -For machine learning (ML) and deep learning (DL)
- This talk is not a solid research proposal, but what I am recently thinking about.

Takeaways

 Users, applications, and HWs are always in transition – Programming is becoming hard

- Let us build an end-to-end runtime system for ML and DL
 - -Leave each layer to the specialist to do the best
 - Each layer should know everything for optimizations
 - Should not be isolated
- How we can make state-of-the-art technologies consumable in the system?
 - -Our research is here!

My History (mostly commercial, sometimes HPC)

- I990-1992 Network HW interface for parallel computer
- I992-1995 Static compiler for High Performance Fortran
- 1996-now Just-in-time compiler for IBM Developers Kit for Java
 - –1996-2000 Benchmark and GUI applications
 - -2000-2010 Web and Enterprise applications
 - Analytics applications
 - 2014- Java language with GPUs
 - Apache Spark (in-memory data processing framework) with

-2012-

2015-

GPUs

Outline of this talk

- Review transition in HPC
- What are problems in this transition?
- How we will address these problems?

Performance Trend of TOP500

Great performance improvements for Linpack, at 33.86PFlops

Source: TOP500

TOP #1 Systems in TOP500

TOP #1 Systems in TOP500

Three Eras in HPC

SEM4HPC 2016 Keynote: Challenges in Transition, Kazuaki Ishizaki

Review for Each Era

- What applications were executed?
- Who wrote these applications?
- What research we did?
- What was commodity HW?

Vector Era

Vector Era (- 1993)

• How we can exploit a vector machine for specific applications

Hardware	Slow scalar processor with vector facility
Applications	Weather, wind, fluid, and physics simulations
Programmers	Limited # of programmers who are well-educated for HPC (Ninja programmers)
Research	Automatic vectorization techniques Enhancement of vector HW features (e.g. sparse array support)
Commodity HW	Slow scalar processor

MPP Era

SEM4HPC 2016 Keynote: Challenges in Transition, Kazuaki Ishizaki

MPP Era (1990 -)

How we can hide latencies between nodes

Hardware	Massive commodity processors with special network I/F
Applications	Simulations for wider areas (e.g. chemical synthesis)
Programmers	Limited # of programmers who are well-educated for HPC
Research	Improvements on MPI implementations Parallelization and optimization of given applications by hand
Commodity HW	Fast scalar processors

SEM4HPC 2016 Keynote: Challenges in Transition, Kazuaki Ishizaki

Innovations in System Software

CUDA/OpenCL make powerful computing resource accessible

Accelerator Era (2008 -)

How we can exploit GPUs in our applications

Hardware	Massive commodity processors with HW accelerators
Applications	Simulations for wider areas (e.g. chemical synthesis)
Programmers	Limited # of programmers who are well-educated for HPC
Research	GPU-friendly rewriting of given applications by hand GPU-oriented algorithms
Commodity HW	Desktop PC with GPU cards

Innovations in Infrastructure

Cloud makes a cluster of machines easily accessible

Big innovations in Applications

• Machine learning and deep learning are big FP consumers

SEM4HPC 2016 Keynote: Challenges in Transition, Kazuaki Ishizaki

Accelerator Era 2.0 (2012 -)

• HPC meets machine learning and deep learning with big data

Hardware	Massive commodity processors with HW accelerators
Applications	Machine learning (ML) and deep learning (DL) with big data
Programmers	Data scientists who are non-familiar with HPC
Research	How we can effectively use GPUs? How about accuracy of a new ML/DL algorithm with big data?
Commodity HW	A cluster of machines with GPUs on cloud

Summary of Transition

- Majorities of applications are changing
 - From simulations to machine learning (ML)/deep learning (DL) with big data
- HPC HW is becoming commodity

 GPUs are available on desktop and cloud
 Cloud provides a cluster of GPUs as a commodity
- Programmers are changing

 From Ninja programmers to data scientists

Outline of this talk

Review transition in HPC

• What are problems in this transition?

How we will address these problems?

