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ABSTRACT 
This paper describes the system overview of our Java Just-In-
Time (JIT) compiler, which is the basis for the latest production 
version of IBM Java JIT compiler that supports a diversity of 
processor architectures including both 32-bit and 64-bit modes, 
CISC, RISC, and VLIW architectures. In particular, we focus on 
the design and evaluation of the cross-platform optimizations that 
are common across different architectures. We studied the 
effectiveness of each optimization by selectively disabling it in 
our JIT compiler on three different platforms: IA-32, IA-64, and 
PowerPC. Our detailed measurements allowed us to rank the 
optimizations in terms of the greatest performance improvements 
with the smallest compilation times. The identified set includes 
method inlining only for tiny methods, exception check 
eliminations using forward dataflow analysis and partial 
redundancy elimination, scalar replacement for instance and class 
fields using dataflow analysis, optimizations for type inclusion 
checks, and the elimination of merge points in the control flow 
graphs. These optimizations can achieve 90% of the peak 
performance for two industry-standard benchmark programs on 
these platforms with only 34% of the compilation time compared 
to the case for using all of the optimizations. 

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Processors – runtime 
environment, compilers, optimization. 

General Terms: Algorithms, Measurement, Performance, 
Experimentation, Languages. 

Keywords: Java, just-in-time compiler, optimization. 

1. INTRODUCTION 
The execution model of the Java language [1] is to execute Java 
bytecode on a virtual machine (VM) in order to run unchanged 
programs on all platforms. The VMs evolved through three 
generations. In the first generation, a VM consisted of only an 
interpreter. This was very portable, but very slow. In the second 

generation, a VM consisted of a lightweight Just-In-Time (JIT) 
compiler to compile all the methods in a given program. This 
achieved acceptable performance, but the JIT compiler could not 
perform more advanced optimizations, because they usually 
required an excessively long compilation time. In the third 
generation, a VM consists of an interpreter and a highly 
optimizing JIT compiler that compiles only the “hot” methods in a 
given program. This system can perform more time-consuming 
optimizations by compiling only 10% - 20% of all the methods [2, 
3]. It can achieve high performance and avoid a long compilation 
times. 

Considering the cost-effective development of JIT compilers for 
many different platforms as software products, it is ideal to share 
as many optimizations as possible in common across all of the 
platforms. At the same time, it is desirable to tune the 
performance for the target architecture to achieve the highest 
possible performance. Thus, we adopted the following design: 

z Use a compact stack-based intermediate representation (IR) 
for method inlining to expand the scope of optimizations in 
the earlier phases. This IR is shared in common among all 
of  the platforms. 

z Use other two register-based IRs for advanced optimizations 
in the later phases. These two IRs are also shared in 
common on multiple platforms, but a compiler generates a 
different pattern of the IRs for the target architecture. This 
makes it possible to share optimizations across multiple 
platforms and at the same time to customize some sequences 
of the IRs for the target architecture. 

z Provide a few architecture-specific optimizations only for 
register allocation, instruction scheduling, and code 
generation, all of which have strong dependencies on the 
target architecture. 

This paper focuses on the design and the empirical evaluation of 
cross-platform optimizations on multiple platforms. For more 
details, we describe an overview of advanced optimizations on 
two register-based IRs, quadruples and directed acyclic graphs, 
which have been newly developed for our latest Java JIT compiler 
since the previously reported version [ 4 ]. We also describe 
optimization features that are unique to Java, including exception 
elimination optimizations [5] and direct devirtualization [6].  
The major motivation for our evaluation here is to clarify how 
each optimization feature contributes to the overall performance 
improvement in terms of the cost as measured by its compilation 
time. Our goal is to identify which optimizations are most cost-
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effective across multiple platforms. That is, we would like to 
select those optimization features with which we can get the 
largest performance improvement at the expense of the smallest 
compilation time overhead. In summary, we will show that, with a 
small set of the selected optimization features, we can achieve 
90% of the peak performance for SPECjvm98 [7] and a special 
version of SPECjbb2000 [ 8 ], with only 34% of the total 
compilation time in comparison to the case in which all the 
optimization features are enabled. 
This paper makes the following contributions. 
z Design and implementation of a Java JIT compiler: We 

describe the design and implementation of a production Java 
JIT compiler. In particular, we focus on the cross-platform 
optimization features that are common across different 
processor architectures. These components, listed below, are 
designed to be shared by using our common intermediate 
representations and to optimize them to generate different 
machine code for the target architecture. 

- Method inlining 
- Exception check optimizations 
- Scalar replacement for instance and class fields 
- Optimizations for type inclusion checks 
- Elimination of merge points in the control flow graphs 
- Optimizations on directed acyclic graphs such as loop 

versioning and code scheduling. 
z Detailed evaluation of the cross-optimization features 

and their effectiveness: We empirically evaluate the 
performance improvements and the compilation time 
overhead of each optimization by selectively disabling it in 
our JIT compiler on IA-32, IA-64, and PowerPC. We show 
which optimizations improve the overall performance at the 
cost of small compilation times and which optimizations 
improve the performance at the expense of large 
compilation times. As a result, we identify a set of the 
effective optimizations, listed below, with which we can 
achieve 90% of the peak performance for SPECjvm98 and a 
special version of SPECjbb2000 at the expense of only 34% 
of the total compilation time in comparison to the case in 
which all of the optimizations are enabled. 

- Method inlining only for tiny methods 
- Exception check optimizations using forward dataflow 

analysis and partial redundancy elimination 
- Scalar replacement for instance and class fields using 

dataflow analysis 
- Optimizations for type inclusion checks 
- Elimination of merge points in the control flow graphs 

The rest of the paper is organized as follows. Section 2 describes 
the overview of the JIT compiler. Section 3 gives the detailed 
description of the design and implementation of optimizations. 
Section 4 shows the results of the experiments. Section 0 
describes related work, and Section 6 gives the conclusions. 

2. SYSTEM OVERVIEW 
This section gives an overview of the IBM Java JIT compiler. 
First, we give the overview of the runtime environment and the 
structure of the JIT compiler in the IBM Developer Kit (DK). 

