
Design, Implementation, and Evaluation of Optimizations 
in a Just-In-Time Compiler 

Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue, Mikio Takeuchi, Takeshi Ogasawara, 
Toshio Suganuma, Tamiya Onodera, Hideaki Komatsu, and Toshio Nakatani 

IBM Tokyo Research Laboratory 
1623-l 4, Shimotsuruma 

Yamato, Kanagawa 
242-8502, Japan 

ishizaki@trl.ibm.co.jp 

ABSTRACT 
The Java language incurs a runtime overhead for exception checks 
and object accesses without an interior pointer in order to ensure 
safety. It also requires type inclusion test, dynamic class loading, 
and dynamic method calls in order to ensure flexibility. A “Just- 
In-Time” (JIT) compiler generates native code from Java byte 
code at runtime. It must improve the runtime performance without 
compromising the safety and flexibility of the Java language. We 
designed and implemented effective optimizations for the JIT 
compiler, such as exception check elimination, common subex- 
pression elimination, simple type inclusion test, method inlining, 
and resolution of dynamic method call. We evaluate the perfor- 
mance benefits of these optimizations based on various statistics 
collected using SPECjvm98 and two JavaSoft applications with 
byte code sizes ranging from 20000 to 280000 bytes. Each opti- 
mization contributes to an improvement in the performance of the 
programs. 

1. Introduction 
Java [I] is a popular object-oriented programming language 
suitable for writing programs that can be distributed and reused on 
multiple platforms. Java is excellent because of safety, flexibility, 
and reusability. The safety is achieved by introducing exception 
checks and disallowing interior object pointers. The flexibility and 
reusability are achieved by supporting dynamic class loading and 
dynamic method call. As in typical object-oriented programs, 
there are many small methods, and calls without method lookup to 
find the target method, which we call static method call, occur 
frequently. This prevents intra-procedural optimizations by a 
compiler. The programs also include calls for virtual and interface 
methods with method lookup to find the target method, which we 
call dynamic method call. Furthermore, to ensure safety, Java 
contains runtime overheads, such as type inclusion tests and ex- 
ception checks for accesses to arrays and instance variables. 

To improve the performance of the Java execution, two compiler 
solutions are proposed: a static compilation model and a “Just-In- 

permission to make digital or hard copies of all or part ot‘this work Ibr 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the tirst page. To copy 
othcr\\ise, to republish, 10 post on sewers or 10 redistribute to lists. 

rcquircs prior specific permission and/or a fee. 

JAVA’99 San Francisco California USA 
Copyright ACM 1999 I-581 13-161-5/99/06...$5.00 

Time” (JIT) compilation model. The static compilation translates 
Java byte code [2] into native code before the start of program 
execution, and thus the compilation overhead can be ignored at 
runtime. Therefore, it can use expensive optimizations. On the 
other hand, it does not support dynamic class loading, and does 
not take advantage of Java that supports the flexibility and re- 
usability of a program. The JIT compiler translates the byte code 
into native code when a new method is invoked at runtime. It 
allows classes to be loaded dynamically. On the other hand, the 
overall execution time of the program must include the JIT com- 
pilation time, and thus the JIT compiler must be much more effi- 
cient in both time and space than the static compiler. 

In this paper, we present optimizations we developed to reduce 
various runtime overheads of the Java language without com- 
promising safety and flexibility. Exception check elimination and 
lightweight exception checking reduce the overhead of exception 
checks, which are frequently executed in Java programs. Common 
subexpression elimination reduces the overhead of accesses to 
arrays and instance variables. Our type inclusion test has a simpler 
method than previous approaches. Inlining of static method call 
increases the opportunity for other optimizations. Resolving dy- 
namic method call using our class hierarchy analysis (CHA) is a 
new approach to reducing the overhead of dynamic method call in 
the sense that we adapted CHA to dynamic class loading. It also 
allows dynamic methods to be inlined, to increase the opportunity 
for other optimizations. 

We validate our approach on the basis of various statistics collect- 
ed by running several large Java programs. We evaluate each 
optimization by turning off one by one. All the evaluations are 
carried out using the Java JIT compiler for the PowerPC archi- 
tecture on AIX, whose product version has been shipped with 
JDK I. 1.6 for AIX 4.3.2 [3] with the “Java Compatible” logo. 

