
Abstract

The impact of pipeline length on the performance of a
microprocessor is explored both theoretically and by
simulation. An analytical theory is presented that shows
two opposing architectural parameters affect the optimal
pipeline length: the degree of instruction level parallelism
(superscalar) decreases the optimal pipeline length, while
the lack of pipeline stalls increases the optimal pipeline
length. This theory is tested by analyzing the optimal
pipeline length for 35 applications representing three
classes of workloads. Trace tapes are collected from
SPEC95 and SPEC2000 applications, traditional (legacy)
database and on-line transaction processing (OLTP)
applications, and modern (e. g. web) applications primarily
written in Java and C++. The results show that there is a
clear and significant difference in the optimal pipeline
length between the SPEC workloads and both the legacy
and modern applications. The SPEC applications, written
in C, optimize to a shorter pipeline length than the legacy
applications, largely written in assembler language, with
relatively little overlap in the two distributions.
Additionally, the optimal pipeline length distribution for the
C++ and Java workloads overlaps with the legacy
applications, suggesting similar workload characteristics.
These results are explored across a wide range of
superscalar processors, both in-order and out-of-order.

1. Introduction

One of the fundamental decisions to be made in the
design of a microprocessor is the choice of the structure of
the pipeline. In this paper we explore the question as to
whether or not there an optimum pipeline depth for a
microprocessor that gives the best performance. The
problem is treated both analytically and by simulation. We
show that there is indeed an optimum pipeline depth and

determine the values of the parameters that yield this
optimum performance. We also find that we can understand
the results in an intuitive way. The optimum depth is found
to depend on the detailed microarchitecture of the
processor, details of the underlying technology used to build
the processor, and certain characteristics of the workloads
run on the processor. Essentially, there is a tradeoff
between the greater throughput of a deeper pipeline and the
larger penalty for hazards in the deeper pipeline. This
tradeoff leads to an optimum design point.

These questions have been addressed previously, but not
in the coherent theoretical framework that we employ here.
Kunkel and Smith [1] considered the impact of pipeline
depth, in the context of gate delay/segment, on the
performance of a scalar processor, specifically addressing
the effect of latch delays. Recently, Agarwal, et.al. [2] in
analyzing microarchitecture scaling strategies, employed
simulations, similar to ours, but considered combinations of
pipeline and microarchitectural changes, which didn’t allow
them to elucidate the various dependencies observed. The
most coherent previous treatment was given by Emma and
Davidson [3]. They provide a theoretical treatment for an
in-order scalar processor without the detailed simulations to
test their theoretical predictions. Our theoretical treatment
includes both out-of-order and superscalar processes, and
we provide detailed simulations that confirm our
predictions.

A simple intuitive way to see that performance will be
optimal for a specific pipeline depth is to consider the
changes in the CPI (Cycles / Instruction) and the cycle time
of a processor as we change pipeline depth. In a qualitative
way we can see that increasing the depth of the pipeline will
increase the CPI as illustrated in Fig. 1 for a particular
design. This is simply because each instruction must pass
through more processor cycles for a deeper pipeline design.
Our detailed simulations show that this increase is fairly
linear, although this point is not necessary for our argument.
At the same time the cycle time of the processor decreases

The Optimum Pipeline Depth for a Microprocessor

A. Hartstein and Thomas R. Puzak
IBM - T. J. Watson Research Center

Yorktown Heights, NY 10598
hart@watson.ibm.com
trpuzak@us.ibm.com

as the pipeline depth is increased. This is an obvious result
in that the amount of work does not increase with pipeline
depth, so the total time needed to perform the logic
functions of the processor stays the same, but the number of
pipeline stages available to perform the work increases.
This means that each stage can take less time. We will
come back to this point later in a more formal way, but for
now the result is shown qualitatively in Fig. 2.