2.1 Runtime Environment 
The VM in the IBM DK is derived from an implementation of the 
Sun Classic VM. The IBM DK has many enhancements to 
improve the performance. Among these, we focus on three major 
enhancements. 
The first enhancement is the object layout known as handleless 
objects. The VM in the IBM DK uses handleless object with 
direct pointers. The header and body of an object are allocated as 
one block. This has an advantage for high performance. 
The second enhancement is the synchronization known as Tasuki 
Lock [9] derived from the Thin Lock [10] technique. The Thin 
Lock allows a synchronization operation to be performed with just 
a few machine instructions in the uncontended case. The Tasuki 
Lock further improves on robustness and performance over Thin 
Lock . 
The third enhancement is the memory management system related 
to object allocation and garbage collection (GC). The system 
provides a global heap and thread-local heaps. While large objects 
are allocated from the global heap with appropriate 
synchronization, most objects are allocated from thread local 
heaps without synchronization, thus making object allocation very 
fast. The IBM DK basically uses a conservative, stop-the-world 
mark-sweep-compact GC [11], but it makes the mark and sweep 
phases parallel to reduce the pause time [12]. 
To allow efficient execution of a Java program, the VM in the 
IBM DK consists of a mixed-mode interpreter, which supports 
mixed execution of interpreted and compiled code [2], and a JIT 
compiler 1 . At the beginning, all methods are executed by the 
interpreter. An execution counter is provided for each method and 
initialized as zero. The counter is incremented at the method entry 
and at a loop backedge. When the counter exceeds a threshold 
value, the JIT compiler is invoked for the method. 
The interpreter also records the runtime trace information for 
conditional branches and switch instructions. For any conditional 
branches encountered, the interpreter stores the information for 
the JIT compiler to predict the branch directions. For any switch 
instruction encountered, the interpreter stores the information for 
the JIT compiler to predict which case label is most frequently 
selected. Such trace information is used for the JIT compiler to 
recognize hot paths in a method. 

2.2 Compiler Structure 
Figure 1 shows the overall flow diagram of the JIT compiler, 
which uses three IRs. The first IR is called an extended bytecode 
(EBC) that holds the same stack-based semantics as the original 

                                                                 
1  The previous paper [2] described a dynamic optimization 

framework using a sampling-based profiler with an optimizing 
compiler at different levels of optimizations. Since the 
sampling-based profiler depends on the features provided by the 
Windows API, it was disabled for the study in this paper in 
order to evaluate the same set of optimizations on multiple 
platforms. 
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Java bytecode. It also maintains all of the type information for the 
destination of every instruction, unlike the original Java bytecodes, 
some of which lack explicit type information for the destinations. 
This requires only a small amount of memory, similar to the Java 
bytecode. The second IR is a quadruple (QUAD) that is a register-
based representation. This is a tuple format with an opcode and 
zero or more operands, depending on each instruction. Its 
instructions explicitly represent potentially excepting instructions 
(PEIs) [13] to support the correct semantics of Java exceptions. 
The QUAD is the base IR designed to support various 
optimizations such as dataflow analysis. The third IR is a directed 
acyclic graph (DAG) that is also a register-based representation. 
This consists of nodes corresponding to QUADs and edges 
indicating both data dependencies and other dependencies such as 
exception dependencies [14]. These three IRs are grouped into 
basic blocks (BBs). BBs are not terminated by method calls or by 
PEIs like factored control flow graph [15]. 
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Figure 1. The overall structure of the JIT compiler 
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Figure 2. The sequence of optimizations on EBC 

3. OPTIMIZATIONS 
This section describes the optimizations on each IR, the EBCs, the 
QUADs, and the DAG. All of these optimizations are 
architecture-independent and common across all of the platforms. 
Finally, we describe the code generation, which is architecture-
dependant. 

3.1 Optimizations on EBC 
This subsection describes the design and implementation of the 
optimizations based on the EBC, whose sequence is described in 
Figure 2.  
First, flow-sensitive type inference [16, 17] computes a type for 
every object reference within the entire method to identify the 
possible set of classes of the receiver of each virtual method call. 
For each object reference, the compiler computes the dataflow 
information on its static types based on signatures, class 
instantiations such as new(). 
Second, method inlining, which replaces calls to methods by 
copies of their bodies, is performed to expand the scope of 
optimizations [18]. A program written in Java tends to have many 
small methods, such as accessor methods, which are called 
frequently. We call these small methods tiny methods. The 
compiler builds a possibly large call tree of inlined scopes with 
allowable sizes and depths, and then calculates the total cost by 
checking each decision. The compiler manages two separate 
budgets: one for tiny methods, and the other for non-tiny methods. 
By using separate budgets, the compiler attempts to inline as 
many tiny methods as possible. It also attempts to inline as many 
non-tiny methods as possible based on the following static 
heuristics until the predetermined budget is used up: 
z If the total estimated size of the compiled code for both the 

caller and callee methods exceeds a threshold, stop inlining 
the method. 

z If the estimated size of the compiled code for the callee 
method exceeds a threshold, stop inlining the method to 
avoid wasting the budget on a single method. 

z If the call site is within a loop, perform inlining for a deeper 
level of the tree than that for a call site outside of a loop. 

z If the total number of local variables and the stack height for 
both caller and callee methods exceed a threshold, stop 
inlining the method. 

A static method call can be inlined in a straightforward manner by 
replacing the call to the method with a copy of its body. A 
dynamic method call may have several target methods, and thus 
devirtualization techniques must be used. When a dynamic 
method call is found during method inlining, class hierarchy 
analysis (CHA) [19] is performed to determine a set of possible 
targets of the dynamic method call by combining the static type of 
the object with the class hierarchy of the entire program. If it can 
be proved that the method call has only a single target, the 
compiler incorporates the target method without any guard code 
via code patching [6]. If the call has more than one target method, 
the compiler incorporates one of the target methods with guard 
code using a method test [ 20 ]. Any of these devirtualization 
techniques generates a backup path that is executed if the 
assumption fails during the execution of the program. After the 
devirtualization, both the static and dynamic method calls are 
inlined based on the same heuristics described above. 
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Third, the compiler eliminates redundant nullchecks and array 
bound checks. It eliminates redundant nullchecks along an 
execution path using forward dataflow analysis [5]. Then, it 
eliminates redundant array bound checks using forward dataflow 
analysis based on the extension of Gupta’s algorithm [21] as 
described in [ 22 ]. The dataflow analysis propagates range 
expressions to determine where they must be checked. All the 
redundant checks for eliminating them in the later phase are 
marked as attributes of the EBC. This phase can greatly reduce the 
size of the QUAD, since the QUADs explicitly represent PEI. 
Fourth, type inference is performed again for eliminating 
redundant backups and type inclusion checks (TICs) that 
determine whether two object references are related by a 
subtyping relationship. It proves that only a single class is reached 
at the receiver of the dynamic method call, the method call can be 
directly devirtualized without any backup path. The property of 
preexistence 2  [20] can then be used to directly devirtualize a 
dynamic method call without any backup path. To check for the 
preexistence property of a receiver, invariant argument analysis is 
performed using the result of type inference. If the receiver of a 
dynamic method call is directly reachable from an argument of the 
method and the method call has only a single target at compilation 
time, then the method call can be directly devirtualized without 
any backup path. When a method is overridden by dynamic call 
loading, the method will be recompiled at the next invocation. 
Therefore, any of these existing backup paths can also be 
eliminated. In addition, if all the members of the set of classes at a 
source operand of a TIC are a subtype of a class of the cast target 
at compilation time, then the compiler can eliminate that TIC. In 
Figure 2, there are two phases for type inference. The first type 
inference (before method inlining) increases an opportunity for 
direct devirtualization, while the second type inference (after 
exception check elimination) eliminates redundant TICs and 
backup paths in a wide compilation scope. 
Finally, stack analysis is performed to identify the type of every 
stack operand and local variable using forward dataflow analysis. 
This type information is used during the translation from the EBC 
to the QUAD for mapping stack operands and local variables to 
symbolic registers. 