The paper is structured as follows. Section 2 presents an overview 
of the JIT compiler. Section 3 describes optimizations to reduce 
the overhead of accesses to arrays and instance variables. Section 
4 describes the implementation of type inclusion test. Section 5 
describes how to reduce the overhead of static and dynamic 
method calls. Section 6 gives experimental results with statistics 
and performance data. Section 7 summarizes related work. Sec- 
tion 8 outlines our conclusions. 

2. Overview 
In this section, we outline the structure of the JIT compiler as 
shown in Figure I. It translates the byte code into native code in 
six phases. First, it constructs the basic blocks and loop structure 
from the byte code. Next, it applies method inlining to both static 

119 



and dynamic method calls. Inlining of dynamic method call is 
applied using our class hierarchy analysis. The JIT compiler then 
applies exception check elimination, as well as other optimiza- 
tions :juch as constant propagation and dead code elimination. 
After that, it applies common subexpression elimination to reduce 
the number of accesses to arrays and instance variables. We note 
here that we extended the byte code to represent an object’s inte- 
rior pointer for improving consecutive array accesses. 

Next, the JIT compiler maps each stack operand to either a logical 
integer or floating-point register, and counts the numbers of uses 
of local variables in each region of a program. The regions are 
also decided based on the loop structure in this phase. Finally, it 
generates native code from the byte code along with a physical 
register allocator. Since the JIT compiler requires fast compilation, 
expensive register allocation algorithms, such as graph coloring, 
cannot be used. Instead, it uses a simple and fast algorithm to 
allocate registers without an extra phase. In each region, fre- 
quently used local variables are allocated to physical registers. 
The remaining registers are used for the stack operands used in 
computation. If the code generator requires a new register but no 
registers are available, the register allocator finds the least re- 
cently used register that can be used, to avoid expensive computa- 
tion for searching spill candidates. Live information on local vari- 
ables, obtained from data flow analysis, is also used to avoid gen- 
eration of inefficient spill code. 

ChSS 
file 

native 
code 

Figure 1: An overview of the JIT compiler 

3. Optimization for Accesses to Arrays and 
Instance Variables 
Many exceptions may be thrown from various causes in Java pro- 
grams. An access to an array or an instance variable frequently 
causes an explicit exception check at runtime. An access with a 
null object causes a null-pointer exception. An access to an array 
with an out-of-bounds index causes an array-bounds exception. 

In a typical implementation of a multi-dirnensional array in Java, 
to generate a target effective address requires multiple array refer- 
ences and array-bound checks for each dimension, which requires 
more expensive implementation in Java than in C or Fortran. The 
implementation of access to an instance variable is also more ex- 
pensive than that of access to a local variable, since a local vari- 
able can be allocated to a physical register. 

In this section, we describe three optimizations: exception check 
elimination, lightweight exception checking, and common subex- 
pression elimination. 

3.1 Exception Check Elimination 
The JIT compiler can eliminate null-pointer and array-bounds 
checks, if it can prove that the access is always valid or that the 
exception check has already been tested. The JIT compiler has to 
generate the code for explicit null-pointer checks because AIX 
permits to read address 0 for a speculative load. It eliminates null- 
pointer checks by solving a data flow equation. 

To eliminate array-bounds checks efficiently, we developed a new 
algorithm by extending the elimination phase in Gupta’s algo- 

rithm [4]. It propagates the information of checked exceptions 
forward and backward, using data flow analysis. Our algorithm 
computes the exact range of the checked index set by adding a 
constant to the index variable, an operation treated as kill [5] by 
the previous algorithm. Therefore, exact information on the 
checked exceptions can be propagated to the successor statements. 
Furthermore, our algorithm can also eliminate the checks of array 
accesses with a constant index, which cannot be eliminated by the 
previous algorithm. In short, our algorithm extends the capability 
for eliminating array-bounds checks. We give an example in 
Example I. The exception checks for bold references are elimi- 
nated by both algorithms. The exception checks for italic refer- 
ences can be eliminated only by our algorithm. 

a[il=O; 
a[i+21=2; 
if (j==k) a[i++]=O; 
a[i+2l=a[il+a[i+lj; 
ati+ll =a/Ol+a /ll+a/21; 

Example I: Example of Exception Check Elimination 

3.2 Lightweight Exception Checking 
Even after application of the above algorithm, many exception 
checks could remain. Therefore, we developed lightweight excep- 
tion checking to reduce the overhead of runtime checks. 

