
Effectiveness of Cross-Platform Optimizations
for a Java Just-In-Time Compiler

Kazuaki Ishizaki, Mikio Takeuchi, Kiyokuni Kawachiya, Toshio Suganuma, Osamu Gohda,
Tatsushi Inagaki, Akira Koseki, Kazunori Ogata, Motohiro Kawahito, Toshiaki Yasue,

Takeshi Ogasawara, Tamiya Onodera, Hideaki Komatsu, and Toshio Nakatani
IBM Research, Tokyo Research Laboratory

1623-14 Shimotsuruma, Yamato, Kanagawa, 242-8502, Japan
ishizaki@trl.ibm.com

ABSTRACT
This paper describes the system overview of our Java Just-In-
Time (JIT) compiler, which is the basis for the latest production
version of IBM Java JIT compiler that supports a diversity of
processor architectures including both 32-bit and 64-bit modes,
CISC, RISC, and VLIW architectures. In particular, we focus on
the design and evaluation of the cross-platform optimizations that
are common across different architectures. We studied the
effectiveness of each optimization by selectively disabling it in
our JIT compiler on three different platforms: IA-32, IA-64, and
PowerPC. Our detailed measurements allowed us to rank the
optimizations in terms of the greatest performance improvements
with the smallest compilation times. The identified set includes
method inlining only for tiny methods, exception check
eliminations using forward dataflow analysis and partial
redundancy elimination, scalar replacement for instance and class
fields using dataflow analysis, optimizations for type inclusion
checks, and the elimination of merge points in the control flow
graphs. These optimizations can achieve 90% of the peak
performance for two industry-standard benchmark programs on
these platforms with only 34% of the compilation time compared
to the case for using all of the optimizations.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Processors – runtime
environment, compilers, optimization.

General Terms: Algorithms, Measurement, Performance,
Experimentation, Languages.

Keywords: Java, just-in-time compiler, optimization.

1. INTRODUCTION
The execution model of the Java language [1] is to execute Java
bytecode on a virtual machine (VM) in order to run unchanged
programs on all platforms. The VMs evolved through three
generations. In the first generation, a VM consisted of only an
interpreter. This was very portable, but very slow. In the second

generation, a VM consisted of a lightweight Just-In-Time (JIT)
compiler to compile all the methods in a given program. This
achieved acceptable performance, but the JIT compiler could not
perform more advanced optimizations, because they usually
required an excessively long compilation time. In the third
generation, a VM consists of an interpreter and a highly
optimizing JIT compiler that compiles only the “hot” methods in a
given program. This system can perform more time-consuming
optimizations by compiling only 10% - 20% of all the methods [2,
3]. It can achieve high performance and avoid a long compilation
times.

Considering the cost-effective development of JIT compilers for
many different platforms as software products, it is ideal to share
as many optimizations as possible in common across all of the
platforms. At the same time, it is desirable to tune the
performance for the target architecture to achieve the highest
possible performance. Thus, we adopted the following design:

z Use a compact stack-based intermediate representation (IR)
for method inlining to expand the scope of optimizations in
the earlier phases. This IR is shared in common among all
of the platforms.

z Use other two register-based IRs for advanced optimizations
in the later phases. These two IRs are also shared in
common on multiple platforms, but a compiler generates a
different pattern of the IRs for the target architecture. This
makes it possible to share optimizations across multiple
platforms and at the same time to customize some sequences
of the IRs for the target architecture.

z Provide a few architecture-specific optimizations only for
register allocation, instruction scheduling, and code
generation, all of which have strong dependencies on the
target architecture.

This paper focuses on the design and the empirical evaluation of
cross-platform optimizations on multiple platforms. For more
details, we describe an overview of advanced optimizations on
two register-based IRs, quadruples and directed acyclic graphs,
which have been newly developed for our latest Java JIT compiler
since the previously reported version [4]. We also describe
optimization features that are unique to Java, including exception
elimination optimizations [5] and direct devirtualization [6].
The major motivation for our evaluation here is to clarify how
each optimization feature contributes to the overall performance
improvement in terms of the cost as measured by its compilation
time. Our goal is to identify which optimizations are most cost-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
OOPSLA ’03, October 26-30, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-712-5/03/0010…$5.00.

187

effective across multiple platforms. That is, we would like to
select those optimization features with which we can get the
largest performance improvement at the expense of the smallest
compilation time overhead. In summary, we will show that, with a
small set of the selected optimization features, we can achieve
90% of the peak performance for SPECjvm98 [7] and a special
version of SPECjbb2000 [8], with only 34% of the total
compilation time in comparison to the case in which all the
optimization features are enabled.
This paper makes the following contributions.
z Design and implementation of a Java JIT compiler: We

describe the design and implementation of a production Java
JIT compiler. In particular, we focus on the cross-platform
optimization features that are common across different
processor architectures. These components, listed below, are
designed to be shared by using our common intermediate
representations and to optimize them to generate different
machine code for the target architecture.

- Method inlining
- Exception check optimizations
- Scalar replacement for instance and class fields
- Optimizations for type inclusion checks
- Elimination of merge points in the control flow graphs
- Optimizations on directed acyclic graphs such as loop

versioning and code scheduling.
z Detailed evaluation of the cross-optimization features

and their effectiveness: We empirically evaluate the
performance improvements and the compilation time
overhead of each optimization by selectively disabling it in
our JIT compiler on IA-32, IA-64, and PowerPC. We show
which optimizations improve the overall performance at the
cost of small compilation times and which optimizations
improve the performance at the expense of large
compilation times. As a result, we identify a set of the
effective optimizations, listed below, with which we can
achieve 90% of the peak performance for SPECjvm98 and a
special version of SPECjbb2000 at the expense of only 34%
of the total compilation time in comparison to the case in
which all of the optimizations are enabled.

- Method inlining only for tiny methods
- Exception check optimizations using forward dataflow

analysis and partial redundancy elimination
- Scalar replacement for instance and class fields using

dataflow analysis
- Optimizations for type inclusion checks
- Elimination of merge points in the control flow graphs

The rest of the paper is organized as follows. Section 2 describes
the overview of the JIT compiler. Section 3 gives the detailed
description of the design and implementation of optimizations.
Section 4 shows the results of the experiments. Section 0
describes related work, and Section 6 gives the conclusions.

2. SYSTEM OVERVIEW
This section gives an overview of the IBM Java JIT compiler.
First, we give the overview of the runtime environment and the
structure of the JIT compiler in the IBM Developer Kit (DK).

2.1 Runtime Environment
The VM in the IBM DK is derived from an implementation of the
Sun Classic VM. The IBM DK has many enhancements to
improve the performance. Among these, we focus on three major
enhancements.
The first enhancement is the object layout known as handleless
objects. The VM in the IBM DK uses handleless object with
direct pointers. The header and body of an object are allocated as
one block. This has an advantage for high performance.
The second enhancement is the synchronization known as Tasuki
Lock [9] derived from the Thin Lock [10] technique. The Thin
Lock allows a synchronization operation to be performed with just
a few machine instructions in the uncontended case. The Tasuki
Lock further improves on robustness and performance over Thin
Lock .
The third enhancement is the memory management system related
to object allocation and garbage collection (GC). The system
provides a global heap and thread-local heaps. While large objects
are allocated from the global heap with appropriate
synchronization, most objects are allocated from thread local
heaps without synchronization, thus making object allocation very
fast. The IBM DK basically uses a conservative, stop-the-world
mark-sweep-compact GC [11], but it makes the mark and sweep
phases parallel to reduce the pause time [12].
To allow efficient execution of a Java program, the VM in the
IBM DK consists of a mixed-mode interpreter, which supports
mixed execution of interpreted and compiled code [2], and a JIT
compiler 1 . At the beginning, all methods are executed by the
interpreter. An execution counter is provided for each method and
initialized as zero. The counter is incremented at the method entry
and at a loop backedge. When the counter exceeds a threshold
value, the JIT compiler is invoked for the method.
The interpreter also records the runtime trace information for
conditional branches and switch instructions. For any conditional
branches encountered, the interpreter stores the information for
the JIT compiler to predict the branch directions. For any switch
instruction encountered, the interpreter stores the information for
the JIT compiler to predict which case label is most frequently
selected. Such trace information is used for the JIT compiler to
recognize hot paths in a method.