The true measure of performance in the processor is the
average time it takes to execute an instruction. This is the
Time / Instruction (TPI), which is just the inverse of the
MIPs (Million Instructions per second) number, used to
report the performance of some processors. The TPI is just
the product of the cycle time and the CPI. This is shown
qualitatively as a function of pipeline depth in Fig. 3. The
optimum performance is then given as the minimum TPI
point in the figure.

In the next section we present a formal theory of
performance as a function of the pipeline depth. In Section
3 we introduce a methodology, which allows for the
simulation of a variable pipeline depth microprocessor. In
Section 4 this simulator model is used both to verify the
formal theory and to quantify these results. Section 5
summarizes the differing results obtained for different
workloads; and Section 6 contains further discussion.

2. Theory

In order to develop an expression for the optimum
pipeline depth, we start by considering how a processor
spends its time. The total time, , is divided into the timeT
that the execution unit is doing useful work, , and theTBZ

time that execution is stalled by any of a number of pipeline
hazards, . This notation stands for the busy andTNBZ

not-busy times, which have been discussed previously [4,
5]. Typical pipeline stalls include branch prediction errors
and both decode and execution data dependencies.

Let us first consider the busy time for the execution unit.
The time that the e-unit is busy can be expressed in terms of
the number of instructions, , and the time for anNI

instruction to pass each stage of the pipeline, . The busytS

time is given by

 (1)TBZ = NItS

for a scalar machine. Each pipeline stage delay can be
expressed as

, (2)tS = to + tp/p

where is the total logic delay of the processor, is thetp p
number of pipeline stages in the design, and is the latchto

overhead for the technology, being used. Eq. 2 says that the
stage delay has two components, the portion of the total
logic delay assigned to each pipeline stage and the latch
overhead between pipeline stages. Substituting Eq. 2 into
Eq. 1, we arrive at an expression for the e-unit busy time.

, (3)TBZ = NI(to + tp/p)
So far we have only considered a processor that executes

instructions one at a time. For a superscalar processor
multiple instructions may be executed at the same time.
Therefore, less busy time is required to execute the
instructions in a program. We model this by introducing a

5
10

15
20

25

Pipeline Stages

0

1

2

3

4

5

6

C
P

I

Fig. 1 shows the dependence of the CPI on the
number of pipeline stages.

5
10

15
20

25

Pipeline Stages

C
yc

le
 T

im
e

(a
rb

)

Fig. 2 depicts the dependence of the cycle time
on the pipeline depth.

5
10

15
20

25

Pipeline Stages

T
P

I (
ar

b
)

Fig. 3 shows TPI as a function of pipeline depth.
The TPI scale is arbitrary.

parameter, , which is a measure of the average degree of�
superscalar processing whenever the e-unit is busy. Eq. 3 is
then modified as follows.

(4)TBZ = NI
a (to + tp/p)

It should be noted that is not the superscalar issue width.�
Rather it is the actual degree of superscalar processing
averaged over a particular piece of code. As such it varies
with the workload running on the processor. is obtained�
only when the e-unit is busy; the not busy times being
caused by various hazards, to which we will now direct our
attention.

Let us first consider the simple case in which each
hazard causes a full pipeline stall. In this case the not busy
time will be given in terms of the number of hazards, ,NH

and the total pipeline delay, .tpipe

(5)TNBZ = NHtpipe

The total pipeline delay is just the product of each pipeline
stage delay, , and the number of pipeline stages in thetS
processor. Combining this fact with Eqs. 2 and 5, we obtain
the following expression for the not busy time.