The PowerPC architecture provides a trap instruction to execute 
compare and branch to the handler, and this instruction requires 
only one cycle if it is not taken. To use the instruction, the handler 
must identify the cause of an exception in the handler. The excep- 
tion checks are executed frequently, but they seldom throw an 
exception. If a register is used to identify the cause of an excep- 
tion, the assignment for a rarely-thrown exception becomes an 
overhead on a critical execution path. Therefore, the JIT compiler 
generates only a trap instruction with a uniquely encoded con- 
dition corresponding to the cause of an exception. If an exception 
occurs, the trap instruction is decoded to identify the cause of an 
exception in the handler. The handler can tell from the instruction 
what exception has occurred. We give an example of generated 
native code in Example 2. Here, three trap instructions (tw and 
twi) are generated for three different conditions without register 
assignments to identify the cause of each exception. 

twi EQ. r5. 0 : Check null-pointer 
tw GE, r4. rs : Check array-bounds 
mulli r4, 14. 2 
1wzx l-3. r4cr5, i Get array element 
twi LLT, l-7. 1 ; Check divisor 
divi r3, r3, 1-7 
_._._.-.-.-.-.-.-.-.-.-.-.-.-.- 

The handler 

void TrapHandler(struct context l cp) 

int *iar = cp-SIAR; // Get the address a~ which 
// the exception occurs 

if IS_TRAPI-EQ(iar) I // Is inst. 'twi EQ' ? 
prOCeSS_~~LLPOINTER_EXCEPPIONo 

I else if IS-TP.A_GE(iar) t // Is inst. 'tw GE' ? 

Example 2: Example of Lightweight Exception Checking 

120 



3.3 Common Subexpression Elimination 
To reduce the overhead of array accesses, the JIT compiler applies 
two techniques for global common subexpression elimination 
(CSE). One is scalar replacement of array elements. The other is 
the improvement for consecutive array accesses using an interior 
pointer. The former generates a temporary local variable for array 
element and replaces the same array element accesses with the 
local variable only if the array object and the index variable are 
not updated in a loop. The latter introduces an instruction for an 
effective address generation, commonly used by consecutive array 
accesses. In either case, the code will be moved out of the loop if 
it is a loop invariant. These techniques are applied only to the loop, 
since value numbering [S] is too expensive. For a garbage collec- 
tion, the top pointer of the object must be kept in the memory or 
register. Because CSE generates an interior pointer of an object 
and the garbage collector does not scan an interior pointer of an 
object. 

To reduce accesses to instance variables, the JIT compiler uses 
partial redundancy elimination [6, 71. It eliminates redundant ac- 
cesses in a method by moving invariant accesses out of loops and 
by eliminating identical accesses that are performed more than 
once on any execution path. The instance variable moved out of 
loops can be mapped to a local variable, which can be allocated to 
a physical register. 

We give an example of CSE in Example 3. We introduce C nota- 
tion to represent an interior pointer of an object. The bold local 
variables are generated by each optimization. First, the accesses 
to the instance variable ‘a‘ are moved out of the loop and are 
replaced with the local variable ‘la’. Finally, the accesses to the 
arrays ‘la [i] ’ and ‘la [ i+l] ’ are replaced with accesses using 
interior pointer ‘* iao’. The references to ‘la [ il ’ and 
‘la [i+l] ’ are also replaced with the local variables ‘iv0’ and 
‘ivl’ by scalar replacement. Consequently, there are only one 
access to the instance variable and four accesses to the array. 

For correct and effective array bound check, the JIT generates the 
code for array-bounds checks between i and i+l for original 
references to ‘lali]’ and ‘la [i+ll’ at ‘*iaO=&la[il’ in 
the example. It can reduce the number of array-bounds checks 
from six times in the original code to two times. 

Example 3: Example of CSE 

4. Optimization for Type Inclusion Test 
In this section, we describe the implementation of type inclusion 
test. Previous approaches [8, 91 on type inclusion test in constant 
time have been proposed encoding the class hierarchy in a small 
table, but they require recomputation of the table when a class is 
loaded or unloaded dynamically. They also require additional 
space for the table. We implemented type inclusion test in a com- 
pletely different approach. To avoid time and space overheads, we 
generate a simple inlined code to test the most-frequently occur- 
ring cases, as in Example 4. This is based on our investigation, 
described in Section 6.3. 