3.2 Optimizations on QUAD 
This subsection describes the design and implementation of 
optimizations based on the QUADs, whose sequence is described 
in  Figure 3. 

The QUAD representation is finer grained than the bytecode. For 
example in Figure 4, an iaload bytecode is divided into several 
QUADs: a QUAD (NULLCHECK) to check whether the given 
object reference is null, a QUAD (ARRAYLEN) to load the 
length of the array object, a QUAD (BOUNDCHECK) to check 
whether the given array index is legal, some QUADs to obtain the 
address of the specified array element, and a QUAD (IALOAD) to 
read the value from the address. The QUAD representation makes 
it easy to eliminate redundant exception checks and common sub-
expressions. 

                                                                 
2 If the receiver for a dynamic method call has been allocated 

before the invocation of its calling method, then that method 
cannot be overridden during the execution of the caller. 

 
Dataflow Analysis 

Eliminate Merge Points in CFG 

Escape Analysis 

Exception Check Optimization 
(architecture independent) 

Scalar Replacement using PRE 

Type Inference 

Exception Check Optimization 
(architecture dependent) 

 
Figure 3. The sequence of optimizations on QUADs 

Most QUADs have a one-to-one correspondence to a native 
instruction, except for a few complex QUADs that correspond to 
object allocations and unresolved class references. The QUAD is 
designed for different processor architectures. A set of QUADs to 
obtain the address of an array element is different for each 
platform. For example, it needs only a single QUAD for the 
architecture supporting a scaled-index-addressing mode with 
displacement, such as mov eax, [ecx+ebx*4+8] on the IA-32 
architecture. On the other hand, it needs multiple QUADs that 
generate an effective address for an array element followed by a 
load instruction from the address on the PowerPC, the IA-64, and 
the S/390 architectures. Figure 4 shows an example of translating 
from a sequence of EBCs to QUADs for these different 
architectures. Since many of the same QUADs are used in 
common, we can share many optimization phases across the 
different platforms while generating efficient code for each 
architecture. 

First, after translating the EBCs to the QUADs, dataflow 
optimizations, such as copy propagation, constant propagation, 
and dead code elimination [ 23 ], are performed to remove 
redundant QUADs caused by the static semantics. 

Second, merge points are eliminated by method splitting [24], 
which is a kind of tail duplication. Direct devirtualization by code 
patching [6] creates a diamond control flow including the 
devirtualized method on one side and a backup path including the 
original dynamic method call on the other side. The merge point 
in a control flow graph (CFG) may limit the JIT compiler from 
performing dataflow optimizations, as discussed in [25]. Since 
naïve splitting causes an exponential code explosion, we use a 
frequency-directed splitting, in which the BBs in frequently 
executed paths are duplicated to expose an opportunity for 
optimizations, while those in rarely executed paths, such as 
backup paths, are not duplicated. Figure 5 shows an example to 
describe the difference between naïve splitting and our frequency-
directed splitting for eliminating the merge points in the CFG. The 
figure shows that our splitting can reduce the number of BBs 
without introducing any merge point in the frequently executed 
path (a->b->d->e->g). 
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NULLCHECK  LA4 //Can be omitted by 
    //using hardware trap
ARRAYLEN LI7 = LA4  
BOUNDCHECK  LI5, LI7  
IALOAD LI6 = LA4, LI5*4,+8 //LI6=[LA4+LI5*4+8]

NULLCHECK  LA4  
ARRAYLEN LI7 = LA4  
BOUNDCHECK  LI5, LI7  
EOP(BASE) LE8 = LA4, +16 //LE8 = LA4 + 16 
   //16 is obj header size 
EOP(SHLADD) LE9 = LI5,+2, LE8 //LE9 = LI5<<2 + LE8
IALOAD LI6 = LE9 //LI6 = [LE9] 
EXTEND LI6 = LI6 //LI6 = SignExt(LI6)

QUADs for IA-32 

QUADs for IA-64 

QUADs for PowerPC and S/390 
Java 

 bytecode

aload 4 
iload 5 
iaload 
istore 6 

NULLCHECK   LA4 //Throw exception 
     // if LA4 is NULL 
ARRAYLEN LI7 = LA4 //LI7 = LA4.length 
BOUNDCHECK  LI5, LI7 //Throw exception 
   // if LI5 >= LI7 
EOP(BASE) LE8 = LA4, +8 //LE8 = LA4 + 8 
   //8 is obj header size 
IOP(SHL) LI9 = LI5, +2 //LI9 = LI5 << 2 
IALOAD  LI6 = LE8, LI9 //LI6 = [LE8 + LI9] 

 
Figure 4. An example of the translation from bytecode to 
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Figure 5. An example of eliminating merge points in the CFG 

Third, compositional escape analysis [26] is performed based on 
the point-to escape graphs, which characterize how local variables, 
instance, and class fields refer to objects. If an object does not 
escape from its allocating thread, the compiler eliminates all the 
synchronization operations on the object. If it is found that an 
object does not escape from the current method, the JIT compiler 
allocates it in the method’s local stack instead of the heap. To 
reduce the compilation time overhead, the JIT compiler produces 
summary information for every call site that may call the same 
method. If a callee method has not yet been analyzed at a call site, 
the JIT compiler proceeds with a pessimistic assumption that all 
the arguments are escaping at the call site.  