2.2 Compiler Structure
Figure 1 shows the overall flow diagram of the JIT compiler,
which uses three IRs. The first IR is called an extended bytecode
(EBC) that holds the same stack-based semantics as the original

1 The previous paper [2] described a dynamic optimization

framework using a sampling-based profiler with an optimizing
compiler at different levels of optimizations. Since the
sampling-based profiler depends on the features provided by the
Windows API, it was disabled for the study in this paper in
order to evaluate the same set of optimizations on multiple
platforms.

188

Java bytecode. It also maintains all of the type information for the
destination of every instruction, unlike the original Java bytecodes,
some of which lack explicit type information for the destinations.
This requires only a small amount of memory, similar to the Java
bytecode. The second IR is a quadruple (QUAD) that is a register-
based representation. This is a tuple format with an opcode and
zero or more operands, depending on each instruction. Its
instructions explicitly represent potentially excepting instructions
(PEIs) [13] to support the correct semantics of Java exceptions.
The QUAD is the base IR designed to support various
optimizations such as dataflow analysis. The third IR is a directed
acyclic graph (DAG) that is also a register-based representation.
This consists of nodes corresponding to QUADs and edges
indicating both data dependencies and other dependencies such as
exception dependencies [14]. These three IRs are grouped into
basic blocks (BBs). BBs are not terminated by method calls or by
PEIs like factored control flow graph [15].

Extended Bytecode Optimizations

Extended Bytecode -> Quadruple

DAG Optimizations

Quadruple -> DAG

Code Generation

DAG -> Quadruple

Java Bytecode

Native Code

Bytecode -> Extended Bytecode

Quadruple Optimizations

First phase

Second phase

Third phase

Fourth phase S/390 PPC IA32 IA64

Figure 1. The overall structure of the JIT compiler

Method Inlining

Exception Check Elimination

Type Inference

Type Inference

Stack Analysis

Figure 2. The sequence of optimizations on EBC

3. OPTIMIZATIONS
This section describes the optimizations on each IR, the EBCs, the
QUADs, and the DAG. All of these optimizations are
architecture-independent and common across all of the platforms.
Finally, we describe the code generation, which is architecture-
dependant.

3.1 Optimizations on EBC
This subsection describes the design and implementation of the
optimizations based on the EBC, whose sequence is described in
Figure 2.
First, flow-sensitive type inference [16, 17] computes a type for
every object reference within the entire method to identify the
possible set of classes of the receiver of each virtual method call.
For each object reference, the compiler computes the dataflow
information on its static types based on signatures, class
instantiations such as new().
Second, method inlining, which replaces calls to methods by
copies of their bodies, is performed to expand the scope of
optimizations [18]. A program written in Java tends to have many
small methods, such as accessor methods, which are called
frequently. We call these small methods tiny methods. The
compiler builds a possibly large call tree of inlined scopes with
allowable sizes and depths, and then calculates the total cost by
checking each decision. The compiler manages two separate
budgets: one for tiny methods, and the other for non-tiny methods.
By using separate budgets, the compiler attempts to inline as
many tiny methods as possible. It also attempts to inline as many
non-tiny methods as possible based on the following static
heuristics until the predetermined budget is used up:
z If the total estimated size of the compiled code for both the

caller and callee methods exceeds a threshold, stop inlining
the method.

z If the estimated size of the compiled code for the callee
method exceeds a threshold, stop inlining the method to
avoid wasting the budget on a single method.

z If the call site is within a loop, perform inlining for a deeper
level of the tree than that for a call site outside of a loop.

z If the total number of local variables and the stack height for
both caller and callee methods exceed a threshold, stop
inlining the method.

A static method call can be inlined in a straightforward manner by
replacing the call to the method with a copy of its body. A
dynamic method call may have several target methods, and thus
devirtualization techniques must be used. When a dynamic
method call is found during method inlining, class hierarchy
analysis (CHA) [19] is performed to determine a set of possible
targets of the dynamic method call by combining the static type of
the object with the class hierarchy of the entire program. If it can
be proved that the method call has only a single target, the
compiler incorporates the target method without any guard code
via code patching [6]. If the call has more than one target method,
the compiler incorporates one of the target methods with guard
code using a method test [20]. Any of these devirtualization
techniques generates a backup path that is executed if the
assumption fails during the execution of the program. After the
devirtualization, both the static and dynamic method calls are
inlined based on the same heuristics described above.

189

Third, the compiler eliminates redundant nullchecks and array
bound checks. It eliminates redundant nullchecks along an
execution path using forward dataflow analysis [5]. Then, it
eliminates redundant array bound checks using forward dataflow
analysis based on the extension of Gupta’s algorithm [21] as
described in [22]. The dataflow analysis propagates range
expressions to determine where they must be checked. All the
redundant checks for eliminating them in the later phase are
marked as attributes of the EBC. This phase can greatly reduce the
size of the QUAD, since the QUADs explicitly represent PEI.
Fourth, type inference is performed again for eliminating
redundant backups and type inclusion checks (TICs) that
determine whether two object references are related by a
subtyping relationship. It proves that only a single class is reached
at the receiver of the dynamic method call, the method call can be
directly devirtualized without any backup path. The property of
preexistence 2 [20] can then be used to directly devirtualize a
dynamic method call without any backup path. To check for the
preexistence property of a receiver, invariant argument analysis is
performed using the result of type inference. If the receiver of a
dynamic method call is directly reachable from an argument of the
method and the method call has only a single target at compilation
time, then the method call can be directly devirtualized without
any backup path. When a method is overridden by dynamic call
loading, the method will be recompiled at the next invocation.
Therefore, any of these existing backup paths can also be
eliminated. In addition, if all the members of the set of classes at a
source operand of a TIC are a subtype of a class of the cast target
at compilation time, then the compiler can eliminate that TIC. In
Figure 2, there are two phases for type inference. The first type
inference (before method inlining) increases an opportunity for
direct devirtualization, while the second type inference (after
exception check elimination) eliminates redundant TICs and
backup paths in a wide compilation scope.
Finally, stack analysis is performed to identify the type of every
stack operand and local variable using forward dataflow analysis.
This type information is used during the translation from the EBC
to the QUAD for mapping stack operands and local variables to
symbolic registers.

3.2 Optimizations on QUAD
This subsection describes the design and implementation of
optimizations based on the QUADs, whose sequence is described
in Figure 3.

The QUAD representation is finer grained than the bytecode. For
example in Figure 4, an iaload bytecode is divided into several
QUADs: a QUAD (NULLCHECK) to check whether the given
object reference is null, a QUAD (ARRAYLEN) to load the
length of the array object, a QUAD (BOUNDCHECK) to check
whether the given array index is legal, some QUADs to obtain the
address of the specified array element, and a QUAD (IALOAD) to
read the value from the address. The QUAD representation makes
it easy to eliminate redundant exception checks and common sub-
expressions.

2 If the receiver for a dynamic method call has been allocated

before the invocation of its calling method, then that method
cannot be overridden during the execution of the caller.

Dataflow Analysis

Eliminate Merge Points in CFG

Escape Analysis

Exception Check Optimization
(architecture independent)

Scalar Replacement using PRE

Type Inference

Exception Check Optimization
(architecture dependent)

Figure 3. The sequence of optimizations on QUADs

Most QUADs have a one-to-one correspondence to a native
instruction, except for a few complex QUADs that correspond to
object allocations and unresolved class references. The QUAD is
designed for different processor architectures. A set of QUADs to
obtain the address of an array element is different for each
platform. For example, it needs only a single QUAD for the
architecture supporting a scaled-index-addressing mode with
displacement, such as mov eax, [ecx+ebx*4+8] on the IA-32
architecture. On the other hand, it needs multiple QUADs that
generate an effective address for an array element followed by a
load instruction from the address on the PowerPC, the IA-64, and
the S/390 architectures. Figure 4 shows an example of translating
from a sequence of EBCs to QUADs for these different
architectures. Since many of the same QUADs are used in
common, we can share many optimization phases across the
different platforms while generating efficient code for each
architecture.

First, after translating the EBCs to the QUADs, dataflow
optimizations, such as copy propagation, constant propagation,
and dead code elimination [23], are performed to remove
redundant QUADs caused by the static semantics.

