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ABSTRACT 
In this paper we describe a new technique, called pipeline 
spectroscopy, and use it to measure the cost of each cache miss. 
The cost of a miss is displayed (graphed) as a histogram, which 
represents a precise readout showing a detailed visualization of 
the cost of each cache miss throughout all levels of the memory 
hierarchy. We call the graphs ‘spectrograms’ because they reveal 
certain signature features of the processor’s memory hierarchy, 
the pipeline, and the miss pattern itself. Next we provide two 
examples that use spectroscopy to optimize the processor’s 
hardware or application’s software. The first example 
demonstrates how a miss spectrogram can aid software designers 
in analyzing the performance of an application. The second 
example uses a miss spectrogram to analyze bus queueing. Our 
experiments show that performance gains of up to 8% are 
possible. Detailed analysis of a spectrogram leads to much greater 
insight in pipeline dynamics, including effects due to miss cluster, 
miss overlap, prefetching, and miss queueing delays.  
 

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Design studies, Measurement 
techniques, Modeling techniques, Performance attributes    

General Terms 
 Algorithms, Measurement, Performance 

Keywords 
Cache, Pipeline, Algorithm, Spectrogram 

1. INTRODUCTION 
In order to improve the performance of a processor or an 
application, designers have increased the amount of parallelism 
between the levels of the memory hierarchy. This area of research, 
termed memory-level-parallelism (MLP) has been explicitly 
studied in [1, 2 ,3] while early studies focused on modeling and 
evaluating performance with ILP processors [4, 5, 6]. Chou, et. al. 
[7, 8] studied several techniques (out-of-order, runahead, value 

prediction, prefetching, and store handling optimization) for 
increasing MLP in applications that are dominated by memory 
delays. They show that substantial amounts of performance gains 
are possible by increasing the MLP in these applications. Qureshi 
et al. [9] demonstrate that not all misses have the same cost and 
measures miss parallelism to improve cache performance by 
altering the replacement algorithm. 
   
In this paper, we build on this work by describing a new 
technique to measure the amount of parallelism between the 
different levels of the memory hierarchy and describe a 
mechanism for displaying images that permits the visualization for 
the cost of a cache miss. We call this new technique ‘pipeline 
spectroscopy’ and the graphs representing the miss cost a 
‘spectrogram’. The graphs are called spectrograms because they 
reveal certain signature features of the processor’s memory 
hierarchy, the pipeline,  and the miss pattern itself (e.g. amount of 
overlap between misses in the miss cluster). Using pipeline 
spectroscopy, we are able to measure the rate that misses are 
satisfied from the different levels of the memory hierarchy and 
quantify the cost of each cache miss. This quantification leads to a 
much greater understanding of the amount of parallelism or 
overlap that the micro architecture and application allow while a 
miss is in progress. 
  
Several mechanisms that measure the cost of a miss are described 
in the patent literature  [10-17]. Most embodiments describe the 
difficulty in determining an accurate measure for the cost of the 
miss and rely on hardware monitors to count events (cycles) that 
indicate when the decoder or execution unit is delayed (stalled) 
while waiting for an operand (data) to estimate this cost. 
However, not all of these events contribute to the loss of 
performance in a program. Today’s processors have superscalar 
capabilities and parallel execution paths and a delay suffered in 
one component of a processor can be overlapped with other 
events to mask any loss due to the miss. For example, consider 
two events occurring in parallel: a branch misprediction and a 
cache miss. Simply counting the number of cycles an instruction 
(in the decoder or execution unit) is stalled waiting on a miss is 
not an accurate measure of the cost of the miss since many of the 
stall cycles are already overlapped with the delays caused by the 
branch misprediction. 

    
Additional performance tools are described in: Dean et al. [18] a 
technique for pairwise sampling used to track concurrent events to 
measure performance,  Fields et al. [19]  use ‘shotgun profiling’ 
to construct dependence graphs and study the performance of an 
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application, while Karkhanis et al. [20] use analytical models to 
study the performance of concurrent events. 
 
We apply pipeline spectroscopy to produce a cache miss 
spectrogram which represents a precise readout showing a 
detailed histogram (visualization) of the cost of each cache miss, 
with and without overlap. Cache miss spectrograms are produced 
by comparing instruction sequences and execution times that 
occurred near a miss in a 'finite cache' simulation run to the same 
set of instructions and their execution times in an 'infinite cache' 
run.  Cache misses are divided  into clusters, and the miss penalty 
associated with each cluster is determined by a two step process. 
First, an upper and lower bound sequence of instructions is 
identified that bounds each miss. Second, the cost of the miss 
cluster is the difference (in time) between the finite cache and 
infinite cache execution time of that specific instruction sequence. 
        
Next we provide two examples that show how the information 
displayed in a cache miss spectrogram can be used to optimize the 
processor’s hardware or application’s software. The first 
experiment uses a miss spectrogram to identify software 
inefficiencies and describes solutions to improve performance. 
The second example uses a miss spectrogram to highlight the 
effects of bus queueing and describes a mechanism to improve 
performance. 
   