Details in Application

 Data is becoming rapidly larger -1000x from 2010 to 2015

 The number of applications is rapidly growing – arXiv.org is hosting many papers

- On 2014, hit 1 million articles
- On 2015, 105,000 new submission and over 139 million downloads
- -github.com is hosting many programs
 - On 2014 4Q, more than 15M updates (pushes) to 2.2M repositories

Source: IDC, CISCO, IBM Optimization is ready For Big Data The arXiv preprint server hits 1 million articles arXiv Update - January 2016 Githut.info

Details in Programming Languages

Data Scientists love Python and R (e.g. high level languages)

- Python and R make programming easy
 - Scientific computing operations and libraries (e.g. Numpy)
- Programs do not scale to a cluster of machines
 - Perform pre-filterings to reduce data size for a machine
 - Spend much time to rewrite it for a cluster
- -It is not easy to write a program optimized for a target architecture

Details in Infrastructure

- Accelerators that matter
 - Processing units
 - GPU, FPGA, ASIC (e.g. Tensorflow Processing Unit), ...
 - Storage
 - Non-volatile memory, phase change memory, ...
 - -Communication
 - Communication between accelerators (e.g. NVLINK), optical interconnect, ...

Problems in Future

 Data will be too large to store on fast memory – Memory hierarchy is becoming deep

Programming will be hard

 Hard to program HW accelerators
 New applications rapidly appear

Optimization and deployment will be hard
 – Emerging HW accelerators will appear

Outline of this talk

- Review transition in HPC
- What are problems in this transition?
- How we will address these problems?

My Proposal: Build an End-to-End System

- From an algorithm to hardware
- Leave each layer to the specialist to do the best
 - Easy to develop new algorithms
 - Easy to exploit parallelism from the algorithm
 - Easy to generate accelerator code
 We should avoid complex tasks (e.g. analysis)
- Each layer should know everything
 - What parts of the algorithm are parallel?
 - What happens at hardware
 - We should not make each layer isolated

Communication

Source: A New Look at the System, Algorithm and Theory Foundations of Distributed Machine Learning

KDD 15

© Eric Xing @ CMU, 2015

Similar Research 2

SEM4HPC 2016 Keynote: Challenges in Transition, Kazuaki Ishizaki

Our Recent Research: Exploit GPUs at High Level

- Compile a Java Program for GPUs [PACT2015, <u>http://ibm.com/java/jdk/]</u>
 - A parallel stream loop, which explicitly expresses a parallelism, can be offloaded to GPUs by our just-in-time compiler without any GPU specific code

```
IntStream.range(0, N).parallel().forEach(i -> {
    b[i] = a[i] * 2.0;
});
```

Our Recent Research: Exploit GPUs at High Level

Apache Spark with GPUs [<u>http://github.com/IBMSparkGPU</u>]

– Drive GPU code from an Apache Spark program transparently from

a user

// rdd: resilient distributed dataset is distributed over nodes
rdd = sc.parallelize(1 to 10000, 2) // node0: 1-5000, node1: 5001-10000
rdd1 = rdd.map(i => i * 2)

sum = rdd1.reduce((x, y) => (x + y))

SEM4HPC 2016 Keynote: Challenges in Transition, Kazuaki Ishizaki

How We Create this Proposal?

Will we just pile up existing products?

How We Create this Proposal?

- Will we just pile up existing products?
 - -No, it would invent a naïve FAT stack

Naïve FAT stack Algorithm Model Framework libraries Programming Language System software **Processing Unit** (CPU, accelerator) Memory Communication

Do not guess: Each layer should know everything

How We Create this Proposal?

- Will we just pile up existing products?
 - No, it would invent a naïve FAT stack
- I like an abstraction, but do not like to execute it "as-is"
 - Run as an optimized THIN stack with end-to-end optimizations
 - before an execution
 - during an execution
 - among executions

36

Optimized THIN stack

Our Research Challenges (1/2)

- Programming environment
 - Algorithm should be written declaratively without losing high level information
- Framework / libraries
 - Resource scheduling
 - -Communication-avoiding algorithm
 - -Loosely-synchronized execution model
 - -Localization (e.g. tiling)

Current ML/DL frameworks have not optimized than HPC software stacks yet

Our Research Challenges (2/2)

- Programming languages / system software
 - -Make HW accelerators consumable without specific code
 - Dynamic compilation or deployment for new HW accelerators
 - -Automatic tuning
 - Deep learning may help too many tuning knobs in system
 - -Appropriate feedbacks from HW to programming

Debugging

- Reproduce a bug for some converged algorithms

Recap: Takeaways

 Users, applications, and HWs are always in transition – Programming is becoming hard

Let us build an end-to-end runtime system for ML and DL

- -Leave each layer to the specialist to do the best
- Each layer should know everything for optimizations
 - Should not be isolated

 How we can make state-of-the-art technologies consumable in the system

-Our research is here!