In addition, for those objects that are not escaping, if the object 
header is not used within the method, the compiler performs 
scalar replacement for all the fields in the object to replace global 
variables with scalar temporaries to allocate them to registers. 
Fourth, exception check optimizations (architecture independent) 
and scalar replacements are performed iteratively, as described in 
[5]. The exception check optimization for nullchecks uses partial 
redundancy elimination (PRE) [27] to remove exception checks 
out of loops. The exception check optimization for array bound 
checks uses forward and backward dataflow analyses based on the 
extended Gupta algorithm [22]. 
Then, scalar replacement for instance and class variables follows 
with PRE, which eliminates redundant computations of common 
subexpressions and moves invariant accesses out of loops. In 
addition, it moves redundant computations in the frequently 
executed path aggressively before conditional branches [22]. 
Since each of these optimizations can expose new opportunities 
for the other, the compiler iterates this phase several times. 
Next, after completing the iterations, exception check 
optimizations (architecture dependent) are performed. First, 
forward dataflow analysis is made to minimize exception checks 
by utilizing a hardware trap mechanism. If a hardware trap for 
accessing the zero address (page) is available for the target 
architecture, explicit nullchecks are converted into implicit 
nullchecks. Then, backward dataflow analysis is performed to 
eliminate redundant exception checks. In our current 
implementations, this phase is enabled both on Windows/IA-32 
and Linux/IA-32 platforms. 
Finally, type inference is performed. Flow-sensitive type inference 
determines a set of classes reachable at each object reference 
within the entire method. This is basically the same process as the 
one performed on the EBC, as described in Section 3.1, but it is 
more effective since many merge points in the CFG were 
eliminated prior to this phase. The result is used for eliminating 
backup paths and TICs. 
A TIC determines whether two types are related by a given 
subtyping relationship. Instructions requiring TICs such as 
instanceof, checkcast, and aastore bytecodes are executed 
frequently in Java, and thus it is important to reduce their runtime 
overhead. If the set of classes at a source operand of a TIC is 
known to be a subtype of a class of the cast target at compilation 
time, the compiler can eliminate that TIC. 
In addition, to improve the runtime performance of each TIC, we 
generate a simple block of inlined code [28] to test the most-
frequently occurring case, as shown in Figure 6.  Line 1 checks 
whether the referenced object (from) is NULL. Line 2 checks 
whether the referenced object is an array. If the JIT compiler 
knows that an array object never reaches the referenced object, 
this statement can be removed. Line 3 checks whether the actual 
class of the referenced object is identical to that of the destination 
operand (Type). Line 4 (Line 5) checks whether the class cached 
in the referenced object by the last successful comparison (the last 
failed comparison) is identical to that of the destination operand. 
Each of these inlined tests can be done in only two or three 
machine instructions. If all of these tests fail, the C runtime 
routine expensive_testC() is called for traversing the class 
hierarchy. This implementation is based on our finding that most 
of the test cases are handled by the inlined tests. Though it is not 
shown in this paper, we observed that our performance is almost 
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comparable with that of Cohen’s algorithm [ 29 ] using 
SPECjvm98 and SPECjbb2000 [8]. 
Java program 
 Type to = (Type)from; 
 
Generated code 
1: if (from == NULL) {to = NULL;} 
2: elif (is_array_object(from)) {if expensive_testC(...) ...} 
3: elif (from.type == Type) {to = from;} 
4: elif (from.type.lastsucc == Type) {to = from;} 
5: elif (from.type.lastfail == Type) {throw exception} 
6: elif (expensive_testC(...)) {to=from; from.type.lastsucc=Type;}
7: else {from.type.lastfail = Type; throw exception}  

Figure 6. Code of a Type Inclusion Check 
A throw elimination that is a part of Exception-Directed 
Optimization [30] is also performed using the results of the type 
inference. If the object of a class thrown by an athrow bytecode is 
caught by a surrounding exception handler, the JIT compiler can 
replace the athrow with a direct branch to the corresponding 
catch block. This can eliminate the overhead of throwing an 
exception and searching for a corresponding handler at runtime 
when an athrow bytecode is executed.  

3.3 Optimizations on DAG 
This subsection describes the design and implementation of 
optimizations based on the DAGs, whose sequence is described in 
Figure 7.  
The DAG consists of nodes and directed edges. Each node 
corresponds to a QUAD, and it has one or more source operands, 
a destination operand, and a special operand to describe if there is 
any side effect.  Each directed edge represents a data dependence, 
or other dependence such as synchronization dependence or 
exception dependence [14], between two nodes. 
We begin by translating the QUADs to the static single 
assignment (SSA) form [ 31 ], and generate a minimal-
representation SSA [32] by inserting phi-functions. Second, we 
apply loop versioning [4] to hoist array bound checks outside of a 
loop in an optimized loop along with the original loop. The code 
for exception checks is added only at the entry to the optimized 
loop to examine the whole range of the index at once for the entire 
loop. As a result, all the array bound checks on the first dimension 
of the array are eliminated. Figure 8 shows such an example. In 
addition, we apply loop versioning to make sure that the array 
accesses by load or store instructions are not aliased to any other 
accesses. This will make the following scalar replacement more 
effective. Figure 9 shows such an example, in which the original 
loop has two accesses to the array a[i], where a[i] may be aliased 
to b[i]. In the optimized loop, the second access to a[i] can be 
replaced with a reuse of the first access to a[i] after ensuring a[i] is 
not aliased to b[i]. 
Third, for each striding array access to an induction loop index, 
we generate an appropriate update-type memory access instruction 
available on the target architecture. For example, we use an stwu 
or lwzu instruction in the update form on the PowerPC, whereas 
we use an ld4 or st4 instruction in the immediate base update 
form on the IA-64. For each countdown loop, we use a loop count 
register supported by the target architecture. 

 

Loop Versioning 

Translate to SSA 

Loop Striding 

Translate out of SSA 

DAG Scheduling 

Count Down Loop 

Reduce the number of registers

 
Figure 7. The sequence of optimizations on DAG 

 
if ((array != NULL) && (0 <= start) && (end <= array.length)) { 
 /*  optimized loop 
   eliminate all array bound exception checks for array[] */ 
 for (i = start; i < end; i++) { 
  array[i] = array[i] + 1; 
 } 
} else { 
 /* original loop 
     original loop with array bound exception checks */ 
}  

Figure 8. An example of loop versioning for eliminating 
exceptions [4] 

 
Java program 
for (i = 0; i < n-1; i++) { 
 x = a[i]; 
 b[i] = y*a[i+1]; // a may be aliased to b 
 z = a[i]; 
}  
 
Generated code 
if (a != b) { 
 for (i = 0; i < n-1; i++) { 
  x = a[i]; 
  b[i] = y*a[i+1];// a are not aliased to b 
  z = x; // replace an array access 
   // with a scalar variable 
 }  
} else { 
 for (i = 0; i < n; i++) { 
  x = a[i]; 
  b[i] = y*a[i+1];// a are aliased to b 
  z = a[i]; 
 }  
}  

Figure 9. An example of loop versioning for scalar 
replacement 

After we translate the SSA form of the QUADs back to the non-
SSA form [33], we perform pre-pass code scheduling for each 
basic block using a list scheduling algorithm.  The scheduling 
policy of our algorithm is adaptive. When the available registers 
are scarce, the algorithm attempts to minimize their usage. When 
they are not, it attempts to maximize the instruction-level 
parallelism. Finally, we create a pre-allocation of the registers in 
order to reduce the register usage by allocating the same register 
number to those variables whose lifetimes do not interfere with 
each other. 
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3.4 Code Generation 
This phase consists of three parts, as shown in Figure 10. First, an 
architecture mapping is made. Then, register allocation is 
performed using physical registers. Finally, code emission is made 
with post-pass code scheduling to generate the native code for the 
target platform. 

