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ABSTRACT

The Java language incurs a runtime overhead for exception checks
and object accesses without an interior pointer in order to ensure
safety. It also requires type inclusion test, dynamic class loading,
and dynamic method calls in order to ensure flexibility. A “Just-
In-Time” (JIT) compiler generates native code from Java byte
code at runtime. It must improve the runtime performance without
compromising the safety and flexibility of the Java language. We
designed and implemented effective optimizations for the JIT
compiler, such as exception check elimination, common subex-
pression elimination, simple type inclusion test, method inlining,
and resolution of dynamic method call. We evaluate the perfor-
mance benefits of these optimizations based on various statistics
collected using SPECjvm98 and two JavaSoft applications with
byte code sizes ranging from 20000 to 280000 bytes. Each opti-
mization contributes to an improvement in the performance of the
programs.

1. Introduction

Java [1] is a popular object-oriented programming language
suitable for writing programs that can be distributed and reused on
multiple platforms. Java is excellent because of safety, flexibility,
and reusability. The safety is achieved by introducing exception
checks and disallowing interior object pointers. The flexibility and
reusability are achieved by supporting dynamic class loading and
dynamic method call. As in typical object-oriented programs,
there are many small methods, and calls without method lookup to
find the target method, which we call static method call, occur
frequently. This prevents intra-procedural optimizations by a
compiler. The programs also include calls for virtual and interface
methods with method lookup to find the target method, which we
call dynamic method call. Furthermore, to ensure safety, Java
contains runtime overheads, such as type inclusion tests and ex-
ception checks for accesses to arrays and instance variables.

To improve the performance of the Java execution, two compiler
solutions are proposed: a static compilation model and a *“Just-In-
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Time” (JIT) compilation model. The static compilation translates
Java byte code [2] into native code before the start of program
execution, and thus the compilation overhead can be ignored at
runtime. Therefore, it can use expensive optimizations. On the
other hand, it does not support dynamic class loading, and does
not take advantage of Java that supports the flexibility and re-
usability of a program. The JIT compiler translates the byte code
into native code when a new method is invoked at runtime. It
allows classes to be loaded dynamically. On the other hand, the
overall execution time of the program must include the JIT com-
pilation time, and thus the JIT compiler must be much more effi-
cient in both time and space than the static compiler.

In this paper, we present optimizations we developed to reduce
various runtime overheads of the Java language without com-
promising safety and flexibility. Exception check elimination and
lightweight exception checking reduce the overhead of exception
checks, which are frequently executed in Java programs. Common
subexpression elimination reduces the overhead of accesses to
arrays and instance variables. Our type inclusion test has a simpler
method than previous approaches. Inlining of static method call
increases the opportunity for other optimizations. Resolving dy-
namic method call using our class hierarchy analysis (CHA) is a
new approach to reducing the overhead of dynamic method call in
the sense that we adapted CHA to dynamic class loading. It also
allows dynamic methods to be inlined, to increase the opportunity
for other optimizations.

We validate our approach on the basis of various statistics collect-
ed by running several large Java programs. We evaluate each
optimization by turning off one by one. All the evaluations are
carried out using the Java JIT compiler for the PowerPC archi-
tecture on AIX, whose product version has been shipped with
JDK 1.1.6 for AIX 4.3.2 [3] with the “Java Compatible” logo.

The paper is structured as follows. Section 2 presents an overview
of the JIT compiler. Section 3 describes optimizations to reduce
the overhead of accesses to arrays and instance variables. Section
4 describes the implementation of type inclusion test. Section 5
describes how to reduce the overhead of static and dynamic
method calls. Section 6 gives experimental results with statistics
and performance data. Section 7 summarizes related work. Sec-
tion § outlines our conclusions.

2. Overview

In this section, we outline the structure of the JIT compiler as
shown in Figure 1. It translates the byte code into native code in
six phases. First, it constructs the basic blocks and loop structure
from the byte code. Next, it applies method inlining to both static



and dynamic method calls. Inlining of dynamic method call is
applied using our class hierarchy analysis. The JIT compiler then
applies exception check elimination, as well as other optimiza-
tions such as constant propagation and dead code elimination.
After that, it applies common subexpression elimination to reduce
the number of accesses to arrays and instance variables. We note
here that we extended the byte code to represent an object’s inte-
rior pointer for improving consecutive array accesses.