P.o”do Cod. 

Example 4: Pseudo-code of a Simple Type Inclusion Test 

The first case checks whether the referenced object (from) is 
NULL. The second case checks whether the class of the referenced 
object is identical to the class of the operand expression (Type). 
The third case checks whether the class cached by the latest com- 
parison in the referenced object is identical to the class of the op- 
erand expression. These three checks can avoid overhead of the 
expensive test, since each takes only two or three machine in- 
structions. If all of these tests fail, then the C runtime library is 
executed for traversing a linked list of the class hierarchy. Its cost 
is higher than the first three cases. This simple implementation is 
effective, as will be shown in Section 6.3. 

5. Optimization for Method Call 
In this section, we describe two optimizations of method calls: 
first, inlining of static method calls. Secondly, and then resolution 
of dynamic method calls. 

5.1 Inlining of Static Method Call 
In object-oriented languages, a typical program has smaller 
methods and method calls occur frequently. Futhermore, the con- 
structor is invoked with the creation of a new class. Therefore, the 
JIT compiler inlines small methods to reduce the number of static 
method calls. The JIT compiler also optimizes tail recursion and 
recursive call. It replaces a tail recursion with a branch to the be- 
ginning of the method, and it expands the body of the method 
once when a recursive call is detected. 

5.2 Resolution of Dynamic Method Call 
In the object-oriented language, dynamic method call is an im- 
portant feature for its flexibility, and thus it is used frequently. On 
the other hand, it penalizes the performance of the program becau- 
se of the overhead of method lookup. Many techniques for re- 
solving this performance problem, such as type prediction [ 10, I I] 
and polymorphic inline cache [ 121, have been proposed. However, 
they incur overheads by requiring an additional runtime test. In 
our JIT compiler, we chose class hierarchy analysis (CHA) [l3, 
141 to improve the performance of dynamic method call. We will 
discuss the choice in more detail in Section 7. 

CHA determines a set of possible targets of a dynamic method 
call by combining a static type of object with the class hierarchy 
of a program. If it can be determined that there is no overridden 
method, the original dynamic method call can be replaced with the 

121 



static method call at compile time and can be executed without 
method lookup. Previously, CHA has been investigated and im- 
plemented for the languages supporting static class loading, in 
which the class hierarchy does not change at runtime. Java sup- 
ports dynamic class loading, in which the class hierarchy may 
change in the future. To our knowledge, CHA has not yet been 
implemented for any language that supports dynamic class load- 
ing. 

We adapted CHA to dynamic class load.ing. If class loading over- 
rides a method that has not been overridden, the static method call 
must be replaced back with the original dynamic method call. 
Since Java is an explicitly multi-threaded language, all optimiza- 
tions must be thread-safe. That is, the code must be modified 
atomically by rewriting only one instruction. We implemented this 
atomic updating as shown in Example 5. In the example, we as- 
sume the object layout that combines the class instance data and 
the header such as Caffeine [ 151 so that three load instructions are 
required to get the address of a compiled code. 

At compile time, the top address of the dynamic method call se- 
quence is recorded. The address is tilled with a call instruction 
to call a method statically. When the method is not yet overridden 
in the left column in Example 5, the itulic code sequence for the 
dynamic method call is not executed at: all. When the method is 
overridden by dynamic class loading, the call instruction in the 
address is replaced with a jmp instruction to the dynamic method 
call by the class loader. Consequently, the code sequence for the 
dynamic method call is now executed. The JIT compiler also uses 

Java provides an interface for implementation of multiple inheri- 
tance. The JIT compiler also opttmizes an interface call by re- 
placing it with a virtual call. If CHA finds that only one class im- 
plements an interface class, a virtual call with a single method 
lookup can be generated using the implementation class as a static 
type. Furthermore, if the target method is not overridden through 
the implementation class hierarchy, the JIT compiler can replace 
the interface call with a static method call. This optimization is 
much more efficient than a naive implementation of an interface 
call, which requires a loop to search for an implementation class. 