(6)TNBZ = NH(top + tp)

In most processor designs this is too crude an
approximation. Each particular pipeline hazard only stalls
the pipeline for some fraction of the total delay. Execution
dependencies will stall the pipeline less than decode
(address generation) dependencies. Different types of
branch misprediction hazards will stall the pipeline for
different times. We can modify Eq. 6 to reflect this fact by
allowing each hazard to have its own not busy time, , thazard

which is a fraction, , of the total pipeline delay. Then the�h

expression for the not busy time must be summed over the
not busy time for each individual hazard. Eq. 6 then
becomes

 (7)TNBZ =�NH thazard = NH(top + tp)(1
NH �

NH �h)

Some comments are in order. The parameter, ,�h
measures the fraction of the total pipeline delay encountered
by each particular hazard. As such its value is constrained
to the range 0 to 1. We have deliberately grouped the
variables in Eq. 7 to form the last expression in parenthesis.
This is a dimensionless parameter, which we will call

. This parameter, , is the fraction of the total� = 1
NH

��h �
pipeline delay averaged over all hazards and contains all of
the information about the hazards in a particular piece of

code as well as details of the microarchitecture of the
processor. In practice is difficult to calculate, but like ,� �h

it is constrained to have a value between 0 and 1.
The final expression for the total time to process a

program is simply given by adding Eqs. 4 and 7, the busy
and not busy times. We then form our performance
measure by dividing the total time by the number of
instructions, . The final result is then:NI

. (8)T/NI = (to
a + cNH

NI
tp) +

tp

ap + cNHto

NI
p

The first term in this expression is independent of the
pipeline depth; the second term varies inversely with ; andp
the last term varies linearly with . This result depends onp
numerous parameters. The ratio is mainlyNH/NI

dependent on the workload being executed, but is also
dependent on the microarchitecture through, for instance,
the branch prediction accuracy. and are mainly� �
microarchitecture dependent, but also depend on the
workload. is technology dependent, while isto tp

dependent on both technology and the microarchitecture.
Eq. 8 has a minimum at a particular value of , thep

pipeline depth. One can solve for this optimum
performance point by differentiating Eq. 8 with respect to ,p
setting the resulting expression equal to 0, and solving for

. The result is popt

. (9)popt
2 =

NItp

acNHto

Some general observations about the optimum pipeline
depth can be made from Eq. 9. The optimum pipeline depth
increases for workloads with few hazards. As technology
reduces the latch overhead, , relative to the total logicto

path, , the optimum pipeline depth increases. As thetp

degree of superscalar processing , , increases, the optimum�
pipeline depth decreases. And lastly, as the fraction of the
pipeline that hazards stall, , decreases, the optimum�
pipeline depth increases. Intuitive explanations for these
dependencies will be discussed in more detail in a later
section.

The reader will note that in the derivation of this theory,
no mention was made as to whether the instruction
processing was in-order or out-of-order. That is because
out-or-order processing does not change the analysis.
However, it can effect the values of some of the parameters.
In particular, the degree of superscalar processing will be
altered with out-or-order processing. Also, the effective
penalty incurred from various hazards will be reduced by
allowing out-of-order processing of instructions to fill in
some of the stall cycles.

It should be noted that an equivalent result was obtained
by Emma and Davidson [3]. They confined their analysis to
a one-at-a-time, in-order processor model. Most of their
paper concerns the first principles determination of the
parameter . The contributions of each type of hazard and�
the relative numbers of each type were estimated for a
particular microarchitecture. We will not repeat that type of
analysis here, but rather test various aspects of our theory
with detailed modeling of a particular microarchitecture.

3. Simulation Methodology

In order to test the limits of our optimum pipeline depth
theory and to explore additional ramifications of the theory,
we have used a proprietary simulator. The simulator uses as
input design parameters that describe the organization of the
processor and a trace tape. It produces a very flexible cycle
accurate model of the processor. With this tool we are able
to model numerous pipeline designs, variable issue width
superscalar designs, and either in-order or out-of-order
execution processing. We also had the availability of 35
traces, encompassing traditional (legacy) workloads,
“modern” workloads, SPEC95 and SPEC2000 workloads.
The traditional workloads include both database and on-line
transaction processing (OLTP) applications. These
applications were originally written in S/360 assembler
language over 30 years ago. They have continued to evolve
and now run on S/390 (zSeries) processors. The modern
workloads were written in either C++ or Java. These traces
were carefully selected because they accurately reflect the
instruction mix, module mix and branch prediction
characteristics of the entire application, from which they
were derived. This tool has mainly been used for work on
S/390 processors.