Next, the JIT compiler maps each stack operand to either a logical
integer or floating-point register, and counts the numbers of uses
of local variables in each region of a program. The regions are
also decided based on the loop structure in this phase. Finally, it
generates native code from the byte code along with a physical
register allocator. Since the JIT compiler requires fast compilation,
expensive register allocation algorithms, such as graph coloring,
cannot be used. Instead, it uses a simple and fast algorithm to
allocate registers without an extra phase. In each region, fre-
quently used local variables are allocated to physical registers.
The remaining registers are used for the stack operands used in
computation. If the code generator requires a new register but no
registers are available, the register allocator finds the least re-
cently used register that can be used, to avoid expensive computa-
tion for searching spill candidates. Live information on local vari-
ables, obtained from data flow analysis, is also used to avoid gen-
eration of inefficient spill code.

class Build Method Exception Check
file Flow Graph _ﬂ Inlining Elimination
: N Common
nat;ve GenE:::ion 1 ii?liifr Subexpression
code ppIng Elimination

Figure 1: An overview of the JIT compiler

3. Optimization for Accesses to Arrays and

Instance Variables

Many exceptions may be thrown from various causes in Java pro-
grams. An access to an array or an instance variable frequently
causes an explicit exception check at runtime. An access with a
null object causes a null-pointer exception. An access to an array
with an out-of-bounds index causes an array-bounds exception.

In a typical implementation of a multi-dimensional array in Java,
to generate a target effective address requires multiple array refer-
ences and array-bound checks for each dimension, which requires
more expensive implementation in Java than in C or Fortran. The
implementation of access to an instance variable is also more ex-
pensive than that of access to a local variable, since a local vari-
able can be allocated to a physical register.

In this section, we describe three optimizations: exception check
elimination, lightweight exception checking, and common subex-
pression elimination.

3.1 Exception Check Elimination

The JIT compiler can eliminate null-pointer and array-bounds
checks, if it can prove that the access is always valid or that the
exception check has already been tested. The JIT compiier has to
generate the code for explicit null-pointer checks because AIX
permits to read address O for a speculative load. It eliminates null-
pointer checks by solving a data flow equation.

To eliminate array-bounds checks efficiently, we developed a new
algorithm by extending the elimination phase in Gupta’s algo-
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rithm [4]. It propagates the information of checked exceptions
forward and backward, using data flow analysis. Our algorithm
computes the exact range of the checked index set by adding a
constant to the index variable, an operation treated as kil/ [5] by
the previous algorithm. Therefore, exact information on the
checked exceptions can be propagated to the successor statements.
Furthermore, our algorithm can also eliminate the checks of array
accesses with a constant index, which cannot be eliminated by the
previous algorithm. In short, our algorithm extends the capability
for eliminating array-bounds checks. We give an example in
Example 1. The exception checks for bold references are elimi-
nated by both algorithms. The exception checks for italic refer-
ences can be eliminated only by our algorithm.

alil=0;

ali+t2}=2;

if (j==k) ali++]=0;
ali+2]=alil+afi+1];
ali+l)=af0]+all]+a[2];

Example 1: Example of Exception Check Elimination

3.2 Lightweight Exception Checking

Even after application of the above algorithm, many exception
checks could remain. Therefore, we developed lightweight excep-
tion checking to reduce the overhead of runtime checks.

The PowerPC architecture provides a trap instruction to execute
compare and branch to the handler, and this instruction requires
only one cycle if it is not taken. To use the instruction, the handler
must identify the cause of an exception in the handler. The excep-
tion checks are executed frequently, but they seldom throw an
exception. If a register is used to identify the cause of an excep-
tion, the assignment for a rarely-thrown exception becomes an
overhead on a critical execution path. Therefore, the JIT compiler
generates only a trap instruction with a uniquely encoded con-
dition corresponding to the cause of an exception. If an exception
occurs, the trap instruction is decoded to identify the cause of an
exception in the handler. The handler can tell from the instruction
what exception has occurred. We give an example of generated
native code in Example 2. Here, three trap instructions (tw and
twi) are generated for three different conditions without register
assignments to identify the cause of each exception.