Second, merge points are eliminated by method splitting [24],
which is a kind of tail duplication. Direct devirtualization by code
patching [6] creates a diamond control flow including the
devirtualized method on one side and a backup path including the
original dynamic method call on the other side. The merge point
in a control flow graph (CFG) may limit the JIT compiler from
performing dataflow optimizations, as discussed in [25]. Since
naïve splitting causes an exponential code explosion, we use a
frequency-directed splitting, in which the BBs in frequently
executed paths are duplicated to expose an opportunity for
optimizations, while those in rarely executed paths, such as
backup paths, are not duplicated. Figure 5 shows an example to
describe the difference between naïve splitting and our frequency-
directed splitting for eliminating the merge points in the CFG. The
figure shows that our splitting can reduce the number of BBs
without introducing any merge point in the frequently executed
path (a->b->d->e->g).

190

NULLCHECK LA4 //Can be omitted by
 //using hardware trap
ARRAYLEN LI7 = LA4
BOUNDCHECK LI5, LI7
IALOAD LI6 = LA4, LI5*4,+8 //LI6=[LA4+LI5*4+8]

NULLCHECK LA4
ARRAYLEN LI7 = LA4
BOUNDCHECK LI5, LI7
EOP(BASE) LE8 = LA4, +16 //LE8 = LA4 + 16
 //16 is obj header size
EOP(SHLADD) LE9 = LI5,+2, LE8 //LE9 = LI5<<2 + LE8
IALOAD LI6 = LE9 //LI6 = [LE9]
EXTEND LI6 = LI6 //LI6 = SignExt(LI6)

QUADs for IA-32

QUADs for IA-64

QUADs for PowerPC and S/390
Java

 bytecode

aload 4
iload 5
iaload
istore 6

NULLCHECK LA4 //Throw exception
 // if LA4 is NULL
ARRAYLEN LI7 = LA4 //LI7 = LA4.length
BOUNDCHECK LI5, LI7 //Throw exception
 // if LI5 >= LI7
EOP(BASE) LE8 = LA4, +8 //LE8 = LA4 + 8
 //8 is obj header size
IOP(SHL) LI9 = LI5, +2 //LI9 = LI5 << 2
IALOAD LI6 = LE8, LI9 //LI6 = [LE8 + LI9]

Figure 4. An example of the translation from bytecode to

QUADs

e f

g

b c

d

a

e f

g

b c

d

a

d’

e’ f’

g’ g’ g’

e f

g

b c

d

a

d’

g’

(d‘ is duplicated
from d)

After naïve splitting

After frequency directed splitting

A frequently-executed BB

A rarely-executed BB

A frequently-executed path

A rarely-executed path

Before splitting

Figure 5. An example of eliminating merge points in the CFG

Third, compositional escape analysis [26] is performed based on
the point-to escape graphs, which characterize how local variables,
instance, and class fields refer to objects. If an object does not
escape from its allocating thread, the compiler eliminates all the
synchronization operations on the object. If it is found that an
object does not escape from the current method, the JIT compiler
allocates it in the method’s local stack instead of the heap. To
reduce the compilation time overhead, the JIT compiler produces
summary information for every call site that may call the same
method. If a callee method has not yet been analyzed at a call site,
the JIT compiler proceeds with a pessimistic assumption that all
the arguments are escaping at the call site.

In addition, for those objects that are not escaping, if the object
header is not used within the method, the compiler performs
scalar replacement for all the fields in the object to replace global
variables with scalar temporaries to allocate them to registers.
Fourth, exception check optimizations (architecture independent)
and scalar replacements are performed iteratively, as described in
[5]. The exception check optimization for nullchecks uses partial
redundancy elimination (PRE) [27] to remove exception checks
out of loops. The exception check optimization for array bound
checks uses forward and backward dataflow analyses based on the
extended Gupta algorithm [22].
Then, scalar replacement for instance and class variables follows
with PRE, which eliminates redundant computations of common
subexpressions and moves invariant accesses out of loops. In
addition, it moves redundant computations in the frequently
executed path aggressively before conditional branches [22].
Since each of these optimizations can expose new opportunities
for the other, the compiler iterates this phase several times.
Next, after completing the iterations, exception check
optimizations (architecture dependent) are performed. First,
forward dataflow analysis is made to minimize exception checks
by utilizing a hardware trap mechanism. If a hardware trap for
accessing the zero address (page) is available for the target
architecture, explicit nullchecks are converted into implicit
nullchecks. Then, backward dataflow analysis is performed to
eliminate redundant exception checks. In our current
implementations, this phase is enabled both on Windows/IA-32
and Linux/IA-32 platforms.
Finally, type inference is performed. Flow-sensitive type inference
determines a set of classes reachable at each object reference
within the entire method. This is basically the same process as the
one performed on the EBC, as described in Section 3.1, but it is
more effective since many merge points in the CFG were
eliminated prior to this phase. The result is used for eliminating
backup paths and TICs.
A TIC determines whether two types are related by a given
subtyping relationship. Instructions requiring TICs such as
instanceof, checkcast, and aastore bytecodes are executed
frequently in Java, and thus it is important to reduce their runtime
overhead. If the set of classes at a source operand of a TIC is
known to be a subtype of a class of the cast target at compilation
time, the compiler can eliminate that TIC.
In addition, to improve the runtime performance of each TIC, we
generate a simple block of inlined code [28] to test the most-
frequently occurring case, as shown in Figure 6. Line 1 checks
whether the referenced object (from) is NULL. Line 2 checks
whether the referenced object is an array. If the JIT compiler
knows that an array object never reaches the referenced object,
this statement can be removed. Line 3 checks whether the actual
class of the referenced object is identical to that of the destination
operand (Type). Line 4 (Line 5) checks whether the class cached
in the referenced object by the last successful comparison (the last
failed comparison) is identical to that of the destination operand.
Each of these inlined tests can be done in only two or three
machine instructions. If all of these tests fail, the C runtime
routine expensive_testC() is called for traversing the class
hierarchy. This implementation is based on our finding that most
of the test cases are handled by the inlined tests. Though it is not
shown in this paper, we observed that our performance is almost

191

comparable with that of Cohen’s algorithm [29] using
SPECjvm98 and SPECjbb2000 [8].
Java program
 Type to = (Type)from;

Generated code
1: if (from == NULL) {to = NULL;}
2: elif (is_array_object(from)) {if expensive_testC(...) ...}
3: elif (from.type == Type) {to = from;}
4: elif (from.type.lastsucc == Type) {to = from;}
5: elif (from.type.lastfail == Type) {throw exception}
6: elif (expensive_testC(...)) {to=from; from.type.lastsucc=Type;}
7: else {from.type.lastfail = Type; throw exception}

Figure 6. Code of a Type Inclusion Check
A throw elimination that is a part of Exception-Directed
Optimization [30] is also performed using the results of the type
inference. If the object of a class thrown by an athrow bytecode is
caught by a surrounding exception handler, the JIT compiler can
replace the athrow with a direct branch to the corresponding
catch block. This can eliminate the overhead of throwing an
exception and searching for a corresponding handler at runtime
when an athrow bytecode is executed.

3.3 Optimizations on DAG
This subsection describes the design and implementation of
optimizations based on the DAGs, whose sequence is described in
Figure 7.
The DAG consists of nodes and directed edges. Each node
corresponds to a QUAD, and it has one or more source operands,
a destination operand, and a special operand to describe if there is
any side effect. Each directed edge represents a data dependence,
or other dependence such as synchronization dependence or
exception dependence [14], between two nodes.
We begin by translating the QUADs to the static single
assignment (SSA) form [31], and generate a minimal-
representation SSA [32] by inserting phi-functions. Second, we
apply loop versioning [4] to hoist array bound checks outside of a
loop in an optimized loop along with the original loop. The code
for exception checks is added only at the entry to the optimized
loop to examine the whole range of the index at once for the entire
loop. As a result, all the array bound checks on the first dimension
of the array are eliminated. Figure 8 shows such an example. In
addition, we apply loop versioning to make sure that the array
accesses by load or store instructions are not aliased to any other
accesses. This will make the following scalar replacement more
effective. Figure 9 shows such an example, in which the original
loop has two accesses to the array a[i], where a[i] may be aliased
to b[i]. In the optimized loop, the second access to a[i] can be
replaced with a reuse of the first access to a[i] after ensuring a[i] is
not aliased to b[i].
Third, for each striding array access to an induction loop index,
we generate an appropriate update-type memory access instruction
available on the target architecture. For example, we use an stwu
or lwzu instruction in the update form on the PowerPC, whereas
we use an ld4 or st4 instruction in the immediate base update
form on the IA-64. For each countdown loop, we use a loop count
register supported by the target architecture.