6. Experiments 
In this section, we evaluate the effectiveness of individual optimi- 
zations such as exception check elimination, simple type inclusion 
test, common subexpression elimination, inlining of static method 
call, and resolution of dynamic method call. We used nine Java 
programs, seven of which (compress, jess, raytrace (a 
body of mtrt), db, j avac, mpegaudio, and jack) are bench- 
marks in SPECjvm98 [ 161. The other two (hotj ava and 
swing) are applications with GUIs released by JavaSoft. 
SPECjvm98 are executed with size ‘I 00’. Therefore, the results do 
not follow the official SPEC rules. HotJava is executed with an 
access a web page with an applet and GIF data. Swing is executed 
with clicks to all tabs. All the measurements were taken on an 
IBM RISC System 6000 Model 7043-140 (containing a 332-MHz 
PowerPC 604e with 5 I2 MB of RAM) running AIX 4.3. I. 

6.1 Benchmarks 
Table 1 shows the static characteristics of the class files for each 
program at compile time. 

Table 2 shows the dynamic characteristics of unoptimized code 
for each program at execution time. 

as similar implementation for inlining of dynamic methods. 

Program Compiled- Number of Static Call Virtual Interface Tw hay Instance Exception 
Bytecode Compiled Sites Call Sites Call Sites Inclusion Access Variable Check 
Size (bytes) Methods Test Sites Sites Sites Sites 

compress 23598 276 1525 280 7 41 I83 1246 2964 

jess 44548 704 3494 746 38 122 507 2716 6068 

raytrace 33163 424 2879 1133 7 60 476 2489 4846 

db 25605 291 1924 355 21 52 169 1005 31 I3 

javac 91144 1068 5614 1833 72 406 412 6737 II730 

mpegaudio 38204 441 2190 335 21 71 1237 2374 6838 

jack 50573 522 3197 779 88 219 1152 2648 7879 

hotjava 193868 3032 10190 4863 274 25322 2390 13607 27524 

swing 282982 4822 9854 9732 1025 2647 2942 20837 40024 

Table I : Static (compile-time) characteristics 

122 



Table 2: Dynamic (runtime) characteristics 

dark bar shows the number of null-pointer checks. The white bar 
shows the number of array-bounds checks. 

6.2 Exception Check Elimination 
Figure 2 shows how our exception check elimination reduces the 
number of exception checks at runtime. All values are given as 
percentages of the non-optimized case. The left bar shows the 
number of exceotion checks without the elimination. The right bar 
shows the number of exception checks with the elimination. The 

It is proved that our exception check elimination is very effective, 
especially for null-pointer checks, of which it eliminates an avera- 
ge of 60%. It is quite effective for array-bound checks, of which it 
eliminates 53%, particularly for znpegaudio. 

Checks (%) 

compress jess raytrace db javac mpegaudio jack hotjava swing 

Program 

Figure 2: Results of Exception Check Elimination at Runtime 

inlined test code. Normal indicates the case in 

6.3 Simple Type Inclusion Test 
Figure 3 shows the distribution of object types in type inclusion 
test at runtime. Same indicates the case in which the class of the 
referenced object is identical to the class of the operand expres- 
sion. Null indicates the case in which the referenced object is 
NULL. Cache indicates the case in which the class cached by the 
latest comparison in the referenced object is identical to the class 
of the operand expression. These three cases are processed by 

which a class 
Others indi- hierarchy must be traversed to determine the result. 

cates the case in which the class of the reference object or operand 
expression is either interface or array type. These two cases are 
orocessed in the C runtime librarv. 

Same, null, and cache account for an average of 91% of tests 
in the programs. The result shows that our simple implementation 
of inlined test code is effective for the Java environment. 

123 



Tests (%) 

100 

80 

60 

40 

20 

0 

DOthers 
q Normal 
acache 
q Null 

ElSame 

compress jess raytrace db j avac mpegaudio jack hotjava swing 

Program 

Figure 3: Distribution of Object Types in Type Inclusion Test at Runtime 

shows the number of accesses to arrays. The striped bar shows the 
number of array accesses using interior pointers. 

Our CSE is effective except for raytrace. The elimination of 
accesses to instance variables is more effective than that of ac- 
cesses to arrays. Scalar replacement of array accesses is particu- 
larly effective for mpegaudio, in which 25% of accesses are 
eliminated. Array access using an interior pointer is effective for 
db, in which 14% of the accesses are used. It optimizes array 
accesses to swap array elements in the shell sort. 