Generated code
; r4 : array index
; r5 : array base
; ré6 : array size
; r7 i divisor

twi EQ, r5, 0 ; Check null-pointer

tw GE, r4, r6 ; Check array-bounds

mulli r4, r4, 2

lwzx r3, r4(r5) ; Get array element

twi LLT, r7, 1 ; Check divisor

divi r3, r3, r7

The handler

void TrapHandler {struct context *cp)

{

// Get the address at which

// the exception occurs

if IS_TRAPI_EQ(iar) | // Is inst. ‘twi EQ’ ?
process_NULLPOINTER_EXCEPTION({)

} eise if IS _TRAP_GE(iar) { // Is inst. ‘tw GE’ ?
process_ARRAYOUTOFINDEX_EXCEPTION ()

} else if IS_TRAPI_LLT({(iar) {// Is inst. ‘twi LLT' ?
process_ARITHMETIC_EXCEPTION ()

int *iar = cp->IAR;

}
}

Example 2: Example of Lightweight Exception Checking




3.3 Common Subexpression Elimination

To reduce the overhead of array accesses, the JIT compiler applies
two techniques for global common subexpression elimination
(CSE). One is scalar replacement of array elements. The other is
the improvement for consecutive array accesses using an interior
pointer. The former generates a temporary local variable for array
element and replaces the same array element accesses with the
local variable only if the array object and the index variable are
not updated in a loop. The latter introduces an instruction for an
effective address generation, commonly used by consecutive array
accesses. In either case, the code will be moved out of the loop if
it is a loop invariant. These techniques are applied only to the loop,
since value numbering [5] is too expensive. For a garbage collec-
tion, the top pointer of the object must be kept in the memory or
register. Because CSE generates an interior pointer of an object
and the garbage collector does not scan an interior pointer of an
object.

To reduce accesses to instance variables, the JIT compiler uses
partial redundancy elimination [6, 7]. It eliminates redundant ac-
cesses in a method by moving invariant accesses out of loops and
by eliminating identical accesses that are performed more than
once on any execution path. The instance variable moved out of
loops can be mapped to a local variable, which can be allocated to
a physical register.

We give an example of CSE in Example 3. We introduce C nota-
tion to represent an interior pointer of an object. The bold local
variables are generated by each optimization. First, the accesses
to the instance variable *a‘ are moved out of the loop and are
replaced with the local variable ‘1a’. Finally, the accesses to the
arrays ‘la[i]’ and ‘1a{i+1]" are replaced with accesses using
interior pointer ‘*ia0’. The references to ‘laf[i]’ and
‘la[i+1]’ are also replaced with the local variables ‘iv0’ and
‘iv1’ by scalar replacement. Consequently, there are only one
access to the instance variable and four accesses to the array.

For correct and effective array bound check, the JIT generates the
code for array-bounds checks between i and i+1 for original
references to ‘1a[i]’ and ‘la[i+1]’ at ‘*ia0=&la(i]’ in
the example. It can reduce the number of array-bounds checks
from six times in the original code to two times.

originat code
class cate {
ant all;
public void babe {) {
this.a = new int(10];
for (4=0; 1<@; 1+4) {
1t (this.als]<this.afasl]) {
int tsthis.ali);
this.alil=this.afi+1]; this.alisd]=t;

3
]
) cap £
y instance ygriable

class cafe (
int all;
public void babe ) (
this.a = new int[10]:
int lal} = this.a;
tor (1=0; 1<8; i++)
1t (lali)<lafi+l]) {
int t=lali); la(il=lali+ll; laiisl]=c;
]
3

1
1
cs% fog/ array
class cate {

int a);
public void babe(} (
this.a = new int(10];
int la{]l « this.a;
tor (i=0; 1<8; a++) {
int ela0=ila(i], dvO=+ia0, dvies(iag+l);
1t v < ivl)
int € = iv0; *la0sivi; *(ia0+1})= t;
}
}
1
}

Example 3: Example of CSE
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4. Optimization for Type Inclusion Test

In this section, we describe the implementation of type inclusion
test. Previous approaches [8, 9] on type inclusion test in constant
time have been proposed encoding the class hierarchy in a small
table, but they require recomputation of the table when a class is
loaded or unloaded dynamically. They also require additional
space for the table. We implemented type inclusion test in a com-
pletely different approach. To avoid time and space overheads, we
generate a simple inlined code to test the most-frequently occur-
ring cases, as in Example 4. This is based on our investigation,
described in Section 6.3.