 
Architecture Mapping 

Code Emission Code Scheduling 

Register Allocation 

 
Figure 10. The sequence of code generation 

First, the architecture mapping translates a sequence of QUADs to 
the one suited for the target architecture. For the IA-32, the JIT 
compiler can specify at most two operands for each machine 
instruction, and it can use a memory location as an operand. For 
the IA-64 architecture, it translates a conditional branch to a 
compare instruction to set a result in a predicate register and a 
branch instruction guarded by the predicate register. In addition, 
the JIT compiler performs if-conversion [ 34 ] to translate an 
acyclic region of BBs to a hyperblock [35], a single branch-free 
block with a single entry and multiple exits, in order to improve 
the performance by eliminating branch instructions. Currently, the 
JIT compiler support only simple if-then-else blocks, which are 
transformed to simple hammocks. 
Java specifies the frequently used “int” type as a signed 32-bit 
data type [36]. If such Java programs are executed on a 64-bit 
architecture, 32-bit values must be sign-extended to 64-bit values 
for many integer instructions. This extension operation will cause 
serious performance degradation, and thus we implemented an 
efficient algorithm for eliminating sign extension effectively [37]. 
While this optimization is beneficial in general for the effective 
address computation of array accesses, it is also useful for the IA-
64 architecture that does not support load instructions with sign 
extension. 
To improve the instruction cache locality, the compiler also 
reorders BBs in the CFG by moving the rarely executed regions to 
the bottom and placing the frequently executed regions as close as 
possible. 
Second, we perform register allocation using different algorithms 
depending on the number of registers available for the target 
architecture. For example, we use a special allocator for the IA-32, 
which has only eight general-purpose registers (GPRs). It begins 
by allocating registers to the frequently accessed operands. If 
there are still some registers available, it allocates those registers 
to the short-lived operands. We use various heuristics to cope 
with the non-orthogonal usage of registers. We attempt to use 
MMX, SSE, and SSE2 instructions where possible. For the 
PowerPC, which has 32 GPRs and 32 floating-point registers 
(FPRs), we use a linear scan register allocator [38] to minimize 
the overhead of the compilation time. Note here that it would be 
ideal to use a single register allocator for all of the platforms, and 
a register allocator based on the preference-directed coloring 
algorithm [39] is one of the candidates for that goal. 

Finally, we perform code emission to generate the machine 
instructions for the target architecture in cooperation with post-
pass code scheduling.  It is fairly straightforward to generate 
efficient machine instructions since in general each QUAD has a 
corresponding machine instruction. There are a few exceptions, 
such as the QUAD for object allocation and that for a reference to 
an unresolved class, either of which needs to call a runtime 
routine for a special handling. 
The code emission is performed in conjunction with post-pass 
code scheduling within each BB. The code scheduler puts a ready 
instruction in the earliest available slot in a first-fit manner [4]. 
Since the IA-64 architecture can issue several instructions 
simultaneously, forming a bundle of instructions that can be 
executed in parallel is important to extract the instruction-level 
parallelism from a given program. The critical part of the bundle 
formation is the set of heuristics that determine the order of 
instructions in a bundle to satisfy various constrains. Based on the 
heuristics, the code scheduler swaps instructions in a bundle to 
maximize the utilization of the non-uniform execution units. 

4. EXPERIMENT RESULTS 
This section describes the results of several experiments showing 
the effectiveness in performance and reduced compilation time of 
the optimizations in the JIT compiler. We outline the experimental 
methodology for the benchmarks, and then discuss the 
experimental results. 

4.1 Benchmark Methodology 
All the results presented in this section were obtained using the 
VM of the IBM Developer Kit, Java Technology Edition, Version 
1.4.0. The threshold in the interpreter to initiate the JIT compiler 
was set to 1,000 on all platforms. 

We used SPECjvm98 [7] and pseudojbb [40] (denoted as pjbb in 
the graphs), which is a fixed-work version of SPECjbb2000 [8]. 
For SPECjvm98, the measurements were performed from five 
executions of the autorun sequence in the test mode (not in the 
SPEC-compliant mode) with the count of 100. For pjbb, a fixed 
number of transactions is executed to compare the execution time 
and compilation time. 

We conducted experiments on three platforms. The IA-32 
platform is an IBM IntelliStation (Pentium 4 Xeon 2.8 GHz dual-
processor with 1 GB memory), running Windows 2000. The IA-
64 platform is an IBM IntelliStation (Itanium 800 MHz dual-
processor with 2 GB memory), running Windows .NET server. 
The PowerPC platform (denoted as PPC in the graphs) is an IBM 
eServer pSeries 630 (POWER4 1.0 GHz 4-way processor with 2 
GB memory), running AIX 5L Version 5.1. 

4.2 Experimental Results 
This subsection presents experimental results to show how various 
sets of optimizations affect the execution time and the compilation 
time for each benchmark program. Here, execution time means the 
best execution time in all the sequence for each benchmark 
program, and compilation time means the compilation time in all 
the sequence for each benchmark program. In this subsection, all 
the execution times are normalized relative to the result with all 
optimizations enabled (denoted as Base in the graphs). In the 
graphs for the relative execution time, the taller bars show higher 
performance. All the compilation times are also normalized 
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relative to the result with all optimizations enabled (denoted as 
Base in the graphs). For those results, the shorter bars show that 
less time is used. 
We categorize the optimizations described in Section 3 as follows: 
method inlining, exception check optimizations, scalar 
replacement, optimizations for TICs, elimination of merge points 
in the CFG, and optimizations on the DAG. For the rest of this 
subsection, we evaluate each of these optimizations by selectively 
disabling it on the three platforms. 