6.4 Common Subexpression Elimination 
Figure 4 shows how common subexpression elimination (CSE) 
reduces the number of accesses to arrays and instance variables at 
runtime. All values are given as percentages of the non-optimized 
case. The left bar shows the number of accesses without CSE. The 
right bar shows the number of accesses with CSE. The dark bar 
shows the number of accesses to instance variables. The white bar 

Accesses (%) 

100 

80 

60 

40 

20 

0 

w/interior 

compress raytrace javac jack swing 
jess db mpegaudio hotjava 

Program 

Figure 4: Results by Common Subexpression Elimination at Runtime 

of calls for non-constructors. The white bar shows the number of 
calls for constructors. 

6.5 Inlining of Static Method Call 
Figure 5 shows how method inlining reduces the number of static 
method calls at nmtime. All values are given as percentages of the 
non-optimized case. The left bar shows the number of static 
method calls without inlining. The right bar shows the number of 
static method calls with inlining. The dark bar shows the number 

lnlining is particularly effective for compress and raytrace. 
An average of 50% of static method calls are eliminated, further 
increasing opportunities for other optimizations. In all programs, 
there is a drastic reduction in the number of calls for the con- 
structor. 

124 



6.6 Resolution of Dynamic Method Call
The performance in resolving dynamic method call using class
hierarchy analysis (CHA) is shown in Figure 6 (for statistics on
call sites at compile time) and Figure 7 (for statistics on calls at

calls. The three types of striped bars represent the cases in which
dynamic method calls are replaced with static method calls or
inlinings. The other three types of bars represent the cases in
which dynamic method calls are not resolved by CHA. The dark
doted bars represent call sites or calls are dynamically monomor-
phic, but are not resolved by CHA. The black bars represent call
sites or calls that are polymorphic. In Figure 6, white bars repre-
sent call sites whose calls are not executed at runtime. In Figure 7,
white bar (Deresolved) represent cases in which dynamic
method call or inlining with method lookup. The static method
call or inlining resolved by CHA are replaced by them at runtime.

Figure 7 shows that CHA is highly effective, since it resolved an
average of 85% of dynamic method calls or inlinings for three out
of nine programs. Furthermore, it resolved an average of 40% for

all of the other programs, except for compress. In compress,
the unresolved methods do not affect the performance, since many
static calls for the kernel routines that use final classes occur. The
optimization for interface call is also effective for db, since the

class of the interface class, is used very frequently. The results

ingly monomorphic. Therefore, we still have an enough room to
improve the performance in the four programs.

Since we have adapted CHA to dynamic class loading, a static
method call may be replaced back with a dynamic method call by
overriding the target method when a class is loaded dynamically.
For inlining of dynamic method call, method lookup may be also
required. In our experiment, the numbers of replaced sites are 216

remarkably. The overhead of replacing the code is small.



6.7 Performance
We measured the execution time of seven of the programs, since
the two other programs were difficult to measure because of their
interactive nature. Figure 8 shows the performance improvements
from various optimizations. The white bar represents the best
execution time in five trials. All values are given in seconds. Each
of the bars except the rightmost bar shows the effect of all but one
optimization. The optimizations include common subexpression
elimination (No CSE), exception elimination and lightweight
exception checking (No exception), simple type inclusion test
(No typetest), inlining of static method call (No inlin-
ing), and resolution of dynamic method call (No CHA). The
rightmost bar (ALL) shows the time with all optimizations enabled.

test improves the performance by 8%. Figure 8 (c) shows the per-
formance of raytrace. Here, resolution of dynamic method call
improves the performance by 20%. Figure 8 (d) shows the per-
formance of db. Here, simple type inclusion test improves by

zations make virtually no difference. Figure 8 (f) shows the per-
formance of mpegaudio. Here CSE improves the performance
by 13%. Inlining also improves by 10%. Figure 8 (g) shows the

improve the performance by 10%. Simple type inclusion test also
improves by 9%. It shows all optimizations contribute to an im-

Figure 8 (a) shows the performance of compress. Here, inlining
of static method call improve the performance by 14%. Figure 8

provement in the performance.