Java Code
Type to = (Type)trom;
Paseudo Code
if ffrom == NULL) then to = trom;
else if (from.type == Type) then to = from;
else if (from.type.lastsucc == Type) then te = from:

else if (call expensive test in C) then {to = from; irom.type.lastsucc = Type;i
else throw exception

Example 4: Pseudo-code of a Simple Type Inclusion Test

The first case checks whether the referenced object (£rom) is
NULL. The second case checks whether the class of the referenced
object is identical to the class of the operand expression (Type).
The third case checks whether the class cached by the latest com-
parison in the referenced object is identical to the class of the op-
erand expression. These three checks can avoid overhead of the
expensive test, since each takes only two or three machine in-
structions. If all of these tests fail, then the C runtime library is
executed for traversing a linked list of the class hierarchy. Its cost
is higher than the first three cases. This simple implementation is
effective, as will be shown in Section 6.3.

5. Optimization for Method Call

In this section, we describe two optimizations of method calls:
first, inlining of static method calls. Secondly, and then resolution
of dynamic method calls.

5.1 Inlining of Static Method Call

In object-oriented languages, a typical program has smaller
methods and method calls occur frequently. Futhermore, the con-
structor is invoked with the creation of a new class. Therefore, the
JIT compiler inlines small methods to reduce the number of static
method calls. The JIT compiler also optimizes tail recursion and
recursive call. It replaces a tail recursion with a branch to the be-
ginning of the method, and it expands the body of the method
once when a recursive call is detected.

5.2 Resolution of Dynamic Method Call

In the object-oriented language, dynamic method call is an im-
portant feature for its flexibility, and thus it is used frequently. On
the other hand, it penalizes the performance of the program becau-
se of the overhead of method lookup. Many techniques for re-
solving this performance problem, such as type prediction [10, 11]
and polymorphic inline cache [12], have been proposed. However,
they incur overheads by requiring an additional runtime test. In
our JIT compiler, we chose class hierarchy analysis (CHA) [13,
14] to improve the performance of dynamic method call. We will
discuss the choice in more detail in Section 7.

CHA determines a set of possible targets of a dynamic method
call by combining a static type of object with the class hierarchy
of a program. If it can be determined that there is no overridden
method, the original dynamic method call can be replaced with the



static method call at compile time and can be executed without
method lookup. Previously, CHA has been investigated and im-
plemented for the languages supporting static class loading, in
which the class hierarchy does not change at runtime. Java sup-
ports dynamic class loading, in which the class hierarchy may
change in the future. To our knowledge, CHA has not yet been
implemented for any language that supports dynamic class load-
ing.

We adapted CHA to dynamic class loading. If class loading over-
rides a method that has not been overridden, the static method call
must be replaced back with the original dynamic method call.
Since Java is an explicitly multi-threaded language, all optimiza-
tions must be thread-safe. That is, the code must be modified
atomically by rewriting only one instruction. We implemented this
atomic updating as shown in Example 5. In the example, we as-
sume the object layout that combines the class instance data and
the header such as Caffeine [15] so that three load instructions are
required to get the address of a compiled code.

Bafore overriding the method After overriding the method
call imm ca —_—p jmp  dynamic_call
jmp after_call imp after _call

dynamic_call: dynamic_call:
load cp, (obj) load cp, lobj}
load mp, (cp} load mp, Icp)
load ca, (mp) load ca, (mp)
call (ca}

atter_call:

// static method call

// load class pointer
// load methed pointer
// load code address

call (ca) // dynamic method call

after_call:
Example 5: Example of the Resolution of Dynamic Method Calt

At compile time, the top address of the dynamic method call se-
quence is recorded. The address is filled with a call instruction
to call a method statically. When the method is not yet overridden
in the left column in Example 5, the italic code sequence for the
dynamic method call is not executed at all. When the method is
overridden by dynamic class loading, the call instruction in the
address is replaced with a jmp instruction to the dynamic method
call by the class loader. Consequently, the code sequence for the
dynamic method call is now executed. The JIT compiler also uses
as similar implementation for inlining of dynamic methods.