Loop Versioning

Translate to SSA

Loop Striding

Translate out of SSA

DAG Scheduling

Count Down Loop

Reduce the number of registers

Figure 7. The sequence of optimizations on DAG

if ((array != NULL) && (0 <= start) && (end <= array.length)) {
 /* optimized loop
 eliminate all array bound exception checks for array[] */
 for (i = start; i < end; i++) {
 array[i] = array[i] + 1;
 }
} else {
 /* original loop
 original loop with array bound exception checks */
}

Figure 8. An example of loop versioning for eliminating
exceptions [4]

Java program
for (i = 0; i < n-1; i++) {
 x = a[i];
 b[i] = y*a[i+1]; // a may be aliased to b
 z = a[i];
}

Generated code
if (a != b) {
 for (i = 0; i < n-1; i++) {
 x = a[i];
 b[i] = y*a[i+1];// a are not aliased to b
 z = x; // replace an array access
 // with a scalar variable
 }
} else {
 for (i = 0; i < n; i++) {
 x = a[i];
 b[i] = y*a[i+1];// a are aliased to b
 z = a[i];
 }
}

Figure 9. An example of loop versioning for scalar
replacement

After we translate the SSA form of the QUADs back to the non-
SSA form [33], we perform pre-pass code scheduling for each
basic block using a list scheduling algorithm. The scheduling
policy of our algorithm is adaptive. When the available registers
are scarce, the algorithm attempts to minimize their usage. When
they are not, it attempts to maximize the instruction-level
parallelism. Finally, we create a pre-allocation of the registers in
order to reduce the register usage by allocating the same register
number to those variables whose lifetimes do not interfere with
each other.

192

3.4 Code Generation
This phase consists of three parts, as shown in Figure 10. First, an
architecture mapping is made. Then, register allocation is
performed using physical registers. Finally, code emission is made
with post-pass code scheduling to generate the native code for the
target platform.

Architecture Mapping

Code Emission Code Scheduling

Register Allocation

Figure 10. The sequence of code generation

First, the architecture mapping translates a sequence of QUADs to
the one suited for the target architecture. For the IA-32, the JIT
compiler can specify at most two operands for each machine
instruction, and it can use a memory location as an operand. For
the IA-64 architecture, it translates a conditional branch to a
compare instruction to set a result in a predicate register and a
branch instruction guarded by the predicate register. In addition,
the JIT compiler performs if-conversion [34] to translate an
acyclic region of BBs to a hyperblock [35], a single branch-free
block with a single entry and multiple exits, in order to improve
the performance by eliminating branch instructions. Currently, the
JIT compiler support only simple if-then-else blocks, which are
transformed to simple hammocks.
Java specifies the frequently used “int” type as a signed 32-bit
data type [36]. If such Java programs are executed on a 64-bit
architecture, 32-bit values must be sign-extended to 64-bit values
for many integer instructions. This extension operation will cause
serious performance degradation, and thus we implemented an
efficient algorithm for eliminating sign extension effectively [37].
While this optimization is beneficial in general for the effective
address computation of array accesses, it is also useful for the IA-
64 architecture that does not support load instructions with sign
extension.
To improve the instruction cache locality, the compiler also
reorders BBs in the CFG by moving the rarely executed regions to
the bottom and placing the frequently executed regions as close as
possible.
Second, we perform register allocation using different algorithms
depending on the number of registers available for the target
architecture. For example, we use a special allocator for the IA-32,
which has only eight general-purpose registers (GPRs). It begins
by allocating registers to the frequently accessed operands. If
there are still some registers available, it allocates those registers
to the short-lived operands. We use various heuristics to cope
with the non-orthogonal usage of registers. We attempt to use
MMX, SSE, and SSE2 instructions where possible. For the
PowerPC, which has 32 GPRs and 32 floating-point registers
(FPRs), we use a linear scan register allocator [38] to minimize
the overhead of the compilation time. Note here that it would be
ideal to use a single register allocator for all of the platforms, and
a register allocator based on the preference-directed coloring
algorithm [39] is one of the candidates for that goal.

Finally, we perform code emission to generate the machine
instructions for the target architecture in cooperation with post-
pass code scheduling. It is fairly straightforward to generate
efficient machine instructions since in general each QUAD has a
corresponding machine instruction. There are a few exceptions,
such as the QUAD for object allocation and that for a reference to
an unresolved class, either of which needs to call a runtime
routine for a special handling.
The code emission is performed in conjunction with post-pass
code scheduling within each BB. The code scheduler puts a ready
instruction in the earliest available slot in a first-fit manner [4].
Since the IA-64 architecture can issue several instructions
simultaneously, forming a bundle of instructions that can be
executed in parallel is important to extract the instruction-level
parallelism from a given program. The critical part of the bundle
formation is the set of heuristics that determine the order of
instructions in a bundle to satisfy various constrains. Based on the
heuristics, the code scheduler swaps instructions in a bundle to
maximize the utilization of the non-uniform execution units.

4. EXPERIMENT RESULTS
This section describes the results of several experiments showing
the effectiveness in performance and reduced compilation time of
the optimizations in the JIT compiler. We outline the experimental
methodology for the benchmarks, and then discuss the
experimental results.

4.1 Benchmark Methodology
All the results presented in this section were obtained using the
VM of the IBM Developer Kit, Java Technology Edition, Version
1.4.0. The threshold in the interpreter to initiate the JIT compiler
was set to 1,000 on all platforms.

We used SPECjvm98 [7] and pseudojbb [40] (denoted as pjbb in
the graphs), which is a fixed-work version of SPECjbb2000 [8].
For SPECjvm98, the measurements were performed from five
executions of the autorun sequence in the test mode (not in the
SPEC-compliant mode) with the count of 100. For pjbb, a fixed
number of transactions is executed to compare the execution time
and compilation time.

We conducted experiments on three platforms. The IA-32
platform is an IBM IntelliStation (Pentium 4 Xeon 2.8 GHz dual-
processor with 1 GB memory), running Windows 2000. The IA-
64 platform is an IBM IntelliStation (Itanium 800 MHz dual-
processor with 2 GB memory), running Windows .NET server.
The PowerPC platform (denoted as PPC in the graphs) is an IBM
eServer pSeries 630 (POWER4 1.0 GHz 4-way processor with 2
GB memory), running AIX 5L Version 5.1.

4.2 Experimental Results
This subsection presents experimental results to show how various
sets of optimizations affect the execution time and the compilation
time for each benchmark program. Here, execution time means the
best execution time in all the sequence for each benchmark
program, and compilation time means the compilation time in all
the sequence for each benchmark program. In this subsection, all
the execution times are normalized relative to the result with all
optimizations enabled (denoted as Base in the graphs). In the
graphs for the relative execution time, the taller bars show higher
performance. All the compilation times are also normalized

193

relative to the result with all optimizations enabled (denoted as
Base in the graphs). For those results, the shorter bars show that
less time is used.
We categorize the optimizations described in Section 3 as follows:
method inlining, exception check optimizations, scalar
replacement, optimizations for TICs, elimination of merge points
in the CFG, and optimizations on the DAG. For the rest of this
subsection, we evaluate each of these optimizations by selectively
disabling it on the three platforms.

4.2.1 Method Inlining
As we described in Section 3.1, three kinds of method inlining are
performed: dynamic method inlining, static method inlining, and
tiny method inlining both for static and dynamic methods. Figure
11 shows the relative execution times and compilation times from
selectively disabling method inlining as in the table.
The results show that the case where all of the method inlinings
are disabled degrades the execution time significantly. The
degradations vary from 11% to 78%. Method inlining of tiny

methods both for static and dynamic method calls is a simple
heuristic with great effectiveness, resulting in a maximum
execution time3 degradation of only 15% from the peak execution
time. Static method inlining is effective for compress and
mpegaudio, which are loop-centric programs. Dynamic method
inlining is effective for mtrt, which has a hot method
OctNode.Intersect including many dynamic method calls.
When no method inlining is performed, the compilation time is
reduced by an average of 55%. Method inlining for tiny methods
increases the compilation time by an average of 6%. Static method
inlining drastically increases the compilation time by up to 50%
(with an average of 34%). In particular, it is remarkably expensive
for jess, javac, and jack. Dynamic method inlining also increases
the compilation time by up to 38% (with an average of 16%). On
the other hand, these two method inlining techniques improve the
execution time by up to 15% (with an average of 8%). The
balance between the benefit of the execution time and its cost
needs to be considered carefully.