In order to build a model to test the above theory we
need to be able to expand the processor pipeline in a
uniform manner. The theory assumes that the processor
logic can be uniformly divided into p stages. In modeling, it
is not practical to repartition the pipeline for each new
design. Instead we have made use the pipeline shown in
Fig. 4.

This is the pipeline model of a 4 issue superscalar,
out-or-order execution machine. The model can handle
S/390 code, so that register only instructions (RR), as well
as register / memory access instructions (RX), must be
executed efficiently. The pipeline has 2 major instruction
flow paths. The RR instructions go sequentially through
Decode - Register Rename - Execution Queue - Pipelined
E-Unit - Completion - Retire. The RX instructions,
including loads and stores, add to this pipeline the
sequence: Address Queue - Pipelined Address Generation -
Cache Access, between the register rename and execution
queue stages.

This is the base pipeline we modeled. Address
generation, cache access and execution are independently
out-of-order processes. In testing the theory we utilize the
flexibility of our simulator model. In particular we expand
the pipeline depth by adding stages “uniformly”. We insert
extra stages in Decode, Cache Access and E-Unit pipe,
simultaneously. For example, as the Cache Access pipe is
increased (in Fig. 4) the Decode and E-Unit pipe stages are
increased proportionally. This allows all hazards to see
pipeline increases. Hazards, whose stalls cover a larger
fraction of the pipeline, see larger increases due to the
increased pipeline depth.

We have also utilized other aspects of our model
flexibility in our studies. In one experiment the branch
prediction accuracy was varied in order to alter the number
of hazards encountered for a particular workload. In still
another experiment we varied the superscalar issue width, to
study the predicted dependence of the optimum pipeline
depth on the average degree of superscalar processing. We
have also run both in-order and out-of-order models to show
that both show qualitatively the same results.

4. Simulator Results

Each particular workload was simulated in this way with
pipeline depths ranging from 10 stages to 34 stages. We
count the stages between decode and execution, rather than
the entire pipeline. We determine the entire logic delay
time in the same way. To compare with the theory, we use
the detailed statistics obtained from each simulator run to
determine the parameters in Eq. 8. Two of the parameters,

 and , are simply enumerated, but and requireNI NH � �
more extensive analysis of the details of the pipeline and the
particular distribution of instructions and hazards in each
simulation run. The parameters, and , were chosentp to

from a particular technology; but only the ratio tp/to = 55
is important in determining the optimum pipeline depth.

Fig. 5 shows the results of the simulation, for a particular
traditional workload, along with the corresponding
theoretical curve. We plot TPI (Time per Instruction) as a
function of the number of pipeline stages. The predicted

 $4'(& 5(1 $� $�

&� &� &�

(�(4 (� &RPSO 5HWLUH

5;

55

Fig. 4 shows the pipeline modeled in this study. The stages
include: Decode, Rename, Agen Q, Agen, Cache Access,
Execute Q, Execute, Completion and Retire.

minimum in the curve is clearly seen. It is fairly flat around
the minimum, which leaves considerable latitude in
choosing the best design point for a particular processor.
The fact that the optimum pipeline depth is so large is due
mainly to the small latch delay in our technology model.

As can be seen the agreement between theory and
experiment is extraordinarily good. Because of the
difficulty of determining the parameter, even from our�
detailed statistics, the fit between theory and experiment
should be considered as a one parameter fit. We effectively
chose a value of , consistent with our estimates from the�
statistics, which caused the theory and experiment to
correspond at one point. This in no way diminishes the
value of the comparison, which clearly shows that the
theory adequately describes the functioning of the pipeline.
This comparison could have been shown for any of the 35
workloads run, with equally good results, although some
workloads show somewhat more scatter in the data.