Java provides an interface for implementation of multiple inheri-
tance. The JIT compiler also optimizes an interface call by re-
placing it with a virtual call. If CHA finds that only one class im-
plements an interface class, a virtual call with a single method
lookup can be generated using the implementation class as a static
type. Furthermore, if the target method is not overridden through
the implementation class hierarchy, the JIT compiler can replace
the interface call with a static method call. This optimization is
much more efficient than a naive implementation of an interface
call, which requires a loop to search for an implementation class.

6. Experiments

In this section, we evaluate the effectiveness of individual optimi-
zations such as exception check elimination, simple type inclusion
test, common subexpression elimination, inlining of static method
call, and resolution of dynamic method call. We used nine Java
programs, seven of which (compress, jess, raytrace (a
body of mtrt), db, javac, mpegaudio, and jack) are bench-
marks in SPECjvm98 [16]. The other two (hotjava and
swing) are applications with GUIs released by JavaSoft.
SPECjvm98 are executed with size '100". Therefore, the results do
not follow the official SPEC rules. HotJava is executed with an
access a web page with an applet and GIF data. Swing is executed
with clicks to all tabs. All the measurements were taken on an
IBM RISC System 6000 Mode! 7043-140 (containing a 332-MHz
PowerPC 604e with 512 MB of RAM) running AIX 4.3.1.

6.1 Benchmarks
Table 1 shows the static characteristics of the class files for each
program at compile time.

Table 2 shows the dynamic characteristics of unoptimized code
for each program at execution time.

Program Compiled- Number of | Static Call | Virtual Interface Type Array Instance Exception
Bytecode Compiled | Sites Call Sites | Call Sites [ Inclusion | Access Variable Check
Size (bytes) | Methods Test Sites | Sites Sites Sites
compress 23598 276 1525 280 7 41 183 1246 2964
jess 44548 704 3494 746 38 122 507 2716 6068
raytrace 33163 424 2879 1133 7 60 476 2489 4846
db 25605 291 1924 355 21 52 169 1005 3113
javac 91144 1068 5614 1833 72 406 412 6737 11730
mpegaudio 38204 441 2190 335 21 71 1237 2374 6838
Jjack 50573 522 3197 779 88 219 1152 2648 7879
hotjava 193868 3032 10190 4863 274 25322 2390 13607 27524
swing 282982 4822 9854 9732 1025 2647 2942 20837 40024

Table 1: Static (compile-time) characteristics
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program Static Calls | Virtual Interface Type Array Instance Exception
Calls Calls Inclusion Accesses Variable Checks
Tests Accesses

compress 225935935 12765 93 2274 650483870 236458881 38580879
jess 108104957 35498836 706107 29204058 91339251 259063616 56322834
raytrace 278960441 26664017 147 3280212 81405118 334641372 77942110
db 96181237 1562479 14931186 85991464 153086345 333401516 73883542
javac 65204998 49808807 3531139 12099157 49642977 328850733 53164623
mpegaudio 103004068 9843381 181867 51989 1630911748 1099455343 43194436
Jjack 35584857 13282175 3965412 7651521 149029390 758644986 11041840
hotjava 683972 542498 35796 175767 1077044 2966944 5925880
swing 1741114 2903810 262501 809732 6107677 17204605 35719184

Table 2: Dynamic (runtime) characteristics

6.2 Exception Check Elimination

Figure 2 shows how our exception check elimination reduces the
number of exception checks at runtime. All values are given as
percentages of the non-optimized case. The left bar shows the
number of exception checks without the elimination. The right bar
shows the number of exception checks with the elimination. The

dark bar shows the number of null-pointer checks. The white bar
shows the number of array-bounds checks.

It is proved that our exception check elimination is very effective,
especially for null-pointer checks, of which it eliminates an avera-
ge of 60%. It is quite effective for array-bound checks, of which it
eliminates 53%, particularly for mpegaudio.
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Figure 2: Results of Exception Check Elimination at Runtime

6.3 Simple Type Inclusion Test

Figure 3 shows the distribution of object types in type inclusion
test at runtime. Same indicates the case in which the class of the
referenced object is identical to the class of the operand expres-
sion. Null indicates the case in which the referenced object is
NULL. cache indicates the case in which the class cached by the
latest comparison in the referenced object is identical to the class
of the operand expression. These three cases are processed by
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inlined test code. Normal indicates the case in which a class
hierarchy must be traversed to determine the result. Others indi-
cates the case in which the class of the reference object or operand
expression is either interface or array type. These two cases are
processed in the C runtime library.