4.2.1 Method Inlining 
As we described in Section 3.1, three kinds of method inlining are 
performed: dynamic method inlining, static method inlining, and 
tiny method inlining both for static and dynamic methods. Figure 
11 shows the relative execution times and compilation times from 
selectively disabling method inlining as in the table. 
The results show that the case where all of the method inlinings 
are disabled degrades the execution time significantly. The 
degradations vary from 11% to 78%. Method inlining of tiny 

methods both for static and dynamic method calls is a simple 
heuristic with great effectiveness, resulting in a maximum 
execution time3 degradation of only 15% from the peak execution 
time. Static method inlining is effective for compress and 
mpegaudio, which are loop-centric programs. Dynamic method 
inlining is effective for mtrt, which has a hot method 
OctNode.Intersect including many dynamic method calls. 
When no method inlining is performed, the compilation time is 
reduced by an average of 55%. Method inlining for tiny methods 
increases the compilation time by an average of 6%. Static method 
inlining drastically increases the compilation time by up to 50% 
(with an average of 34%). In particular, it is remarkably expensive 
for jess, javac, and jack. Dynamic method inlining also increases 
the compilation time by up to 38% (with an average of 16%). On 
the other hand, these two method inlining techniques improve the 
execution time by up to 15% (with an average of 8%). The 
balance between the benefit of the execution time and its cost 
needs to be considered carefully. 
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a) Relative execution times (Taller bars are better). 
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b) Relative compilation times  (Shorter bars are better). 

The color of 
the bar Dynamic method inlining Static method inlining Tiny method inlining both for static and 

dynamic methods 

Base ON ON ON 
 OFF ON ON 
 OFF OFF ON 
 OFF OFF OFF 

Figure 11. Measurements on method inlining. 
 

 
 

                                                                 
3 In this paper, ‘improvement of the time’ shows the simple 

difference between two values of relative time. 
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4.2.2 Exception Check Optimizations 
As we described in Sections 3.1, 3.2, and 3.3, three kinds of 
exception check optimizations are performed: exception check 
eliminations using loop versioning, exception check eliminations 
using PRE, and exception check eliminations using forward 
dataflow analysis. Figure 12 shows the relative execution times and 
compilation times by selectively disabling exception check 
eliminations as in the table. 

Eliminating exception checks using forward dataflow analysis is a 
simple technique that turns out to be quite effective. It improves the 
execution time from 2% to 28% (with an average of 8%). In 
particular, it is effective for compress and mpegaudio that 
frequently access array elements. The optimizations of exception 
checks using forward and backward dataflow analysis including 
PRE are effective for compress, mpegaudio, and mtrt. Loop 
versioning is effective only for mpegaudio. 
On IA-32, explicit nullcheck instructions are not generated for array 
and field accesses because of the utilization of hardware traps. 
Therefore, the degradations are smaller overall except for mtrt and 
mpegaudio for all of these optimization settings. The direct 
devirtualization newly introduces an explicit nullcheck since it 
removes a memory access to a receiver object. There are many 

opportunities for direct devirtualization in mtrt. Since more explicit 
nullchecks are generated than in the original program, the 
degradation is larger. In mpegaudio, there are many array bound 
checks that are explicitly generated. 

On PowerPC, it takes only one cycle to execute an exception check 
using a special compare and branch instruction (tw/twi instructions). 
Therefore, the degradations are smaller overall for all of these 
optimization settings. 

Eliminating exception checks using forward dataflow analysis has 
little effect on the compilation time. It even decreases the 
compilation time for jess, db, javac, mpegaudio, and jack. This is 
because the elimination reduces the size of the IR and thus decreases 
the time needed for other optimizations. When no elimination is 
performed, there is a remarkable increase of the compilation time for 
mpegaudio. The compilation time is about 8.0 times longer on IA-
32 and 2.9 times on IA-64. This is due to the fact that the 
compilation times for optimizations on the DAG were increased 
drastically by disabling exception check eliminations using forward 
dataflow analysis. It is about 24.0 times on IA-32 and 5.7 times on 
IA-64. This is because many edges exist in the DAGs for q.m and 
tb.???4.  Loop versioning increases the compilation time by up to 
14%. 
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a) Relative execution times  (Taller bars are better). 
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b) Relative compilation times  (Shorter bars are better). 

The color of 
the bar 

Exception check eliminations using loop 
versioning Exception check eliminations using PRE Exception check eliminations using forward 

dataflow analysis 

Base ON ON ON 
 OFF ON ON 
 OFF OFF ON 
 OFF OFF OFF 

Figure 12. Measurements on exception check optimizations. 

                                                                 
4 This cannot be represented using ASCII characters. 
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4.2.3 Scalar Replacement 
As we described in Sections 3.2 and 3.3, three types of scalar 
replacements are performed: scalar replacement using loop 
versioning, scalar replacement using escape analysis, and scalar 
replacement using dataflow analysis. Figure 13 shows the relative 
execution times and compilation times by selectively disabling the 
scalar replacement optimizations as in the table. 

Since scalar replacement is a technique to replace global variables 
that are reused frequently with scalar temporaries to promote their 
allocation to registers, it is particularly effective on the IA-64 and 
PowerPC architectures that have many registers. As shown in the 
graph, this improves the execution time of mpegaudio by 35% 
on both platforms. It also improves the execution times of 
compress, mtrt, and jess by 1% to 22% on both platforms. 
Scalar replacement using escape analysis improves the execution 
time only for mtrt, by 10.0% and 4.1% on IA-64 and PowerPC, 
respectively. This is because it replaces the fields of an object 
allocated in the method OctNode.Intersect with scalar 

temporaries. It also improves the execution time of mtrt on IA-32. 
This is because the escape analysis frees up a register that was 
used for pointing to an object header. Scalar replacement using 
loop versioning has little effect on the execution time of these 
programs. 
Scalar replacement using dataflow analysis increases the 
compilation times by about 10% for all programs except 
mpegaudio. When no scalar replacement is performed, there is a 
remarkable increase of the compilation time for mpegaudio. The 
compilation time is about 1.9 times on IA-32 and 1.2 times on IA-
64. This is due to the fact that the compilation times for the 
optimizations on the DAG were increased drastically by disabling 
scalar replacement using dataflow analysis. The compilation time 
for the optimizations on the DAG was increased about 4.3 times 
on IA-32 and 1.6 times on IA-64. This is because many edges 
exist in the DAG for q.m and tb.???. 
Scalar replacement using escape analysis increases the 
compilation times by 1% to 9%. Scalar replacement using loop 
versioning has little effect on the compilation times. 
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a) Relative execution times  (Taller bars are better). 
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The color of 
the bar Scalar replacement using loop versioning Scalar replacement using escape analysis Scalar replacement using dataflow analysis 
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Figure 13. Measurements on scalar replacement algorithms. 
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4.2.4 Optimizations for TIC 
As we described in Sections 3.1 and 3.2, two kinds of 
optimizations for TIC are performed: elimination of redundant 
TICs and inlining of TICs. Figure 14 shows the relative execution 
times and compilation times by selectively disabling the 
optimizations of TIC as in the table. 