0

0.2

0.4

0.6

0.8

1

comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb

IA32 PPC

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

to
 B

as
e

IA64

a) Relative execution times (Taller bars are better).

0

0.2

0.4

0.6

0.8

1

comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb

IA32 PPCIA64

R
el

at
iv

e
co

m
pi

la
tio

n
tim

e
to

 B
as

e

b) Relative compilation times (Shorter bars are better).

The color of
the bar Dynamic method inlining Static method inlining Tiny method inlining both for static and

dynamic methods

Base ON ON ON
 OFF ON ON
 OFF OFF ON
 OFF OFF OFF

Figure 11. Measurements on method inlining.

3 In this paper, ‘improvement of the time’ shows the simple

difference between two values of relative time.

194

4.2.2 Exception Check Optimizations
As we described in Sections 3.1, 3.2, and 3.3, three kinds of
exception check optimizations are performed: exception check
eliminations using loop versioning, exception check eliminations
using PRE, and exception check eliminations using forward
dataflow analysis. Figure 12 shows the relative execution times and
compilation times by selectively disabling exception check
eliminations as in the table.

Eliminating exception checks using forward dataflow analysis is a
simple technique that turns out to be quite effective. It improves the
execution time from 2% to 28% (with an average of 8%). In
particular, it is effective for compress and mpegaudio that
frequently access array elements. The optimizations of exception
checks using forward and backward dataflow analysis including
PRE are effective for compress, mpegaudio, and mtrt. Loop
versioning is effective only for mpegaudio.
On IA-32, explicit nullcheck instructions are not generated for array
and field accesses because of the utilization of hardware traps.
Therefore, the degradations are smaller overall except for mtrt and
mpegaudio for all of these optimization settings. The direct
devirtualization newly introduces an explicit nullcheck since it
removes a memory access to a receiver object. There are many

opportunities for direct devirtualization in mtrt. Since more explicit
nullchecks are generated than in the original program, the
degradation is larger. In mpegaudio, there are many array bound
checks that are explicitly generated.

On PowerPC, it takes only one cycle to execute an exception check
using a special compare and branch instruction (tw/twi instructions).
Therefore, the degradations are smaller overall for all of these
optimization settings.

Eliminating exception checks using forward dataflow analysis has
little effect on the compilation time. It even decreases the
compilation time for jess, db, javac, mpegaudio, and jack. This is
because the elimination reduces the size of the IR and thus decreases
the time needed for other optimizations. When no elimination is
performed, there is a remarkable increase of the compilation time for
mpegaudio. The compilation time is about 8.0 times longer on IA-
32 and 2.9 times on IA-64. This is due to the fact that the
compilation times for optimizations on the DAG were increased
drastically by disabling exception check eliminations using forward
dataflow analysis. It is about 24.0 times on IA-32 and 5.7 times on
IA-64. This is because many edges exist in the DAGs for q.m and
tb.???4. Loop versioning increases the compilation time by up to
14%.

0

0.2

0.4

0.6

0.8

1

comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb

IA32 PPCIA64

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

to
 B

as
e

a) Relative execution times (Taller bars are better).

0

0.2

0.4

0.6

0.8

1

comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb

IA32 PPC

7.96 2.88

IA64

R
el

at
ive

 c
om

pil
at

io
n

tim
e

to
 B

as
e

b) Relative compilation times (Shorter bars are better).

The color of
the bar

Exception check eliminations using loop
versioning Exception check eliminations using PRE Exception check eliminations using forward

dataflow analysis

Base ON ON ON
 OFF ON ON
 OFF OFF ON
 OFF OFF OFF

Figure 12. Measurements on exception check optimizations.

4 This cannot be represented using ASCII characters.

195

4.2.3 Scalar Replacement
As we described in Sections 3.2 and 3.3, three types of scalar
replacements are performed: scalar replacement using loop
versioning, scalar replacement using escape analysis, and scalar
replacement using dataflow analysis. Figure 13 shows the relative
execution times and compilation times by selectively disabling the
scalar replacement optimizations as in the table.

Since scalar replacement is a technique to replace global variables
that are reused frequently with scalar temporaries to promote their
allocation to registers, it is particularly effective on the IA-64 and
PowerPC architectures that have many registers. As shown in the
graph, this improves the execution time of mpegaudio by 35%
on both platforms. It also improves the execution times of
compress, mtrt, and jess by 1% to 22% on both platforms.
Scalar replacement using escape analysis improves the execution
time only for mtrt, by 10.0% and 4.1% on IA-64 and PowerPC,
respectively. This is because it replaces the fields of an object
allocated in the method OctNode.Intersect with scalar

temporaries. It also improves the execution time of mtrt on IA-32.
This is because the escape analysis frees up a register that was
used for pointing to an object header. Scalar replacement using
loop versioning has little effect on the execution time of these
programs.
Scalar replacement using dataflow analysis increases the
compilation times by about 10% for all programs except
mpegaudio. When no scalar replacement is performed, there is a
remarkable increase of the compilation time for mpegaudio. The
compilation time is about 1.9 times on IA-32 and 1.2 times on IA-
64. This is due to the fact that the compilation times for the
optimizations on the DAG were increased drastically by disabling
scalar replacement using dataflow analysis. The compilation time
for the optimizations on the DAG was increased about 4.3 times
on IA-32 and 1.6 times on IA-64. This is because many edges
exist in the DAG for q.m and tb.???.
Scalar replacement using escape analysis increases the
compilation times by 1% to 9%. Scalar replacement using loop
versioning has little effect on the compilation times.

0

0.2

0.4

0.6

0.8

1

comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb

IA32 PPCIA64

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

to
 B

as
e

a) Relative execution times (Taller bars are better).

0

0.2

0.4

0.6

0.8

1

comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb

IA32 PPC

1.92 1.17

IA64

Re
la

tiv
e

co
m

pil
at

ion
 t

im
e

to
 B

as
e

b) Relative compilation times (Shorter bars are better).

The color of
the bar Scalar replacement using loop versioning Scalar replacement using escape analysis Scalar replacement using dataflow analysis

Base ON ON ON
 OFF ON ON
 OFF OFF ON
 OFF OFF OFF

Figure 13. Measurements on scalar replacement algorithms.

196

4.2.4 Optimizations for TIC
As we described in Sections 3.1 and 3.2, two kinds of
optimizations for TIC are performed: elimination of redundant
TICs and inlining of TICs. Figure 14 shows the relative execution
times and compilation times by selectively disabling the
optimizations of TIC as in the table.

Inlining of TICs improves the execution time from 0% to 55%
(with an average of 14%). It is effective for jess, db, javac, jack,
and pjbb that have more complicated class hierarchies than the
other programs. It is most effective on the PowerPC, and least
effective on IA-32. This is due to the difference in the overhead of

calling a C routine. On IA-32, the overhead is small since calling
C is very simple. On IA-64, the overhead is also small because of
the register stack engine. On the PowerPC, there is some overhead,
such as saving and restoring the non-volatile registers.
Eliminating redundant TICs does not affect the execution time for
these programs except for pjbb.
Inlining and eliminating redundant TICs has little effect on the
compilation times. In the exceptional cases of javac and jack on
IA-64, the compilation time increases by 4%. This is due to the
fact that the compilation times for register allocation were
increased by inlining of TICs. We suspect that this is due to the
increase in the number of BBs.

0

0.2

0.4

0.6

0.8

1

comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb

IA32 PPCIA64

Re
la

tiv
e

ex
ec

ut
ion

 t
im

e
 to

 B
as

e

a) Relative execution times (Taller bars are better).

0

0.2

0.4

0.6

0.8

1

comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb

IA32 PPCIA64

R
el

at
iv

e
co

m
pi

la
tio

n
tim

e
to

 B
as

e

b) Relative compilation times (Shorter bars are better).