Same, null, and cache account for an average of 91% of tests
in the programs. The result shows that our simple implementation
of inlined test code is effective for the Java environment.
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Figure 3: Distribution of Object Types in Type Inclusion Test at Runtime

6.4 Common Subexpression Elimination

Figure 4 shows how common subexpression elimination (CSE)
reduces the number of accesses to arrays and instance variables at
runtime. All values are given as percentages of the non-optimized
case. The left bar shows the number of accesses without CSE. The
right bar shows the number of accesses with CSE. The dark bar
shows the number of accesses to instance variables. The white bar

Accesses (%)

shows the number of accesses to arrays. The striped bar shows the
number of array accesses using interior pointers.

Our CSE is effective except for raytrace. The elimination of
accesses to instance variables is more effective than that of ac-
cesses to arrays. Scalar replacement of array accesses is particu-
larly effective for mpegaudio, in which 25% of accesses are
eliminated. Array access using an interior pointer is effective for
db, in which 14% of the accesses are used. It optimizes array
accesses to swap array elements in the shell sort.
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Figure 4: Results by Common Subexpression Elimination at Runtime

6.5 Inlining of Static Method Call

Figure 5 shows how method inlining reduces the number of static
method calls at runtime. All values are given as percentages of the
non-optimized case. The left bar shows the number of static
method calls without inlining. The right bar shows the number of
static method calls with inlining. The dark bar shows the number
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of calls for non-constructors. The white bar shows the number of
calls for constructors.

Inlining is particularly effective for compress and raytrace.
An average of 50% of static method calls are eliminated, further
increasing opportunities for other optimizations. In all programs,
there is a drastic reduction in the number of calls for the con-
structor.
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6.6 Resolution of Dynamic Method Call

The performance in resolving dynamic method cal using class
hierarchy analysis (CHA) is shown in Figure 6 (for statistics on
call sites at compile time) and Figure 7 (for statistics on cdls at
runtime). In both figures, Call contains both virtual and interface
cals. The three types of striped bars represent the cases in which
dynamic method calls are replaced with static method cals or
inlinings. The other three types of bars represent the cases in
which dynamic method calls are not resolved by CHA. The dark
doted bars represent call sites or cals are dynamicaly monomor-
phic, but are not resolved by CHA. The black bars represent call
sites or cals that are polymorphic. In Figure 6, white bars repre-
sent cal sites whose calls are not executed at runtime. In Figure 7,
white bar (Deresol ved) represent cases in which dynamic
method call or inlining with method lookup. The static method
call or inlining resolved by CHA are replaced by them at runtime.

Figure 7 shows that CHA is highly effective, since it resolved an
average of 85% of dynamic method calls or inlinings for three out
of nine programs. Furthermore, it resolved an average of 40% for

(%)

compress

Program

mpregaudio

al of the other programs, except for compress. In compress,
the unresolved methods do not affect the performance, since many
static calls for the kernel routines that use final classes occur. The
optimization for interface cal is aso effective for db, since the
java.util.Vector class, which uses the implementation
class of the interface class, is used very freguently. The results
also show that all the programs except mpegaudio are surpris-
ingly monomorphic. Therefore, we till have an enough room to
improve the performance in the four programs.

Since we have adapted CHA to dynamic class loading, a static
method call may be replaced back with a dynamic method call by
overriding the target method when a class is loaded dynamicaly.
For inlining of dynamic method call, method lookup may be also
required. In our experiment, the numbers of replaced sites are 216
for swing, 107 for hotjava, 66 for jack, 22 for db, 12 for
javac, and fewer than 10 for the other programs. In jack and
hotjava. the dynamic method calls or inlinings are executed
remarkably. The overhead of replacing the code is small.
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Figure 6: Resolution of Dynamic Method Call Sites at Compile Time
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Figure 7: Resolution of Dynamic Method Call Sites at Runtime

6.7 Performance

We measured the execution time of seven of the programs, since
the two other programs were difficult to measure because of their
interactive nature. Figure 8 shows the performance improvements
from various optimizations. The white bar represents the best
execution time in five trids. All values are given in seconds. Each
of the bars except the rightmost bar shows the effect of al but one
optimization. The optimizations include common subexpression
eliiminaion (No CSE), exception eimination and lightweight
exception checking (No exception), smple type inclusion test
(No typetest), inlining of static method call (No inlin-
ing), and resolution of dynamic method call (No CHa). The
rightmost bar ( ALL) shows the time with all optimizations enabled.