The rest of this paper is organized as follows: Section 2 contains 
definitions and terminology. Section 3 describes constructing a 
miss spectrogram. The simulation model is described in Section 4. 
In Section 5 we measure the cost of a data miss. In Section 6 we 
use the miss spectrogram to analyze software and hardware 
performance problems and describe solutions to improve 
performance. Summary and conclusions are discussed in Section 
7.  

2. PERFORMANCE TERMINOLOGY 
The overall methodology used to calculate the cost of a miss and 
the visualization process are explained as a prelude to analyzing a 
miss spectrogram. First, the definitions and formulas used to 
calculate the cost of a miss are described, then a description is set 
forth relative to how misses cluster and affect the standard 
operation of a high performance processor, followed by a 
description of the visualization process.  
 
The most commonly used metric for processor performance is, 
“Cycles Per Instruction” (CPI). The overall CPI for a processor 
system has two components: an “infinite cache” component 
(CPIINF) and a “finite cache adder” (CPIFCA). 
                                                

CPIOVERALL = CPIINF + CPIFCA       (1) 
CPIINF represents the performance of the processor in the absence 
of misses (cache, and TLB). It is the limiting case in which the 
processor has a first-level cache that is infinitely large and is a 
measure of the performance of the processor’s organization with 
the memory hierarchy removed. CPIFCA accounts for the delay due 
to cache misses and is used to measure the effectiveness of the 
memory hierarchy. 

The “memory adder” term,  CPIFCA, can be expressed as the 
product of an event rate (specifically, the miss rate), and the 
average delay per event (cycles lost  per miss): 

                CPIFCA = ( Misses
Instruction )( Cycles

Miss )               (2)                  

Substituting  for CPIFCA in (1), the overall performance for a 
processor can be expressed as: 
                                      

CPIOVERALL = CPIINF +( Misses
Instruction )( Cycles

Miss )                (3) 
By rearranging this formula, the average cost of a cache miss can 
be calculated. That is 
                               

Cycles
Miss = (CPIOVERALL − CPIINF ) Instructions

Miss         (4) 
 
We use this formula to calculate the amount of time (cycles) a 
processor loses due to each cache miss. The following example 
illustrates calculating cycles per miss using Equation 4. Consider 
an application whose entire run length is one million instructions 
and a processor where each cache miss is satisfied from the L2 
that is 20 cycles away. If an infinite cache simulation run takes 

one million cycles(CPIINF  = 1), and a finite cache simulation 
run takes 1.3 million cycles, then cache misses account for 

300,000 cycles and the total CPI = 1.3  and CPIFCA=.3. If 
the finite cache simulation run generates 25,000 misses, then 

( Misses
Instruction ) = 25,000

1,000,000 = 1
40   and ( Cycles

Miss ) = 300,000
25,000 = 12.   

By applying this equation over the entire length of an application, 
the average cost for all misses can be calculated.  
  
In the example above,  we applied Eq. 4 macroscopically to 
calculate the average cost of a miss over the total run time of an 
application. However, Eq. 4 can also be used microscopically to 
calculate the cost of a single miss. We will take a microscopic 
approach in using Eq 4 to calculate the cost of each miss and 
produce a miss spectrogram. As presented in Section 5, the 
information contained in a miss spectrogram represent the cost of 
all misses throughout all levels of the memory hierarchy, 
including the amount of overlap (parallelism) achieved between 
any two misses.  

3. MAKING MISS SPECTROGRAM 
A description of how misses can cluster and affect the 
performance of a processor is now described. Figure 1 shows the 
same five instructions executed as both an 'infinite cache' 
sequence of instructions and a 'finite cache' sequence of 
instructions. In the finite cache sequence, the instruction decode 
times are shown in bold and instruction completion or EndOp 
times are shown in parenthesis. In the infinite cache run only the 
instruction decode times (in bold) are shown. Associated with the 
finite cache run are two miss clusters, where a ‘miss cluster’ is a 
continuous interval of time characterized by at least one miss in 
progress at all times. The size of the miss cluster is the number of 
misses that started during this interval. In the finite cache run, the 
first miss cluster has three misses with overlap (size = 3) and the 
second miss cluster is size = 1 (a miss in isolation). The time to 
process the first miss cluster (in the finite cache run)  is bounded 
by the decode time for instruction I1 and the EndOp time of I3,  
(I3EndOp - I1Decode)Finite Cache time. Instruction I1 represents the 
greatest lower bound of the miss cluster, while instruction I3 is 
the least upper bound of the cluster. 
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Figure 1.  Miss Cluster Patterns for an Application, Cluster Sizes of 1 and 
3 Misses are shown  