126



(g)jack 

Figure 8: Execution Times of the JIT’ed code 

7. Related Work 
The Intel JIT compiler [17] applies simple array-bounds check 
elimination in the extended basic block. Our JIT compiler applies 
array-bounds and null-pointer check elimination to the whole 
method using our algorithm. The experiment shows it is effective. 

IBM Research is developing another dynamic optimizing com- 
piler [18]. Flow-insensitive optimizations are implemented in a 
faster fashion. Interprocedural optimizations will be implemented. 

Exception check elimination [4, 191 has been proposed as means 
of reducing the overhead of certifying the correctness of a pro- 
gram. We have extended the elimination algorithm, using more 
exact program analysis. 

Type inclusion test [8, 91 has been investigated for efficient type 
conformance test in an object-oriented language. In previous re- 
searches, the class hierarchy was encoded in a small table, so that 
it could be tested in a constant time. The table may be reconstruct- 
ed in the future by dynamic class loading. To avoid the time and 
space overhead, we investigated the behavior of type inclusion 
test in Java. The results show that simple checks with the cache of 

the referenced object account for an average of 91% of tests. 
Therefore, we chose the simple implementation. 

Polymorphic inline cache (PIC) [ 121 has been proposed as means 
of reducing the overhead of polymorphic method call. PIC com- 
piles a dynamic method call as though it was being inlined into 
the context of the caller. The call site is patched to jump to a stub 
that conditionally executes the inlined code on the basis of the 
types of an object. Type prediction [IO, 1 l] has also been pro- 
posed, with type analysis for languages supporting dynamic class 
loading. Type prediction predicts the type of an object, which are 
called frequently, at compile time. PIC and type prediction intro- 
duce a runtime test newly, since they are on the basis of the cache 
mechanism with memory references. According to the results of 
simple experiments [20], type prediction without inlining at 100% 
accuracy cannot outperform resolution of dynamic method call 
without inlining. Type prediction with inlining must achieve 90% 
accuracy to outperform against the resolution without inlining. 
Finally, nothing can perform the resolution with inlining. In im- 
plementations of Java, the cost of dynamic method call is not so 
different from that of PIC and type prediction. 

127 



Class hierarchy analysis (CHA) [13, 141 can replace a dynamic 
method call with a faster static method call at compile time. It has 
been investigated and implemented for languages supporting static 
class loading. To avoid t.he runtime overhead of PIC and type 
prediction, we developed a version of CHA adapted to dynamic 
class loading. It allows the JIT compiler to inline dynamic method 
call without a runtime execution overhead. Inlining increases the 
opportunity for other optimizations. The experimental results 
showed the effectiveness of our approach. 

8. Conclusions 
In this paper, we presented optimizations that we developed for a 
production JIT compiler to reduce the overhead of the Java lan- 
guage, which supports dynamic class loading without com- 
promising flexibility and safety. We validated our approach on the 
basis of various statistics collected by running nine large Java 
programs. We evaluated each optimization by turning off one by 
one. Finally, by investigating the statistics collected in our ex- 
periment, we showed that there are still. some rooms to further 
improve runtime Java performance. 

Acknowledgement 
We are grateful to our group’s people of Tokyo Research Labo- 
ratory for implementing our JIT compiler and for participating in 
helpful discussion. We also thank Michael McDonald for his 
proofreading assistance. 

References 

[II 

PI 

[31 

141 

PI 

[61 

171 

PI 

[91 

James Gosling, Bill Joy, and Guy Steele: “The Java Lan- 
guage Specification,” Addison-Wesley, 1996. 

James Gosling: “Java Intermediate Bytecodes,” ACM SIG- 
PLAN Workshop on Intermediate Representations, 1995. 

International Business Machines Corp. “AIX Java Develop- 
ment Kit 1. I .6,” Available at http://www.ibm.com/java/ 

Rajiv Gupta: “Optimizing array bound checks using flow 
analysis,” ACM Letters on Programming Languages and 
Systems, 2( 1-4): pp. 135-l 50, 1993. 

Alfred V. Aho, Ravi Sethi, and Jeft?ey D. Ullman: “Com- 
piler: Principle, Techniques, and Tools,” Addison-Wesley, 
1986. 

Etienne Morel and Claude Renvoise: “Global Optimization 
by Suppression of Partial Redundancies,” Communication of 
the ACM, vol. 2, no. 2, pp. 96- 103, 1979. 