Inlining of TICs improves the execution time from 0% to 55% 
(with an average of 14%). It is effective for jess, db, javac, jack, 
and pjbb that have more complicated class hierarchies than the 
other programs. It is most effective on the PowerPC, and least 
effective on IA-32. This is due to the difference in the overhead of 

calling a C routine. On IA-32, the overhead is small since calling 
C is very simple. On IA-64, the overhead is also small because of 
the register stack engine. On the PowerPC, there is some overhead, 
such as saving and restoring the non-volatile registers. 
Eliminating redundant TICs does not affect the execution time for 
these programs except for pjbb. 
Inlining and eliminating redundant TICs has little effect on the 
compilation times. In the exceptional cases of javac and jack on 
IA-64, the compilation time increases by 4%. This is due to the 
fact that the compilation times for register allocation were 
increased by inlining of TICs. We suspect that this is due to the 
increase in the number of BBs. 
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a) Relative execution times  (Taller bars are better). 
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b) Relative compilation times  (Shorter bars are better). 

The color of 
the bar Elimination of redundant TICs  Inlining of TICs 

Base ON ON 
 OFF ON 
 OFF OFF 

Figure 14. Measurements on TIC optimizations 
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4.2.5 Elimination of merge points in the CFG 
As we described in Section 3.2, eliminating merge points in the 
CFG, called frequency-directed splitting, is performed. Figure 15 
shows the relative execution times and compilation times by 
disabling the elimination of merge points in the CFG as in the 
table. 

It improves the performance by 2% and 4% for mtrt on the IA-64 
and PowerPC, respectively. In addition, it is effective for other 
programs on PowerPC. Since it improves the precision of 
dataflow analysis, dataflow optimizations such as common 
subexpression elimination and scalar replacement can be 
performed more effectively. Therefore, it is more effective on the 
architectures with many registers such as IA-64 and PowerPC. 

Eliminating merge points on the CFG does not improve the 
execution times of most of the programs. This result contradicts 
other research work [25], which reported the effectiveness of 
splitting (a variation of eliminating merge points). This is due to 
the fact that they apply it with guarded devirtualization, while we 
apply it with direct devirtualization by code patching [6]. The 
overhead with guarded devirtualization is higher than that with 
direct devirtualization, and eliminating the merge points to reduce 
their overhead is more effective when the overhead is high. 
With this optimization, the compilation time for mtrt is increased 
by 6%. This is due to the fact that the compilation times for 
optimizations on the QUADs were increased by disabling 
frequency-directed splitting. This is because the number of BBs is 
increased. 
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a) Relative execution times  (Taller bars are better). 
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b) Relative compilation times  (Shorter bars are better). 

The color of 
the bar Frequency-directed splitting 
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Figure 15. Measurements on elimination of merge points in the CFG. 
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4.2.6 Optimizations on DAG 
As we described in Section 3.3, four kinds of optimizations on the 
DAG are performed: generation of loops using a dedicated loop 
count register and instructions with updates, scalar replacement 
using loop versioning, exception check elimination using loop 
versioning, and pre-pass scheduling. Figure 16 shows the relative 
execution times and compilation times by selectively disabling 
optimizations on the DAG as in the table. 
Pre-pass code scheduling is effective for compress and 
mpegaudio, which are loop-centric programs. In particular, it 
improves the execution time for mpegaudio by 25.1% on the IA-
64. This is because the architecture can exploit higher instruction 
level parallelism available in a program than other architectures. 
Exception check elimination using loop versioning is effective for 
those programs that frequently access array elements, such as 
mpegaudio. There are few opportunities for scalar replacement 

using loop versioning in the programs selected for this experiment, 
but this optimization is intended to improve the execution times of 
the programs with frequent memory accesses to the same array 
elements, such as FFT. Except for mpegaudio on IA-64, it has 
little effect on the execution times to generate loops with a 
dedicated loop count register and instructions with updates. 
The DAG-based optimizations increase the compilation times 
significantly (by 10% through 44%), but they are effective only 
for a few programs such as compress and mpegaudio. In 
particular, they greatly increase the compilation times for these 
two programs (18% for compress and 32% for mpegaudio). In 
general, despite the large compilation time, their effectiveness is 
limited to the loop-intensive programs, and therefore it is 
important to select the target methods carefully when they are 
applied. 
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a) Relative execution times  (Taller bars are better). 
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b) Relative compilation times  (Shorter bars are better). 

Since IA32 has no update instruction or loop count register, the left most bars are omitted for IA32. 

The color of 
the bar 

Generation of loops using a dedicated 
loop count register and instructions with 

update 
Scalar replacement using loop versioning Exception check elimination using loop 
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Figure 16. Measurements on optimizations on DAG. 
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Figure 17. Breakdown of the compilation times with all of the optimizations enabled (Base). 

4.2.7 Breakdown of compilation times 
Figure 17 shows the breakdown of the compilation times for each 
program with all the optimizations enabled on every platform. 
Roughly speaking, the compilation time is spent in a ratio of 
15:25:30:30, in corresponding to each of the four phases: the 
optimizations on the EBC, those on the QUAD, those on the DAG, 
and the code generation, respectively. As exceptional cases, the 
optimizations on the DAG take much longer for compress and 
mpegaudio, but they are quite effective for these two programs. 
In general, the effectiveness of each optimization varies, but its 
compilation time has a similar overhead across all the platforms. 
For example, scalar replacement is effective on IA-64 and 
PowerPC, but it is not effective on IA-32. Nevertheless it incurs 
almost equal compilation time on all of the platforms. 
Finally, register allocation in the code generation phase accounts 
for 10% and 4% of the total compilation time on IA-64 and 
PowerPC, respectively, though it is not shown in Figure 17. This 
is quite different from the HotSpot Server Compiler [3], whose 
graph coloring register allocator reportedly accounts for 49% of 
the total compilation time.  We suspect that this is due to the fact 
that our JIT compiler employs more time-consuming 
optimizations such as those on the DAG. 

4.2.8 Selected optimizations aiming at lightweight 
compilation 
In practice, it is important to select a small set of the optimizations 
most effective for general programs with the shortest compilation 
times. To this end, method inlining of tiny methods, exception 
eliminations using forward dataflow analysis, scalar replacement 
using dataflow analysis, and inlining of TICs are the most 
effective ones, which can achieve 80% of the peak execution time, 
at the expense of the overhead of the compilation time by up to 
10%. 
Some optimizations are effective for particular programs at the 
expense of a small overhead in compilation time. For example, 
eliminating merge points in the CFG is effective for mtrt, while its 
compilation time overhead is less than 5%. Eliminating redundant 
TICs is effective for jess, db, and pjbb, while its compilation 
time overhead is small. Eliminating exception checks using PRE 
is also effective for compress, mpegaudio, and mtrt, while its 
compilation time overhead is limited to 3%. 