 
We call these points (instructions) the infimum and supremum of 
the miss cluster. By convention, the infimum of a miss cluster is 
the last instruction that decoded just prior to the beginning of the 
first miss in the miss cluster and the supremum is the first 
instruction that completed (EndOp) just after the last miss in the 
miss cluster finished. Similarly, the infimum of the second miss 
cluster is instruction I4 and the supremum is I5. The time to 
process the second miss cluster is then (I5EndOp - I4Decode)Finite 

Cache. To calculate the amount of delay associated with the first 
miss cluster we must subtract the amount of time to process the 
same set of instructions in an infinite cache run from the finite 
cache run. That is, [(I3EndOp - I1Decode)Finite Cache - (I3EndOp - 
I1Decode)Infinite Cache] equals the number of cycles the pipeline was 
stalled due to the first miss cluster. Similarly, the amount of delay 
associated with the second miss cluster is [(I5EndOp - 
I4Decode)Finite Cache - (I5EndOp - I4Decode)Infinite Cache].  
 
The reader will note that in the derivation above and in the 
equations presented in Section 2, no mention was made as to 
whether the processor is in-order or out-of-order. That is because 
out-of-order processing will not change the analysis. However, it 
may affect the manner in which the infinite cache running times 
for the sequence of instructions that surround a miss need to be 
determined. For example, if instruction processing is from an out-
of-order processor, it may be necessary to save the sequence of 
instructions between the infimum and supremum of the miss 
(from the finite cache run) and use this same sequence of 
instructions (and their order) while determining the infinite cache 
run time. 
 
By applying the above technique repeatedly, we can calculate the 
cost of a miss or miss cluster for an entire application. Both in-
order and out-of-order processors can be evaluated this way. In 
the example above, I1, I2, and I3 can even be from three different 
threads running on a multithreaded processor (or three out-of-
order instructions), but as long as the same three instructions (and 
their order) are used to determine the infinite cache run time, the 
cost of the miss cluster can be determined.    
 
There are certain boundary conditions that must be considered 
when determining the infimum and supremum of a miss cluster. 
For example, the infimum of a miss cluster can only be 
established after the supremum of the previous miss cluster has 
been determined. This ensures that one miss cluster is terminated 

before another starts. If the upper and lower bounds of a miss 
cluster cannot be uniquely established, the two adjoining miss 
clusters are combined into a larger miss cluster.  
   
Also, when determining the infinite cache running time for an 
instruction sequence that occurred during a miss cluster, it may be 
necessary to prime the processor’s pipeline with some of the 
instructions that occurred prior to the infimum instruction. This 
ensures that the correct execution and EndOp times of the 
infimum instruction are preserved as it passes through the 
processor’s pipeline. By grouping misses according to their 
cluster size and calculating the delay associated with a miss 
cluster (number of stall cycles) using the method described above, 
the amount of time a processor loses due to cache misses is 
produced. 

4. SIMULATION METHODOLOGY 
To date, pipeline spectroscopy has been implemented in three 
proprietary processor simulators. Each simulator has produced 
results similar to those shown in Sections 5 and 6 below. Each 
Simulator is cycle accurate and has been thoroughly validated 
against existing hardware. The processor model used in this paper 
is shown in Figure 2 and described in [21, 22], is a 4 issue 
superscalar, with address generation and cache access an 
independent out-of-order process. We use trace tapes produced 

for the IBM zSeries processor family. Instructions that typically 
produce addresses (LA, BXLE, SLL, SRL, ...) are pre-executed 
after the decode stage of the pipeline to avoid future pipeline 
stalls due to address interlocks. Loads are executed as soon as the 
datum fetched returns from the cache and the results are 
forwarded to all dependent instructions. The instruction window 
was set at 32 entries. Separate L1 instruction and data caches were 
modeled at 64 KB, the L2 size varies from 256K to 1 MB, and the 
L3 (when modeled) was varied from 1 MB to 4 MB. This 
processor model was chosen to illustrate the technique used to 
construct a spectrogram, and does not represent any existing or 
planned processor design. In our initial studies, Endop and those 
instructions not pre-executed after the decode stage are completed 
and executed in-order. Future work is planned to measure the 
benefits of prefetching, SMT and SMT out-of-order execution. 
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We use instruction traces produced for the IBM zSeries processor 
family. In order to stress different levels of the memory hierarchy 
(L1, L2 or L3), we  use applications with large instruction and 
data footprints capable of stressing caches up to 4 Megabytes. 
Typically, commercial database applications have these 
characteristics [7]. In our study, we use six workloads drawn from 
database workloads, SPEC 2000, and a C++ application. We use  



three proprietary commercial database applications running on 
zSeries servers, (oltp described in [23, 24] and oltp2, and oltp3); 
mcf, from SPEC 2000, SPECjbb 2000, and perf1 [23, 24] a large-
processor simulator written in C++. Typically, trace lengths are 5 
to 100 million instructions. The simulation environment can 
handle all of the SPEC suite; the application subset used for this 
work was chosen for its ability to stress L2 and L3 cache usage.  
 