The color of
the bar Elimination of redundant TICs Inlining of TICs

Base ON ON
 OFF ON
 OFF OFF

Figure 14. Measurements on TIC optimizations

197

4.2.5 Elimination of merge points in the CFG
As we described in Section 3.2, eliminating merge points in the
CFG, called frequency-directed splitting, is performed. Figure 15
shows the relative execution times and compilation times by
disabling the elimination of merge points in the CFG as in the
table.

It improves the performance by 2% and 4% for mtrt on the IA-64
and PowerPC, respectively. In addition, it is effective for other
programs on PowerPC. Since it improves the precision of
dataflow analysis, dataflow optimizations such as common
subexpression elimination and scalar replacement can be
performed more effectively. Therefore, it is more effective on the
architectures with many registers such as IA-64 and PowerPC.

Eliminating merge points on the CFG does not improve the
execution times of most of the programs. This result contradicts
other research work [25], which reported the effectiveness of
splitting (a variation of eliminating merge points). This is due to
the fact that they apply it with guarded devirtualization, while we
apply it with direct devirtualization by code patching [6]. The
overhead with guarded devirtualization is higher than that with
direct devirtualization, and eliminating the merge points to reduce
their overhead is more effective when the overhead is high.
With this optimization, the compilation time for mtrt is increased
by 6%. This is due to the fact that the compilation times for
optimizations on the QUADs were increased by disabling
frequency-directed splitting. This is because the number of BBs is
increased.

0

0.2

0.4

0.6

0.8

1

comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb

IA32 PPCIA64

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

to
 B

as
e

a) Relative execution times (Taller bars are better).

0

0.2

0.4

0.6

0.8

1

comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb

IA32 PPCIA64

R
el

at
iv

e
co

m
pi

la
tio

n
tim

e
to

 B
as

e

b) Relative compilation times (Shorter bars are better).

The color of
the bar Frequency-directed splitting

Base ON
 OFF

Figure 15. Measurements on elimination of merge points in the CFG.

198

4.2.6 Optimizations on DAG
As we described in Section 3.3, four kinds of optimizations on the
DAG are performed: generation of loops using a dedicated loop
count register and instructions with updates, scalar replacement
using loop versioning, exception check elimination using loop
versioning, and pre-pass scheduling. Figure 16 shows the relative
execution times and compilation times by selectively disabling
optimizations on the DAG as in the table.
Pre-pass code scheduling is effective for compress and
mpegaudio, which are loop-centric programs. In particular, it
improves the execution time for mpegaudio by 25.1% on the IA-
64. This is because the architecture can exploit higher instruction
level parallelism available in a program than other architectures.
Exception check elimination using loop versioning is effective for
those programs that frequently access array elements, such as
mpegaudio. There are few opportunities for scalar replacement

using loop versioning in the programs selected for this experiment,
but this optimization is intended to improve the execution times of
the programs with frequent memory accesses to the same array
elements, such as FFT. Except for mpegaudio on IA-64, it has
little effect on the execution times to generate loops with a
dedicated loop count register and instructions with updates.
The DAG-based optimizations increase the compilation times
significantly (by 10% through 44%), but they are effective only
for a few programs such as compress and mpegaudio. In
particular, they greatly increase the compilation times for these
two programs (18% for compress and 32% for mpegaudio). In
general, despite the large compilation time, their effectiveness is
limited to the loop-intensive programs, and therefore it is
important to select the target methods carefully when they are
applied.

0

0.2

0.4

0.6

0.8

1

comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb

IA32 PPCIA64

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

to
B

as
e

a) Relative execution times (Taller bars are better).

0

0.2

0.4

0.6

0.8

1

comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb

IA32 PPCIA64

R
el

at
iv

e
co

m
pi

la
tio

n
tim

e
to

B
as

e

b) Relative compilation times (Shorter bars are better).

Since IA32 has no update instruction or loop count register, the left most bars are omitted for IA32.

The color of
the bar

Generation of loops using a dedicated
loop count register and instructions with

update
Scalar replacement using loop versioning Exception check elimination using loop

versioning Pre-pass scheduling

Base ON ON ON ON
 OFF ON ON ON
 OFF OFF ON ON
 OFF OFF OFF ON
 OFF OFF OFF OFF

Figure 16. Measurements on optimizations on DAG.

199

0%

20%

40%

60%

80%

100%

comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb

Extend bytecode Quadruple DAG Code generation Others

IA32 PPCIA64

R
el

at
iv

e
co

m
pi

la
tio

n
tim

e
to

 B
as

e

Figure 17. Breakdown of the compilation times with all of the optimizations enabled (Base).

4.2.7 Breakdown of compilation times
Figure 17 shows the breakdown of the compilation times for each
program with all the optimizations enabled on every platform.
Roughly speaking, the compilation time is spent in a ratio of
15:25:30:30, in corresponding to each of the four phases: the
optimizations on the EBC, those on the QUAD, those on the DAG,
and the code generation, respectively. As exceptional cases, the
optimizations on the DAG take much longer for compress and
mpegaudio, but they are quite effective for these two programs.
In general, the effectiveness of each optimization varies, but its
compilation time has a similar overhead across all the platforms.
For example, scalar replacement is effective on IA-64 and
PowerPC, but it is not effective on IA-32. Nevertheless it incurs
almost equal compilation time on all of the platforms.
Finally, register allocation in the code generation phase accounts
for 10% and 4% of the total compilation time on IA-64 and
PowerPC, respectively, though it is not shown in Figure 17. This
is quite different from the HotSpot Server Compiler [3], whose
graph coloring register allocator reportedly accounts for 49% of
the total compilation time. We suspect that this is due to the fact
that our JIT compiler employs more time-consuming
optimizations such as those on the DAG.

4.2.8 Selected optimizations aiming at lightweight
compilation
In practice, it is important to select a small set of the optimizations
most effective for general programs with the shortest compilation
times. To this end, method inlining of tiny methods, exception
eliminations using forward dataflow analysis, scalar replacement
using dataflow analysis, and inlining of TICs are the most
effective ones, which can achieve 80% of the peak execution time,
at the expense of the overhead of the compilation time by up to
10%.
Some optimizations are effective for particular programs at the
expense of a small overhead in compilation time. For example,
eliminating merge points in the CFG is effective for mtrt, while its
compilation time overhead is less than 5%. Eliminating redundant
TICs is effective for jess, db, and pjbb, while its compilation
time overhead is small. Eliminating exception checks using PRE
is also effective for compress, mpegaudio, and mtrt, while its
compilation time overhead is limited to 3%.

On the other hand, some optimizations are effective for particular
programs at the expense of a large overhead in compilation time.
For example, escape analysis is effective for mtrt, while its
compilation time overhead is up to 9%. Optimizations on the
DAG are effective for mpegaudio, while the compilation time
overhead is nearly 30%. Method inlining with static heuristics is
effective for compress, jess, mpegaudio, mtrt, and pjbb, while
its compilation time overhead is up to 68%.
In summary, we can categorize our optimizations into four
classes:
(a) Generally effective optimizations with small compilation

overhead:
z Method inlining for tiny methods
z Exception check eliminations using forward dataflow

analysis
z Scalar replacement using dataflow analysis
z Inlining of TICs

(b) Occasionally effective optimizations with small compilation
overhead:
z Exception elimination optimizations using PRE
z Elimination of redundant TICs
z Elimination of merge points in the CFG

(c) Occasionally effective optimizations with large compilation
overhead:
z Method inlining with static heuristics
z Scalar replacement using escape analysis
z Optimizations on the DAG

(d) Others (ineffective).
We created two sets of optimizations, Lightweight1 and
Lightweight2, corresponding to the optimization class (a) and
the optimization classes (a) and (b), respectively. The results are
shown in Figure 18. Lightweight1 achieved 86% of the peak
execution time of Base (all the optimizations enabled), while it
only took 33% of the compilation time of Base. Lightweight2
achieved 90% of the peak execution time of Base (all the
optimizations enabled), while it only took 34% of the compilation
time of Base.

200

0

0.2

0.4

0.6

0.8

1

comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb

Lightweight1 Lightweight2

IA32 PPCIA64

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

to
 B

as
e

a) Relative execution times (Taller bars are better).

0

0.2

0.4

0.6

0.8

1

comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb comp jess db javac mpeg mtrt jack pjbb

Lightweight1 Lightweight2

IA32 PPCIA64

R
el

at
iv

e
co

m
pi

la
tio

n
tim

e
to

 B
as

e

b) Relative compilation times (Shorter bars are better).