On the other hand, some optimizations are effective for particular 
programs at the expense of a large overhead in compilation time. 
For example, escape analysis is effective for mtrt, while its 
compilation time overhead is up to 9%. Optimizations on the 
DAG are effective for mpegaudio, while the compilation time 
overhead is nearly 30%. Method inlining with static heuristics is 
effective for compress, jess, mpegaudio, mtrt, and pjbb, while 
its compilation time overhead is up to 68%. 
In summary, we can categorize our optimizations into four 
classes: 
(a) Generally effective optimizations with small compilation 

overhead: 
z Method inlining for tiny methods 
z Exception check eliminations using forward dataflow 

analysis 
z Scalar replacement using dataflow analysis 
z Inlining of TICs 

(b) Occasionally effective optimizations with small compilation 
overhead: 
z Exception elimination optimizations using PRE 
z Elimination of redundant TICs 
z Elimination of merge points in the CFG 

(c) Occasionally effective optimizations with large compilation 
overhead: 
z Method inlining with static heuristics 
z Scalar replacement using escape analysis 
z Optimizations on the DAG 

(d) Others (ineffective). 
We created two sets of optimizations, Lightweight1 and 
Lightweight2, corresponding to the optimization class (a) and 
the optimization classes (a) and (b), respectively. The results are 
shown in Figure 18. Lightweight1 achieved 86% of the peak 
execution time of Base (all the optimizations enabled), while it 
only took 33% of the compilation time of Base. Lightweight2 
achieved 90% of the peak execution time of Base (all the 
optimizations enabled), while it only took 34% of the compilation 
time of Base. 
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a) Relative execution times  (Taller bars are better). 
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Figure 18. Selected optimizations. 

For achieving the best execution times on benchmark programs, it 
is important to enable all of the optimizations.  Yet, for practical 
purposes, it is more effective to enable only a few important 
optimizations such as those selected for Lightweight1 and 
Lightweight2. Although challenging, it would be ideal if the JIT 
compiler could automatically choose a customized set of those 
optimizations, which are most effective for the target program, by 
analyzing the characteristics of the target program and its profiling 
information. 

5. RELATED WORK 
There are quite a few Java runtime environments available today. 
Sun's HotSpot and IBM DK are the two major production runtime 
environments, while IBM's Jikes Research Virtual Machine 
(RVM) [41] and Intel's Open Research Platform (ORP) [42] Java 
Virtual Machine are the two major research runtime environments. 
Interestingly, these two production environments employ an 
interpreter and optimizing compilers, while these two research 
environments employ only compilers. 

The HotSpot Virtual Machine includes an interpreter that supports 
mixed execution and the Java HotSpot compiler that supports the 
IA-32, the IA-64, and the 32/64-bit SPARC architectures. The 
paper [3] described the detailed implementation of the compiler, 
and evaluated the effectiveness of some optimizations on the IA-

32 and SPARC architectures. It uses the DAG representation 
based on SSA throughout the optimizations and register allocation. 
It uses BURS [43] for portable code generation. It performs a 
single level of optimizations, including method inlining, global 
code motion, and local code scheduling. 

IBM DK optionally enables a dynamic optimization framework 
[2]. It can trigger recompilation with specialization using 
instrumentation code to improve the performance. Some study has 
been conducted with various policies for profile-directed method 
inlining to improve the performance and reduce the compilation 
time [18], as one of the promising approaches for choosing a 
customized set of those optimizations that are most effective for 
the target program. 

Jikes RVM supports the IA-32 and PowerPC architectures with 
multiple optimization levels. It uses three IRs, which are all 
register-based. The high-level intermediate representation (HIR) 
adopts almost the same set of opcodes as Java bytecode, and it 
explicitly represents PEIs unlike Java bytecode. Using HIR, the 
compiler performs simple optimizations such as local 
optimizations within an extended BB, flow-insensitive 
optimizations, and method inlining. Then, the low-level 
intermediate representation (LIR) expands the HIR into operations 
that are specific to the RVM object layout and conventions. The 
LIR is still independent of the target machine architecture. Here, 
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SSA-based optimizations such as common subexpression 
elimination and scalar replacement are performed as part of 
machine-independent optimizations. Finally, a machine-specific 
intermediate representation (MIR) is generated from the LIR. The 
MIR depends on the target machine architecture. Here, register 
allocation is performed as in our system. The native code is 
generated using BURS. The approach using different IRs is 
similar to that of our system. It uses a compiler with multiple 
optimization levels to reduce the overhead of the compilation time 
by triggering recompilation using a polling-based profiler. The 
parameters for some optimizations can be tuned using feedback-
based optimizations to increase the performance of the target 
program [44]. 

The Intel ORP is also a research virtual machine with two 
compilers. One is the simple code generator (known as the O1 JIT 
[45]) that produces native code directly from the Java bytecode 
with lightweight optimizations. The other is the optimizing 
compiler (known as the O3 JIT [46]) that translates the Java 
bytecode to an IR that can be used for time-consuming 
optimizations such as method inlining, global dataflow 
optimizations, and loop versioning. When a method is invoked, 
the O1 JIT compiles the method with counter-based 
instrumentation code. When the counter for a method reaches a 
predetermined threshold, the O3 JIT recompiles that method with 
predetermined optimizations, including feedback-based  
optimizations. For example, if the profiling data shows that a loop 
is not iterated frequently, loop versioning is not performed against 
that loop. 

The Intel JIT shipped with Intel VTune also supports the IA-32 
architecture. It employs only a compiler with a single level 
optimization, since it was released some times ago. The paper [45] 
evaluated the performance and the compilation time with this 
compiler by selectively disabling optimizations. These 
optimizations without an explicit IR are lightweight and designed 
to have short compilation times since all methods are compiled. 

6. CONCLUSION 
We described the system overview of our Java JIT compiler, 
which is the basis for the latest production version of the IBM 
Java JIT compiler that supports a diversity of processor 
architectures, including both 32-bit and 64-bit modes, CISC, 
RISC, and VLIW architectures. In particular, we focused on the 
design and evaluation of the cross-platform optimizations that are 
common across different architectures. We studied the 
effectiveness of each optimization by selectively disabling it in 
our JIT compiler on three different platforms: IA-32, IA-64, and 
PowerPC. Based on the detailed statistics, we classified our 
optimizations and identified a small set of the most cost-effective 
ones in terms of the performance improvement as the benefit and 
the compilation time as the cost. In summary, we demonstrated 
that, with a selected set of optimizations, we can achieve 90% of 
the peak performance for SPECjvm98 and a special version of 
SPECjbb2000 at the expense of only 34% of the total compilation 
time in comparison to the case in which all of the optimizations 
are enabled. In the future, we plan to study a new, dynamic 
compilation strategy to automatically choose a customized set of 
those optimizations, which are most cost-effective for the target 
program, based on the structure of its methods and the online-
profile information collected on the fly for that program. 
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