5. DATA MISS SPECTROGRAM 
In order to examine the miss spectrogram for data misses alone, 
we model an infinite or perfect instruction L1 cache, and set the 
data L1 cache to 64KB. The L2 is set to 256KB with a 15 cycle 
latency, and set L3 latency to 100 cycles. All L2 misses are 
resolved in the L3. The line size and bus width are set at 128 
bytes. No data prefetching was modeled. In fact, data prefetching 
is very difficult for many of these applications.  
 
Using the techniques described above, Figure 3 shows the miss 
spectrogram for the oltp workload. The overall hit ratio of the L2 
was approximately 50%. The miss spectrograms for cluster sizes = 
1, 2, 3, and 4 are shown. The X axis represents the cost of the 
miss cluster in cycles. The Y axis shows the percent of misses 
with that cost.   
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Fig 3, Miss Spectrogram for OLTP, L1=64K, L2=256K, Infinite L3  
 
The cluster =1 plot (in Figure 3) shows two peaks. The first peak 
is centered near 15 cycles (the L2 miss latency), and the second 
peak is near 100 cycles (the L3 miss latency). The integral of the 
areas under each peak is the percentage of L1 misses resolved in 
the corresponding level of the memory hierarchy (i.e., the hit rates 
for the L2 and L3, or 50% in each).  
 
The cluster size = 2 plot shows peaks at 15 and 30, 100 and 115, 
and 200 cycles. Each peak represents the amount of overlap 
between two misses. Integrating the area under each peak, we see 
that the costs are centered around 15, 30, 100, 115 and 200 cycles 
and have probabilities of .138, .168, .288, .191, and .215, 
respectively.  
 
The peaks at 15 and 30 represent two L1 misses that both hit in 
the L2 but highlight two distinctively different outcomes. In the 
first case (peak at 15), both misses had a high degree of overlap 
(MLP) and the overall cost was approximately the L2 miss latency 

while in the second case there was little overlap and the cost of 
the miss cluster was the sum of two L2 hits.  
 
The peak at 100 again identifies two misses that were overlapped 
(had a high degree of MLP). Whether it was two misses that hit in 
the L3, or one miss that hit in the L2 and one that hit the L3, the 
overall cost of the misses in the cluster was just the L3 miss 
latency.  
 
The peak at 115 identifies two misses that had little or no overlap. 
Here, one miss hit in the L2 and one miss hit in the L3 but the 
cost of the miss cluster was the sum of the individual miss 
latencies. Finally, the peak at 200 identifies two misses that were 
resolved in the L3 and there was little overlap. 
 
The peaks in the cluster = 3 graph represent all of the hit/miss 
combinations (with and without overlap) of length 3 using the two 
miss latencies (15, 100) for the L2, and L3. For example, the 
peaks at 15, 30, and 45 present three L2 hits where two misses 
were overlapped, one miss was overlapped or no miss was 
overlapped with the other misses in the cluster. However, the peak 
at 300 represents three L3 hits with little overlap. Obviously, three 
dependent misses that are resolved in the L3 can cause this miss 
penalty. Finally, the peaks in the cluster = 4 graph show all of the 
hit/miss, overlap/no-overlap, combinations of length 4 using the 
miss latencies 15 and 100. 
 
Each peak represents the amount of time the group of cache 
misses (cluster) stalled the pipeline. By summing the ‘stall cycles’ 
calculated for each miss cluster, we can reconstruct the finite-
cache-adder for the entire run, one cluster at a time. In many cases 
this involves summing the delay associated with 10s of thousands 
to over 100,000 miss clusters. Using this technique, we have 
always been able to calculate the total finite-cache-adder to within 
5% (one cluster at a time), and in many cases the error is less than 
2%. This shows how accurately we can identify miss clusters and 
evaluate their costs. 
 
Prefetching and bus delays can change the shape of the peaks in a 
spectrogram. Prefetching can broaden the left shoulder of any 
peak and show the degree that a prefetch is being issued in 
advance of the nominal miss penalty. Queueing and bus delays 
can increase the right shoulder of a peak, adding miss latency.  
  
Figure 4 plots cluster size versus the amount of misses that 
occurred in that cluster. Even though the maximum miss cluster 
for the run was well over 1000 misses, typically the average miss 
cluster size is much smaller. For example, over 80% of the misses 
occur to miss clusters of size 6 or less and over 40% of the misses  
are a miss in isolation. This was observed for most applications 
used in this study.  
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Figure 5 plots the average cost of a miss versus cluster size. 
Notice how the average miss penalty decreases as the cluster size 
grows. The slope of the line indicates the degree that miss 
parallelism or miss overlap is occurring.  Obviously, the greater 
the amount of miss overlap the greater the slope of the line. In this 
example the cost of a miss at a cluster size = 10 is approximately 
two thirds the cost of an isolated miss.  This is far less than the 
potential for complete overlap. 
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Next, we repeat the above experiment but use the oltp2 workload 
with the following memory hierarchy: data L1=64KB, L2=256KB 
15 cycle latency, L3=1MB 75 cycle latency, and 300 cycle 
memory latency. Figure 6 shows the data miss spectrogram for 
cluster sizes = 1, 2, and 3.  
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Figure 6. Data Miss Spectrogram for OLTP2, L1=64K, L2=256KB 15  Cycle Latency, L3=1Meg
75 Cycle Latency, Memory = 300 Cycle Latency