Figure 18. Selected optimizations.

For achieving the best execution times on benchmark programs, it
is important to enable all of the optimizations. Yet, for practical
purposes, it is more effective to enable only a few important
optimizations such as those selected for Lightweight1 and
Lightweight2. Although challenging, it would be ideal if the JIT
compiler could automatically choose a customized set of those
optimizations, which are most effective for the target program, by
analyzing the characteristics of the target program and its profiling
information.

5. RELATED WORK
There are quite a few Java runtime environments available today.
Sun's HotSpot and IBM DK are the two major production runtime
environments, while IBM's Jikes Research Virtual Machine
(RVM) [41] and Intel's Open Research Platform (ORP) [42] Java
Virtual Machine are the two major research runtime environments.
Interestingly, these two production environments employ an
interpreter and optimizing compilers, while these two research
environments employ only compilers.

The HotSpot Virtual Machine includes an interpreter that supports
mixed execution and the Java HotSpot compiler that supports the
IA-32, the IA-64, and the 32/64-bit SPARC architectures. The
paper [3] described the detailed implementation of the compiler,
and evaluated the effectiveness of some optimizations on the IA-

32 and SPARC architectures. It uses the DAG representation
based on SSA throughout the optimizations and register allocation.
It uses BURS [43] for portable code generation. It performs a
single level of optimizations, including method inlining, global
code motion, and local code scheduling.

IBM DK optionally enables a dynamic optimization framework
[2]. It can trigger recompilation with specialization using
instrumentation code to improve the performance. Some study has
been conducted with various policies for profile-directed method
inlining to improve the performance and reduce the compilation
time [18], as one of the promising approaches for choosing a
customized set of those optimizations that are most effective for
the target program.

Jikes RVM supports the IA-32 and PowerPC architectures with
multiple optimization levels. It uses three IRs, which are all
register-based. The high-level intermediate representation (HIR)
adopts almost the same set of opcodes as Java bytecode, and it
explicitly represents PEIs unlike Java bytecode. Using HIR, the
compiler performs simple optimizations such as local
optimizations within an extended BB, flow-insensitive
optimizations, and method inlining. Then, the low-level
intermediate representation (LIR) expands the HIR into operations
that are specific to the RVM object layout and conventions. The
LIR is still independent of the target machine architecture. Here,

201

SSA-based optimizations such as common subexpression
elimination and scalar replacement are performed as part of
machine-independent optimizations. Finally, a machine-specific
intermediate representation (MIR) is generated from the LIR. The
MIR depends on the target machine architecture. Here, register
allocation is performed as in our system. The native code is
generated using BURS. The approach using different IRs is
similar to that of our system. It uses a compiler with multiple
optimization levels to reduce the overhead of the compilation time
by triggering recompilation using a polling-based profiler. The
parameters for some optimizations can be tuned using feedback-
based optimizations to increase the performance of the target
program [44].

The Intel ORP is also a research virtual machine with two
compilers. One is the simple code generator (known as the O1 JIT
[45]) that produces native code directly from the Java bytecode
with lightweight optimizations. The other is the optimizing
compiler (known as the O3 JIT [46]) that translates the Java
bytecode to an IR that can be used for time-consuming
optimizations such as method inlining, global dataflow
optimizations, and loop versioning. When a method is invoked,
the O1 JIT compiles the method with counter-based
instrumentation code. When the counter for a method reaches a
predetermined threshold, the O3 JIT recompiles that method with
predetermined optimizations, including feedback-based
optimizations. For example, if the profiling data shows that a loop
is not iterated frequently, loop versioning is not performed against
that loop.

The Intel JIT shipped with Intel VTune also supports the IA-32
architecture. It employs only a compiler with a single level
optimization, since it was released some times ago. The paper [45]
evaluated the performance and the compilation time with this
compiler by selectively disabling optimizations. These
optimizations without an explicit IR are lightweight and designed
to have short compilation times since all methods are compiled.

6. CONCLUSION
We described the system overview of our Java JIT compiler,
which is the basis for the latest production version of the IBM
Java JIT compiler that supports a diversity of processor
architectures, including both 32-bit and 64-bit modes, CISC,
RISC, and VLIW architectures. In particular, we focused on the
design and evaluation of the cross-platform optimizations that are
common across different architectures. We studied the
effectiveness of each optimization by selectively disabling it in
our JIT compiler on three different platforms: IA-32, IA-64, and
PowerPC. Based on the detailed statistics, we classified our
optimizations and identified a small set of the most cost-effective
ones in terms of the performance improvement as the benefit and
the compilation time as the cost. In summary, we demonstrated
that, with a selected set of optimizations, we can achieve 90% of
the peak performance for SPECjvm98 and a special version of
SPECjbb2000 at the expense of only 34% of the total compilation
time in comparison to the case in which all of the optimizations
are enabled. In the future, we plan to study a new, dynamic
compilation strategy to automatically choose a customized set of
those optimizations, which are most cost-effective for the target
program, based on the structure of its methods and the online-
profile information collected on the fly for that program.

ACKNOWLEDGEMENTS
We would like to thank the IBM Software Group in Toronto for
taking over and continuing the development and the services of
the IBM Java JIT compiler. We are grateful to the former
members of our team, including Hiroyuki Momose, Kazuhiro
Konno, and Kunio Tabata, for their various contributions. We are
also grateful to John Whaley for prototyping escape analysis,
Janice Shepherd for experimenting with the enhanced memory
system, Arvin Shepherd for implementing a linear scan register
allocator, Koblets Gita for implementing the optimizations for
loop striding and countdown loops, Hiroshi Dohji for
implementing an MMI for IA-32, Masao Nishimoto for
implementing an MMI for S/390, Akio Watanabe for
implementing some optimizations for S/390, Masashi Doi for
implementing a register allocation of FPRs for IA-32, and
Akihiko Togami for providing excellent services for problem
determination. We also thank Shannon Jacobs for his editorial
assistance. Finally, we appreciate the insightful comments from
the anonymous reviewers.

REFERENCES
[1] K. Arnold and J. Gosling. Java Programming Language,

Addison-Wesley, 1996.
[2] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and T.

Nakatani. A Dynamic Optimization Framework for a Java
Just-In-Time Compiler, In the Proceedings of ACM
SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications, pp. 180-194, 2001.

[3] M. Paleczny, C. Vick, and C. Click. The Java HotSpot
Server Compiler, In USENIX 1st Java Virtual Machine
Research and Technology Symposium (JVM'01), pp. 1-12,
2001.

[4] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M.
Kawahito, K. Ishizaki, H. Komatsu, and T. Nakatani.
Overview of the IBM Java Just-in-Time Compiler, IBM
Systems Journal, Vol. 39, No. 1, pp. 175-193, 2000.

[5] M. Kawahito, H. Komatsu, and T. Nakatani. Effective Null
Pointer Check Elimination Utilizing Hardware Trap, In the
Proceedings of the International Conference on
Architectural Support for Programming Language and
Operating Systems, pp. 139-149, 2000.

[6] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and T.
Nakatani. A Study of Devirtualization Techniques for a Java
Just-In-Time Compiler, In the Proceedings of ACM
SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications, 2000.

[7] The Standard Performance Evaluation Corp., SPECjvm98
Benchmarks, available at http://www.spec.org/osg/jvm98/.

[8] The Standard Performance Evaluation Corp., SPECjbb2000
Benchmarks, available at http://www.spec.org/osg/jbb2000/.

[9] T. Onodera and K. Kawachiya. A Study of Locking Objects
with Bimodal Fields, In the Proceedings of ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pp. 223-237, 1999.

[10] D. F. Bacon, R. Konuru. C. Murthy, and M. Serrano. Thin
Locks: Featherweight Synchronization for Java, In the
Proceedings of ACM SIGPLAN ‘98 Conference on

202

Programming Languages Design and Implementation, pp.
258-268, 1998.

[11] R. Jones and R. Lins. Garbage Collection: Algorithms for
Automatic Dynamic Memory Management. John Wiley &
Sons, 1996.

[12] Y. Ossia, O. Ben-Yitzhak, I. Goft, E. K. Kolodner, V.
Leikehman, and A. Owshanko. A Parallel, Incremental and
Concurrent GC for Servers, In the Proceedings of SIGPLAN
2002 Conference on Programming Languages Design and
Implementation, pp. 129-140, 2002.