Eq. 9 gives the minimum point in Fig. 5, and from the fit
of theory and simulation, it clearly agrees with the
simulation. To further explore the applicability of the
theory one can construct experiments to test the various
dependencies in Eq. 9. The first one we will test is the
dependence on , the degree of superscalar processing. In�
order to do this we first obtain the results for a particular
workload (that has significant superscalar parallelism), and
then obtain new results limiting the issue width to 1, i.e..
non-superscalar but still out-of-order processing. In this
way the primary change in parameters will be to reduce .�
Some secondary effect on may result, but will be small. �

Fig. 6 shows these 2 simulation results for the IJPEG
workload from the SPEC95 suite. The shift in the optimum
pipeline depth point with decreased superscalar issue width
is clearly evident. As expected, moving to a single issue
E-Unit, decreases , and shifts the optimum point to larger�
values of pipeline stages. Even the magnitude of the shift
can be accurately accounted for by the theory. In passing

we should note that reducing the issue width, reduces the
overall performance, as well.

We can test the dependence of Eq. 9 on by varying the�
branch prediction efficiency by reducing the size of the
branch prediction table. If we reduce the branch prediction
capability, we both increase the number of branch hazards
contained in ; and since conditional branches causeNH

pipeline stalls over the entire pipeline, we increase the value
of . Both of these effects should shift the optimum�
pipeline point to lower values of . Fig. 7 shows this effectp
for a particular modern workload. Also note that reducing
branch prediction efficiency severely impacts the
performance.

5. Workload Specificity

No one doubts that there are significant differences
between different types of workloads run on processors.
Maynard, et. al. [6] have explored the workload differences
between multi-user commercial workloads and technical
workloads. Differences arise from branch prediction
accuracy, the degree of operating system calls, I/O content
and dispatch characteristics. Gee et.al. [7] and Charney et.
al. [8] have addressed the cache performance of the SPEC

5
10

15
20

25

Pipeline Stages

0.9

1

1.1

1.2

1.3

1.4

T
P

I (
ar

b
)

Fig. 5 is a direct comparison of the simulation (data
points) and the theory (solid curve) for a particular
workload. The TPI numbers are scaled to the
minimum point.

5 10 15 20 25 30 35

Pipeline Stages

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

T
P

I (
ar

b
)

Base
Case

1E-Pipe

Fig. 6 shows the performance curves for 2 different
superscalar issue widths: single and 4-issue for the
IJPEG workload. The optimum performance positions
are indicated by arrows.

5 10 15 20 25 30 35

Pipeline Stages

0.8

1

1.2

1.4

1.6

1.8

2

2.2

T
P

I (
ar

b
)

Base
Case

Bad Branch
Prediction

Fig. 7 shows the effect of changing branch
prediction on the optimal pipeline depth.

workloads compared to other workloads. The SPEC
workloads tend to have small instruction footprints, and can
achieve “good” performance, even for small caches. In this
work we have employed both SPEC benchmark traces and
workloads with much larger cache footprints. We have
used both traditional S/390 legacy workloads and some
modern workloads, written in Java and C++.

We have simulated all 35 of our workloads, obtained the
TPI as a function of pipeline depth for each of them, and
determined the optimum pipeline depth for each. In Fig. 8
we show the distribution of these optimum pipeline depths
for different workloads. As one can see there is essentially
a Gaussian distribution of the optimum pipeline depth over
the workloads studied.

It is perhaps more instructive to divide the distribution
into the separate types of workloads. Fig. 9 shows this
analysis, divided into SPEC workloads (programmed in C),
traditional workloads (programmed largely in assembler),
and “modern” workloads (programmed in C++ or Java). It
is clear that there is a significant difference between the
SPEC workloads and the other workloads in terms of the
optimal pipeline depth. A pipeline optimized for real
workloads, either traditional or modern, should be
considerably deeper than a pipeline optimized for the SPEC
workloads. This is true for both SPEC95 and SPEC2000

workloads. Fortuitously, as we have seen, the dependence
of the performance on the number of pipeline stages,
leading to the optimum pipeline depth, is quite broad.
Optimizing for the wrong type of workload will not
incur too large a penalty.