The cluster = 1 plot shows three peaks. The first peak is centered 
near 15 cycles (the L2 miss latency), the second peak is near 75 
cycles (the L3 miss latency) and the third peak at 300 cycles (the 
memory latency). Integrating the area under each peak is 
approximately the hit ratio (regarding L1 misses) for that level of 
the memory hierarchy (i.e. the hit ratios for the L2, L3, and 
memory). Examining the plots for cluster sizes equal 2 and 3, we 
see that they show all of the hit/miss, overlap/no-overlap 
combinations of length 2 and 3 using the 3 miss latencies: 15, 75 
and 300. Obviously the peak at 15 for the cluster size = 3 
indicates a great deal of overlap among the three misses. 
However, the peak at 390 (for cluster size =3) indicates very little 
overlap among the three misses. Here, one miss was resolved in 
the L2, one in the L3, and one went to memory but the total miss 
penalty for the whole cluster is the sum of the individual miss 

latencies (15, 75, and 300). Similar hit/miss patterns and 
overlap/no-overlap conclusions can be drawn for examining any 
peak in the miss spectrogram.  
 
We will refer to spectrograms like the one shown in Figure 6 as 
the ‘canonical’ representation for the cost of a miss in a multilevel 
memory hierarchy. It is a canonical form because it represents the 
most general form (combinations) of the miss patterns in a 
memory hierarchy. Obviously, prefetching and bus queueing can 
alter the miss patterns, and costs. By including the possibility of a 
peak at zero, a miss spectrogram can have all possible 
combinations of the miss latencies from each level of the memory 
hierarchy for a given cluster size. We show in Appendix A that for 
a memory hierarchy with N cache levels (L1, L2, L3,..., LN, 
memory) and a miss cluster of size C, there are                  

C + N
C                                                               (5) 

possible penalties (peaks) that characterize the canonical form 
hit/miss and overlap patterns. A peak at zero has the physical 
meaning that a miss or cluster of misses has zero delay. 
Prefetches, if issued far enough in advance of their use, 
speculative misses that do not interfere with any other cache 
accesses, or unused prefetches have the possibility of causing zero 
delay. Using (5), and the memory hierarchy described in Figure 6, 
we see that plotting miss clusters of size 4, 5, and 6 could have 
35, 56, and 84 peaks, respectively.  
 
Each of the spectrograms above aids the hardware/software 
designer by measuring the cost of a miss and by identifying 
potential performance bottlenecks. For example, merely 
identifying that an instruction is always causing a cache miss is 
not sufficient to identify a performance problem. Consider a 
processor with the following memory hierarchy: L1, L2, and 
memory with latencies of 15 cycles for an L2 hit, and 300 cycles 
for a miss to memory.  
 
Now consider a three miss cluster where all three misses are 
resolved in the L2 (L2 hits). If a software designer identifies that 
an instruction is always causing a miss and the cost of the miss 
cluster is 15 cycles, there is probably  little benefit in removing 
(improving) the miss latency associated with those instructions 
since two out of the three misses are overlapped. However, if the 
cost of the miss cluster is 45 cycles, then very little of the miss 
latency is overlapped and it is probably worth the effort to 
investigate the source code to improve performance. Pipeline 
spectroscopy gives this information. 

6. SPECTROGRAM ANALYSIS 
In this section we provide two examples that use the information 
displayed in a cache miss spectrogram to optimize the processor’s 
hardware or application’s software. The first experiment 
demonstrates how a miss spectrogram can aid software designers 
in analyzing the performance of an application. The second 
example uses a miss spectrogram to analyze hardware 
performance.  
 
 Each experiment highlights the effects that bus queueing has on 
performance. Bus queueing can  occur whenever the linesize of 
the cache is greater than the bus width and multiple cycles are 
needed to transfer a line between levels of caches during a miss. 
We begin by defining the terms that will be used throughout this 



section. Bus queueing time is lengthened whenever the bandwidth 
between cache levels is decreased or the bus frequency ratio is 
increased. 
 

Term Definition 
Bus Width The number of bytes moved in or out 

of the cache per cycle during a miss.  
Packet  Subsection of cache line. Equals size 

of bus width (in bytes). Multiple 
packets makeup a cache line 

Packets Per Line  The ratio of cache linesize to bus 
width (packet size). This is also the 
number of bus cycles needed to move 
a line between levels of the memory 
hierarchy 

Miss Latency Number of cycles before first data 
(packet) returned after a cache mss is 
detected 

Leading Edge penalty Once a cache miss is detected, amount 
of time the processor stalls waiting for 
the first data (packet of line) to 
returned. 