Figure 8 (a) shows the performance of compress. Here, inlining
of static method call improve the performance by 14%. Figure 8
(b) shows the performance of jess. Here, simple type inclusion

45188,

{seconds)
-
&

Execution time

.
s

|
!
|

test improves the performance by 8%. Figure 8 (c) shows the per-
formance of raytrace. Here, resolution of dynamic method call
improves the performance by 20%. Figure 8 (d) shows the per-
formance of db. Here, smple type inclusion test improves by
17%. Figure 8 (e) shows the performance of javac. All optimi-
zations make virtually no difference. Figure 8 (f) shows the per-
formance of mpegaudio. Here CSE improves the performance
by 13%. Inlining also improves by 10%. Figure 8 (g) shows the
performance of jack. Here both CSE and exception optimization
improve the performance by 10%. Simple type inclusion test also
improves by 9%. It shows all optimizations contribute to an im-
provement in the performance.
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Figure 8: Execution Times of the JIT'ed code

7. Related Work

The Intel JIT compiler [17] applies simple array-bounds check
elimination in the extended basic block. Our JIT compiler applies
array-bounds and null-pointer check elimination to the whole
method using our algorithm. The experiment shows it is effective.

IBM Research is developing another dynamic optimizing com-
piler [18]. Flow-insensitive optimizations are implemented in a
faster fashion. Interprocedural optimizations will be implemented.

Exception check elimination [4, 19] has been proposed as means
of reducing the overhead of certifying the correctness of a pro-
gram. We have extended the elimination algorithm, using more
exact program analysis.

Type inclusion test [8, 9] has been investigated for efficient type
conformance test in an object-oriented language. In previous re-
searches, the class hierarchy was encoded in a small table, so that
it could be tested in a constant time. The table may be reconstruct-
ed in the future by dynamic class loading. To avoid the time and
space overhead, we investigated the behavior of type inclusion
test in Java. The results show that simple checks with the cache of

the referenced object account for an average of 91% of tests.
Therefore, we chose the simple implementation.

Polymorphic inline cache (PIC) [12] has been proposed as means
of reducing the overhead of polymorphic method call. PIC com-
piles a dynamic method call as though it was being inlined into
the context of the caller. The call site is patched to jump to a stub
that conditionally executes the inlined code on the basis of the
types of an object. Type prediction [10, 11] has also been pro-
posed, with type analysis for languages supporting dynamic class
loading. Type prediction predicts the type of an object, which are
called frequently, at compile time. PIC and type prediction intro-
duce a runtime test newly, since they are on the basis of the cache
mechanism with memory references. According to the results of
simple experiments [20], type prediction without inlining at 100%
accuracy cannot outperform resolution of dynamic method call
without inlining. Type prediction with inlining must achieve 90%
accuracy to outperform against the resolution without inlining.
Finally, nothing can perform the resolution with inlining. In im-
plementations of Java, the cost of dynamic method call is not so
different from that of PIC and type prediction.
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Class hierarchy analysis (CHA) [13, 14] can replace a dynamic
method call with a faster static method call at compile time. It has
been investigated and implemented for languages supporting static
class loading. To avoid the runtime overhead of PIC and type
prediction, we developed a version of CHA adapted to dynamic
class loading. It allows the JIT compiler to inline dynamic method
call without a runtime execution overhead. Inlining increases the
opportunity for other optimizations. The experimental results
showed the effectiveness of our approach.

8. Conclusions

In this paper, we presented optimizations that we developed for a
production JIT compiler to reduce the overhead of the Java lan-
guage, which supports dynamic class loading without com-
promising flexibility and safety. We validated our approach on the
basis of various statistics collected by running nine large Java
programs. We evaluated each optimization by turning off one by
one. Finally, by investigating the statistics collected in our ex-
periment, we showed that there are still some rooms to further
improve runtime Java performance.
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