6. Discussion

Now let us explore the consequences of this work in a
more intuitive way. Looking back at Eq. 8, we see that this
expression for the performance consists of four terms. The
first two have no dependence on the pipeline depth. The
first term is the constant performance degradation due to the
latch overhead. The second term is an overhead from
pipeline hazards. The next two terms are more interesting.

The third term is inversely proportional to the pipeline
depth. This is the term that drives deeper pipelines to have
better performance. Basically, what it says is that the total
logic delay of the processor is divided up into separate parts
for each pipeline stage. One then gets a larger throughput
by “storing” instructions in the pipeline. The performance
is given by the rate at which instructions finish the pipeline,
not the time it takes an instruction in the pipeline. In fact if
there were no hazards, as in Eq. 4, the only performance
limitation would arise from the latch overhead.

The last term in Eq. 8 is linearly proportional to the
pipeline depth. This term arises from the dependence of
pipeline stalls on pipeline depth. Deeper pipelines suffer a
larger penalty from hazards. The term is proportional to the
fraction of the pipeline that each stall covers, as well as the
number of hazards. It is also important to note that the term
is proportional to the latch overhead; each additional hazard
induced pipeline stall causes a performance degradation
from that latch overhead. On the other hand the hazard
related term which is proportional to the total logic depth,
the second term, is independent of both pipeline depth and
latch overhead.

There is a competition between greater pipeline
throughput and pipeline hazards. If no hazards were
present, the optimum performance would occur for an
infinitely deep pipeline. One simply loads all of the
instructions into the pipeline, and the performance, the rate
at which the instructions complete, is optimized. On the
other hand, hazards disrupt the pipeline flow by periodically
draining the pipeline or a portion of the pipeline. This
competition between increasing pipeline throughput, by
“storing” instructions in the pipeline, and reducing pipeline
hazard stalls, by minimizing pipeline depth, accounts for the
observed behavior.

It is instructive to compute the portion of the cycle time
allocated to latch overhead for the optimum pipeline depths.
For the ratio of total logical delay of the processor to latch
overhead, , latch overhead consumes 25% totp/to = 55

���

���

����

�����

�����

�����

�����

�����

�����

�����

3LSHOLQH�'HSWK

�

�

�

�

�

��

��

1
X
P
E
H
U�
R
I�
:
R
UN
OR
D
G
V

Fig. 8 shows the distribution of pipeline depth optima
for all workloads.

��� ��� ���� ����� ����� ����� ����� ����� �����

3LSHOLQH�'HSWK

�

�

�

�

�

�

�

�

�

�

��

1
X
P
E
H
U�
R
I�
:
R
UN
OR
D
G
V

Fig. 9 shows the distribution of pipeline depth optima for
different workload classes. Blue are the Spec (C)
workloads, red are the traditional workloads, and green
are the modern (C++ and Java) workloads.

Spec Traditional

Modern

50% of the cycle time. Even though this may seem like a
large portion of the cycle time, our results clearly show that
this gives the optimal pipeline performance. It would be a
difficult challenge to actually design a processor, which is
so highly pipelined. Designing a processor, where latch
overhead can account for ¼ to ½ of the time allocated to
each cycle, offers significant new challenges in partitioning
the logic and controlling the power.

Moving on to Eq. 9 we can understand the optimum
pipeline depth dependencies in light of the above
arguments. As the number of hazards per instruction
increases, the optimum pipeline depth is pushed to lower
values. As the fraction of the pipeline stalled by any one
hazard increases, the optimum pipeline depth decreases. As
the superscalar processing parallelism increases, the
throughput increases without the need for a pipeline depth
increase, and therefore the optimum pipeline depth
decreases. As the latch overhead increases relative to the
total logic delay, pipelining becomes more of a burden, and
the optimum pipeline depth decreases.