Trailing Edge Penalty The observed cost of caching the 
remainder of the cache line after first 
packet is returned. The trailing-edge 
penalty would be zero if the entire line 
could be returned and installed in the 
cache in a single cycle. However, few 
designs can afford the implied luxuries 
of a line-wide data-return bus and 
cache-write capability. 

Bus Frequency Ratio The ratio of the processor frequency to 
the bus frequency. It is determined by 
logic speed, packaging and power 
limits. 

Line Transfer Interval 
(LTI) 

The number of processor cycles 
needed to move a cache line (Packets) 
on the bus and equals bus frequency 
ratio times the packets per line. 

 

The baseline processor organization and memory hierarchy are 
described in Table 1. The L2 is set at 512 KB with a 15 cycle 
latency with an infinite size L3 set at 75 cycles (i.e. all L2 misses 
are resolved at the L3, 75 cycles away). A 256 byte line size is 
modeled throughout all three levels of the memory hierarchy. We 
consider an on-chip L2 and configure the bus connecting the L1 
and L2 to be able to move 32 bytes each processor cycle. Thus the 
LTI for an L2 hit is 8 cycles.  

L 1  C a c h e  
C o n fig u ra tio n

S p lit  I  a n d  D  e a c h  6 4 K B , 4  W a y  
S e t A s s o c ia t ive  2 5 6  B yte  L in e  2  
C yc le  a c c e s s

L 2  C a c h e  
C o n fig u ra tio n

U n if ie d  1 /2  M e g , 8 -W a y  S e t 
A s s o c ia tv ie , 2 5 6  b y te  L in e , 1 5  
c yc le  a c c e ss

L 3  C a c h e  
C o n fig u ra tio n

4  M e g , 8 -W a y S e t a c c o c ia tiv e , 
2 5 6  b yte  lin e , 7 5  c yc le  a c c e s s

P ro c e s so r P ip e lin e 4  is su e  s u p e rs c a la r , 
o u t-o f-o rd e r a d d re s s  g e n e ra t io n  
a n d  c a c h e  a cc e s s , in -o rd e r 
e xe c u tio n , 3 2  e n try  in s tru c tio n  
w in d o w

Ta b le  1  B a s e lin e  P ro c e s s o r C o n fig u ra t io n  

We consider an off-chip L3 with a 32 byte bus and consider three 
different line transfer rates for an L3 hit: 32 bytes are transferred 
(from the L3 to the L2 and L1) every other cycle, every third 
cycle, or every fourth cycle. Thus it takes 16, 24, or 32 cycles to 
transfer a line from the L3 to the L2 and L1 (on a L3 hit).  
 
Figure 7 shows a miss spectrogram for OLTP3 for cluster size= 1 
using the three different LTIs for L3 hits. Immediately visible, in 
all three graphs, is the similarity in the peaks centered at 15  
cycles (an L2 hit). Recall the L2 is on chip and all three processor 
configurations deliver 32 bytes every cycle for an L2 hit. Each 
graph has a small left shoulder (at 15 cycles) and shows some 
misses costing as low as 8 cycle (leading edge penalty). However, 
the right shoulder is much larger (in area) than the left shoulder 
with many misses costing more than the 15 cycle miss latency. 
Also notice, the peak at 75 cycles is different in the three graphs. 
The right shoulder grows as the line transfer interval grows from 
16 cycles, 24 cycles, to 32 cycles. There are two very 
distinguishable sub peaks in the right shoulder of the three graphs. 
The spectrogram for a 16 cycle LTI has sub peaks at 84 and 90 
cycles. Similarly the spectrograms for the 24 and 32 cycle LTIs 
have sub peaks at 92 and 98 cycles, and 100 and 108 cycles, 
respectively. Notice, as the line transfer intervals grows the sub 
peaks correspondingly shift eight cycles to the right. 
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Figure 7, Cluster Size = 1 Miss Spectrogram for OLTP3 fofr 16, 24, and 32 
Cycle Trailing Edge  

In order to investigate the cause of these sub-peaks, we use two 
reports that are produced during a spectroscopy run: the Miss-
Cost report and Cost-Analysis report1. Figure 8 gives an example 
of a small portion of the Miss-Cost report for the 24 cycle LTI 
spectrogram. It lists every miss by cluster size, cost, infimum and 
supremum instruction on the trace, miss address and instruction 
address that make up the miss spectrogram.  
  

                                                                 
1In the analysis that follows we investigate the cause of the sub 
peak at 98 cycles shown in the 24 cycle LTI spectrogram. The sub 
peak at 92 cycles is caused by a similar addressing pattern and 
discussions regarding its removal are omitted for brevity (but 
accomplished in the same manner).  