Jens Knoop, Ruthing Oliver, and Steffen Bernhard: “Lazy 
Code Motion,” In Proceedings of the ACM SIGPLAN ‘92 
Conference on Programming Language Design and Imple- 
mentation, pp. 224-234, 1992. 

Norman Cohen: “Type-extension type tests can be performed 
in constant time,” ACM Transactions on Programming Lan- 
guages and Systems, Vol. I3 No.4, pp. 626-629, I99 I. 

Jan Vitek, R. Nigel Horspool, and Andreas Krall: “EfIicient 
Type Inclusion Test,” In Proceedings of the Conference on 
Object Oriented Programming Systems, Languages & Appli- 
cations, OOPSLA ‘97, pp. 142-157, 1997. 

ming Systems, Languages & Applications, OOPSLA ‘95, pp. 
107-122, 1995. 

[I I] Gerald Aigner, and Urs Holzle: “Eliminating Virtual Functi- 
on Calls in C++ Programs,” In Proceedings of the 10th Euro- 
pean Conference on Object-Oriented Programming - 
ECOOP ‘96, volume 1098 of Lecture Notes in Computer 
Science, Springer-Verlag, pp. l42- 166, 1996. 

[ 121 Urs Holzle, Craig Chambers, and David Ungar: “Optimizing 
Dynamically-Typed Object-Oriented Langages With Poly- 
morphic Inlin Caches,” In Proceedings of the 5th European 
Conference on Object-Oriented Programming - ECOOP ‘9 I, 
volume 5 I2 of Lecture Notes in Computer Science. Springer- 
Verlag, pp. 21-38, 1991. 

[ 131 Jeffery Dean, David Grove, and Craig Chambers: “Optimi- 
zation of object-oriented programs using static class hierar- 
chy,” In Proceedings of the 9th European Conference on 
Object-Oriented Programming- ECOOP ‘95, volume 952 of 
Lecture Notes in Computer Science, Springer-Verlag, pp. 77- 
lOl,l995. 

[ 141 Mary F. Femandez: “Simple and Effective Link-Time Opti- 
mization of Modula-3 Programs,” In Proceedings of the 
ACM SIGPLAN ‘95 Conference on Programming Language 
Design and Implementation, pp. lO3- I 15, 1995. 

[ 151 Cheng-Hsueh A. Hiesh, John C. Gyllenhaal, and Wen-mei W. 
Hwu: “Java Bytecode to Native Code Translation: The Caf- 
feine Prototype and Preliminary Results,” In 29th Annual 
IEEE/ACM International Symposium on Microarchitecture, 
1996. 

[16] Standard Performance Evaluation Corp. “SPEC JVM98 
Benchmarks,” Available at http://wwwspec,org/osg/jvm98/ 

[ 171 AIi-Reza Adl-Tabatabai, Michal Ciemiak, Guei-Yuan Lueh. 
Vishesh M. Parikh, and James M. Stichnoth: “Fast, Effective 
Code Generation in a Just-In-Time Java Compiler,” In Pro- 
ceedings of the ACM SIGPLAN ‘98 Conference on Pro- 
gramming Language Design and Implementation, pp. 280- 
290, 1998. 

[ 181 Michael G. Burke, Jong-Deok Choi, Stephen Fink, David 
Grove, Michael Hind, Vivek Sarkar, Mauricio J. Serrano, V. 
C. Sreedhar, and Harini Srinivasan: “The Jalapeno Dynamic 
Optimizing Compiler for Java, ” to appear in JavaGrande, 
1999 

[ 191 Priyadarshan Kolte and Michael Wolfe: “Elimination of Re- 
dundant Array Subscript Range Checks,” In Proceedings of 
the ACM SIGPLAN ‘95 Conference on Programming Lan- 
guage Design and Implementation, pp. 270-278, 1995. 

[20] David F. Bacon: “Fast and Effective Optimization of Stati- 
cally Typed Object-Oriented Languages,” Ph.D. thesis, Uni- 
versity of California at Berkeley, 1997. 

[lo] David Grove, Jeffrey Dean, Charles Garrett, and Craig 
Chambers: “Profile-Guided Receiver Class Prediction,” In 
Proceedings of the Conference on Object Oriented Program- 

128 