The competing nature of these effects is inherent in Fig.
9. One might expect the SPEC workloads to have a longer
optimal pipeline depth than the traditional legacy
workloads, due to the fact that the SPEC applications have
fewer pipeline stalls than the legacy applications. However,
the opposing effect that the SPEC applications contain a
higher degree of instruction level parallelism, that can be
exploited by a superscalar processor, is even more
important. The net result is that the SPEC workloads
optimize for a shorter pipeline.

In all of the preceding, we have been implicitly
considering an infinite cache model. We could have
constructed a similar variable pipeline depth model, which
included the multiple level cache access paths. As the
pipeline depth increased, the latency of cache or memory
accesses would have shown an increased number of cycles.
However, the cache or memory access time would remain
constant. Therefore, although the finite cache contribution
to the CPI would increase, the finite cache contribution to
TPI stays constant. The finite cache equivalent to Figs. 5-7
simply have a constant finite cache TPI adder. This in no
way changes the optimum pipeline depth or any of the
dependencies that have been discussed.

7. Summary

A theory has been presented of the optimum pipeline
depth for a microprocessor. The theory has been tested by
simulating a variable depth pipeline model, and the two are
found to be in excellent agreement. It is found that the
competition between “storing” instructions in a deeper
pipeline to increase throughput, and limiting the number of
pipeline stalls from various pipeline hazards, results in an

optimum pipeline depth. That depth depends in a complex
but understandable way on the detailed microarchitecture of
the processor, details of the underlying technology used to
build the processor, and certain characteristics of the
workloads run on the processor. Our analysis clearly shows
a difference between the optimum pipeline length for SPEC
applications and the optimum pipeline length for both
legacy applications and modern workloads. It would be
instructive to gain a deeper understanding of the factors that
produce similar optimal pipeline depths for the modern
workloads and legacy applications.

8. Acknowledgments

The authors would like to thank P. G. Emma and E. S.
Davidson for many stimulating discussions and helpful
comments on this work.

9. References

[1] S. R. Kunkel and J. E. Smith. “Optimal pipelining in
supercomputers”, Proc. of the 13th Annual International
Symposium on Computer Architectures, pp. 404 - 411, 1986.

[2] V. Agarwal, M. S. Hrishikesh, S. W. Keckler and D. Burger.
“Clock Rate versus IPC: The End of the Road for Conventional
Microarchitectures”, Proc. of the 27th Annual International
Symposium on Computer Architectures, pp. 248 - 259, 2000.

[3] P. G. Emma and E. S. Davidson. “Characterization of Branch
and Data Dependencies in Programs for Evaluating Pipeline
Performance”, IEEE Transactions on Computers C-36, pp. 859 -
875, 1987.

[4] M. H. Macdougal. "Instruction-Level Program and Processor
Modeling", Computer, pp. 14 - 24, 1984.

[5] P. Emma, J Knight, J Pomerene, T Puzak, R Rechschaffen.
"Simulation and Analysis of a Pipeline Processor", 8th Winter
Simulation Conference, pp. 1047 - 1057, 1989.

[6] A. M. G. Maynard, C. M. Donnelly, and B. R. Olszewski.
"Contrasting Characteristics and cache performance of technical
and multi-user commercial workloads", ASPLOS VI, pp. 145 -
156, 1994.

[7] J. D. Gee, M. D. Hill, D. N Pnevmatikatos, and A. J. Smith.
"Cache Performance of the SPEC Benchmark Suite", Technical
Report 1049, Computer Sciences Department, University of
Wisconsin, 1991.

[8] M. J. Charney and T. R. Puzak. "Prefetching and Memory
System Behavior of the SPEC95 benchmark Suite" IBM Journal
of Research and Development 41, pp. 265 - 286, 1997.