Cluster Size  Cost      Infimum   Supremum     Miss               Inst                 Inst
 Num                            Inst           Inst              Address         Address         Number

27973      1       98      348389      348417        20B1FA20      000668EC     348389
                             
27984      3       75       348421      348449       20C1FD20      00066EEC     348421
27984      3       75       348421      348449       20C1FE40      00066EEC     348433
27984      3       75       348421      348449       20C1FF00      00066EEC     348441

Figure 8.  Miss Cost Report For OLTP3   
 
Figure 9 shows the Cost-Analysis report. It summarizes all misses 
according to the instruction that generated the miss and sorts them 
by frequency (number of times the instruction generated a miss) 
and by cost (total cost of misses). The top five     
 
Highest count items:
ASID           Inst Addr        Count   % of Total
012E               93DAA          4410      0.49%
0134               9CDAA          3854      0.43%
0146                3B46E          3023      0.34%
0146            9724EA6          2596      0.29%
012E         3CF3DD62          2444      0.27%
  

  

Highest cost items:
ASID      Inst Addr     Total Cost   % of Total
0146        9724EA6        144045        0.33%
0146     3BE10A3E        142423        0.32%
0146     3BE10A02         139804        0.32%
0146        96F2A68        136345         0.31%
012E           93DAA        125253         0.28%

Figure 9  Cost Analysis Report for OLTP3
instructions generating the most misses (by frequency) along with 
their address-space-identifier (ASID) are shown on the left, while 
the top five instructions generating the most miss cost are shown 
on the right. Notice that the instruction positions change when 
sorted by frequency and then by cost. That is, only two of the 
instructions that produced the most misses (when sorted by 
frequency) are in the top five instructions that produced the most 
cost (when sorted by miss cost). Obviously, software tuning 
would focus on miss-penalty cost rather than miss frequency 
because most of the cost of a miss can be overlapped with another 
miss if it occurs in parallel with other misses. This was clearly 
highlighted in Figures 3 and 6 when examining cluster size 3 
misses and observing miss penalty peaks at 15, 30, and 45 cycles.  

 
Returning back to Figure 8, the file was sorted on cost and cluster 
size and misses that make up the sub peak at 98 cycles were 
identified. Once the infimum and supremum instructions on the 
trace are known, the simulation run is repeated and a detailed 
cycle-by-cycle instruction trace (report) is produced highlighting 
the events that occurred during the miss.  
 
Examination of the cycle-by-cycle traces shows that the sub peaks 
were caused by two byte-compare instructions, two instructions 
apart. Figure 10 illustrates the cause for this cost. The miss 
address (generated by the first byte compare) was to the 6th 32 
byte packet of a 256 byte line. This is the first packet that is 
returned on the bus when processing the miss. During the miss, 
packets are returned in increasing order (starting from the miss 
address) until the end of the line is reached, then processing 
continues to the beginning of the line until the entire line is 
transferred. Thus, the 8 packets that make up the line are returned 
in the following order: 6, 7, 8, 1, 2, 3, 4 and 5. 
  
The next reference to the line (the second compare instruction, 
two instructions later) is 10 bytes prior to the miss address and 
depending on byte alignment is to the preceding 32 byte segment 
(the 5th packet) in the line. The targets of both compares are 
referenced using a common base register (data structure) and these 
two compare instructions always referenced two different bytes, 
10 bytes apart. Since the packets in the line are returned in 

ascending order until the end-of-line is reached then wrapping 
around to the beginning of the line, the packet containing the 
second byte will not be available on the bus until the entire line is 
transferred to the cache (when they are not in the same packet). 
This accounts for the 8 cycle sub peak shift as the TLI is increased 
from 16, to 24, and 32 cycles. This instruction sequence occurred 
repeatedly on the trace (hundreds of times) and depending on byte 
alignment within a cache line would generate a miss cost of 
approximately 75 cycles (if both bytes were contained in the same 
32 byte packet) or 98 cycles if the two bytes were in neighboring 
packets. 

256 Byte Line

Eight 32 byte Packets

First Reference to Line Is Miss Address

Second Reference to Line 10 Bytes Prior to Miss

1 2 34 5 6 7 8

Transfer Order For
Eight 32 Byte Segments

1 2 3 4 5 6 7 8

From
Bus

Figure 10.  Miss Pattern For 96 Cycle Cost Per Miss For OLTP3  

Once the cause of the miss cost was identified a second simulation 
run was conducted to test whether the sub peaks can be removed. 
The instruction trace was modified and the two bytes compared by 
each instructions were switched. This can be accomplished (in 
reality) by switching the locations of the two bytes in the data 
structure. Now the instruction that compares the first byte in the 
line (the first reference to the line) is 10 bytes prior to the second 
byte compared (referenced) in the line. With these bytes switched, 
the first reference will cause a cache miss (as before) however the 
second reference to the line will be to a byte that is 10 bytes after 
the miss location and be available on the same cycle, if contained 
in the first packet returned during a miss, or one packet (transfer) 
later. 
 