[13] S. A. Mahlke, W. Y. Chen, R. A. Bringmann, R. E. Hank, W.
W. Hwu, B. R. Rau, and M. S. Schlansker. Sentinel
scheduling: A model for compiler-controlled speculative
execution. ACM Transactions on Computer Systems, Vol. 11,
No. 4, pp. 376-408, 1993.

[14] C. Chambers, I. Pechtchanski, V. Sarkar, M. J. Serrano, and
H. Srinivasan. Dependence analysis for Java, In 12th
International Workshop on Languages and Compilers for
Parallel Computing (LCPC’99), Volume 1863 of LNCS,
Springer-Verlag, pp. 32-52, 1999.

[15] J.-D. Choi, D. Grove, M. Hind, V. Sarkar. Efficient and
Precise Modeling of Exceptions for the Analysis of Java
Programs, In ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering
(PASTE'99), pp. 21-31, 1999.

[16] J. Palsberg and M. I. Schwartzbach, Object-Oriented Type
Inference, In the Proceedings of ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages, and
Applications, pp. 146-161, 1991.

[17] E. M. Gagnon, L. J. Hendren, and G. Marceau. Efficient
Inference of Static Types for Java Bytecode, In Static
Analysis 7th international Symposium (SAS’00), Volume
1824 of LNCS, Springer-Verlag, pp. 199-219, 2000.

[18] T. Suganuma, T. Yasue, and T. Nakatani. An Empirical
Study of Method Inlining for a Java Just-In-Time Compiler,
In USENIX 2nd Java Virtual Machine Research and
Technology Symposium, pp. 91-104, 2002.

[19] J. Dean, D. Grove, and C. Chambers. Optimization of object-
oriented programs using static class hierarchy, In the
proceedings of the 9th European Conference on Object-
Oriented Programming - ECOOP, Volume 952 of LNCS,
Springer-Verlag, pp. 77-101, 1995.

[20] D. Detlefs and O. Agesen. Inlining of Virtual Methods, In
the proceedings of the 13th European Conference on Object-
Oriented Programming - ECOOP, Volume 1628 of LNCS,
Springer-Verlag, pp. 258-278, 1999.

[21] R. Gupta. Optimizing array bound checks using flow analysis,
ACM Letters on Programming Languages and Systems, Vol.
2, No. 1-4, pp. 135-150, 1993.

[22] M. Kawahito, H. Komatsu, and T. Nakatani. Eliminating
Exception Checks and Partial Redundancies for Java Just-in-
Time Compilers. IBM Research Report RT0350, 2000.

[23] A. Aho, V. Jeffrey, and D. Ullman, Principles of Compiler
Design. Addison-Wesley, 1977.

[24] C. Chambers and D. Ungar. Making pure object-oriented

languages practical, In the Proceedings of the ACM
SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications, pp. 1-15, 1991.

[25] M. Arnold, B. G. Ryder. Thin Guards: A Simple and
Effective Technique for Reducing the Penalty of Dynamic
Class Loading, In the Proceedings of the 16th European
Conference on Object-Oriented Programming - ECOOP,
Volume 2374 of LNCS, Springer-Verlag, pp. 498-524, 2002.

[26] J. Whaley and M. Rinard. Compositional Pointer and Escape
Analysis for Java Programs, In the Proceedings of ACM
SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pp. 187-206, 1999.

[27] J. Knoop, O. Ruthing, and B. Steffen. Optimal code motion,
ACM Transactions on Programming Languages and
Systems, Vol. 17, No. 5, pp. 777-802, 1995.

[28] K. Ishizaki, M. Kawahito, T. Yasue, M. Takeuchi, T.
Ogasawara, T. Suganuma, T. Onodera, H. Komatsu, T.
Nakatani. Design, Implementation, and Evaluation of
Optimizations in a Java(tm) Just-In-Time Compiler,
Concurrency: Practice and Experience, Vol. 12, No. 6, pp.
457-475, 2000.

[29] B. Alpern, A. Cocchi, and D. Grove. Dynamic type checking
in Jalapeno, In USENIX 1st Java Virtual Machine Research
and Technology Symposium (JVM'01), pp. 41-52, 2001.

[30] T. Ogasawara, H. Komatsu, and T. Nakatani. A Study of
Exception Handling and Its Dynamic Optimization in Java,
In the Proceedings of ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and
Applications, pp. 83-95, 2001.

[31] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F.
K. Zadeck. Efficiently Computing Static Single Assignment
Form and the Control Dependence Graph, ACM
Transactions on Programming Languages and Systems, Vol.
13, No. 4, pp. 451-490, 1991.

[32] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F.
K. Zadeck. Efficiently Computing Static Single Assignment
Form and the Control Dependence Graph, ACM
Transactions on Programming Languages and Systems, Vol.
13, No. 4, pp. 451-490, 1991.

[33] V. C. Sreedhar, R. D. Ju, D. M. Gillies, and V. Santhanam.
Translating Out of Static Single Assignment Form, In Static
Analysis 6th international Symposium (SAS’99), Volume
1694 of LNCS, pp. 194-210, 1999.

[34] J. R. Allen and K. Kennedy and C. Porterfield and J. Warren.
Conversion of control dependence to data dependence, In
Conference Record of the 10th Annual ACM Symposium on
Principles of Programming Languages, pp. 177-189, 1983.

[35] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, R. A.
Bringmann. Effective Compiler Support for Predicated
Execution Using the Hyperblock, In the proceedings of the
25th International Symposium on Microarchitecture, pp. 45-
54, 1992.

[36] J. Gosling, B. Joy, and G. Steele. The Java Programming
Language Specification, Addison-Wesley, 1996.

203

[37] M. Kawahito, H. Komatsu, and T. Nakatani. Effective Sign

Extension Elimination, In the Proceedings of SIGPLAN 2002
Conference on Programming Language Design and
Implementation, pp. 187-198, 2002.

[38] M. Poletto and V. Sarkar. Linear scan register allocation,
ACM Transactions on Programming Languages and Systems,
Vol. 21, No. 5, pp. 895-913, 1999.

[39] G. J. Chaitin. Register allocation and spilling via graph
coloring, In the proceedings of the ACM SIGPLAN
Symposium on Compiler Construction, SIGPLAN Notices,
Vol. 17, No. 6, pp. 257-265, 1982.

[40] D. Stefanovic, M. Hertz, S. M. Blackburn, K. S. McKinley
and J. E. B. Moss. Older-first Garbage Collection in Practice:
Evaluation in a Java Virtual Machine, ACM SIGPLAN
Workshop on Memory System Performance, pp. 25-36, 2002.

[41] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P
Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind,
S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo,
J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E.
Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley.
Implementing Jalapeno in Java, IBM System Journal, Vol 39,
No 1, pp. 211-238, 2000.

[42] M. Cierniak, B. T. Lewis, and J. M. Stichnoth. Open

Runtime Platform: Flexibility with Performance using
Interfaces, In the Proceedings of the Joint ACM Java Grande
- ISCOPE 2002 Conference, pp. 156-164, 2002.

[43] E. Pelegri-Llopart and S. L. Graham. Optimal code
generation for expression trees: an application of the BURS
theory, In the Proceedings of the Fifteenth Annual ACM
Symposium on Principles of Programming Languages, pp.
294-308, 1988.

[44] M. Arnold, M. Hind, and B. G. Ryder. Online
Instrumentation and Feedback-Directed Optimization of Java,
In the Proceedings of the Conference on Object-Oriented
Programming, Systems, Languages and Applications, pp.
111-129, 2002.

[45] A.-R. A.-Tabatabai, M. Cierniak, G.-Y. Lueh, V. M. Parakh,
and J. M. Stichnoth. Fast, Effective Code Generation in a
Just-In-Time Java Compiler, In the Proceedings of ACM
SIGPLAN Conference on Programming Language Design
and Implementation, pp. 280-290, 1998.

[46] M. Cierniak, G.-Y. Lueh, and J. M. Stichnoth. Practicing
JUDO: Java Under Dynamic Optimizations, In the
Proceedings of SIGPLAN 2000 Conference on Programming
Language Design and Implementation, pp. 13-26, 2000.

204