The simulator was rerun using the modified trace and data 
structure (MtDStr) and the spectrogram for the original run and 
modified data structure are shown in Figure 11. Most of the two 
spectrograms overlap along the X axis between miss values of 0 to 
70 cycles. This should be expected because the L2 bussing 
strategy was not changed between the two simulation runs. 
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Figure 11 Spectrogram for OLTP3 with Location of Compare Bytes Switched
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However, notice the change in the shape of the spectrogram 
between 75 cycles to 110 cycles is all three graphs. The sub peaks 
from the original run are gone and more misses now have a cost 
near 75 cycles, the miss latency for a L3 hit. The results show that 
swapping the locations of the bytes compared reduces the cost of 
the targeted misses and the sub peaks are removed. Recall, this 
instruction sequence was identified through the use of the miss 
spectrogram. 

 

We should offer a few comments regarding this experiment. First, 
we only changed the addresses generated (compared) by two 
instructions and the results are clearly visible in the corresponding 
spectrogram. The total number of misses for each simulation run 
was virtually the same, however, the sub peaks from the original 
runs are gone and the peak at 75 cycles (for the new simulation 
run) grew indicating that the cost for these misses is shifted to the 
nominal miss penalty (latency) for an L3 hit. Second, individual 
misses can be identified and investigated using the miss-cost 
report or the cost analysis report. For example, a software 
designer can  list the ‘top 100 instructions’ that caused the most 
misses (by cost). Once an instruction or miss is identified, a cycle-
by-cycle trace will reveal the cause of the miss and miss cost. 
Substantial performance gains are possible even if only 10 to 20 
percent of the misses (from the top 100 instructions) can be 
optimized. For example, the performance gain in just this one 
example was approximately 0.2 %. Third, pipeline spectroscopy 
has both the accuracy and precision we need to measure the cost 
of even a single cache miss. Accuracy is demonstrated by having 
the ability to reconstruct the true total finite cache adder by 
adding the cost of each individual miss cluster. Precision is 
demonstrated by the repeatability of the readings. For example, in 
the experiment above the LTI for an L3 hit was modeled at 16, 24, 
and 32 cycles and a shift of eight cycles was observed for each 
LTI change in the sub peaks shown in Figure 11. 

 
In our next experiment we attempt to reduce the trailing edge 
penalty of a cache miss even further by modifying the order that 
the packets within a line are returned on the bus. That is, instead 
of returning packets in a fixed order (from the miss address, to the 
end-of-line address, then wrapping around to the beginning of the 
line) hardware is modeled that can transfer the line (packets) in 
the order they are referenced by the processor. Other mechanisms 
aimed at reducing the trailing edge penalty can be found in [25-
28]. These describe techniques that multiplex data on the bus 
from concurrent misses, or can remember the referencing pattern 
generated by the processor during a prior miss and can rearrange 
the returning packets to match the previous referencing pattern 
when the miss or instruction causing the miss repeats.  
In our scheme, we also have the ability to transfer the packets in a 
line in an out-of-order sequence. This applies to both L2 and L3 
hits. Obviously, this involves adding (modeling) hardware that 
recognizes the order that the bytes are referenced within a line and 
supplying the packet (within the line) on the next available bus 
cycle along with the packet address. If there is not a new reference 
to the line during the time the line is being transferred between 
caches, the line is transferred in the original order as described 
above (the next in order packet).  
 
Again we model the same L2, L3 and bus structure and model the 
three LTIs as before (16, 24, and 32 cycles). Figure 12 shows the 

before and after miss spectrogram for the OLTP3 workload for a 
miss cluster of size = 1. The modified data return is labeled MDR. 
The extent that this improves performance should be immediately 
visible by examining the shape of the miss spectrogram peaks 
centered at 15 (an L2 hit) and 75 (an L3 hit). Notice the change in 
the shape of the right shoulder for each peak, indicated a change 
in the trailing edge penalty. In each graph, the right shoulders for 
the peaks at 15 and 75 are reduced and more misses are shifted to 
have a nominal 15 or 75 cycle miss penalty. 
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Figure 12  Modified Data Return for OLTP3
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Each workload described in Section 4 was rerun though the 
simulator using the modified data return mechanism described 
above. Figure 13 shows the overall performance impact for the six 
workloads studied. The performance improvements of changing 
the order that the line is returned increases as the number of 
cycles to transfer a line increases from 16, to 24, and 32 cycles. 
Depending on the LTI, performance improvements range from 
.5% to over 8%.  
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7. SUMMARY 
A new technique has been presented for calculating the cost of a 
miss and displaying images that represent their cost. We call this 
technique pipeline spectroscopy. The underlying principles of this 
technique are very simple: the cost of a miss can be determined by 
knowing the finite cache and infinite cache execution times for the 
same sequence of instructions. The difference between these two 
times is the cost of the miss (cluster).  
 
We used this principle to produce a miss spectrogram, which 
represents a precise readout of the cost of every miss throughout 
all levels of the memory hierarchy. A miss spectrogram has 



enormous value in analyzing the performance of an application or 
microarchitecture. Detailed analysis of a spectrogram leads to 
insights in pipeline dynamics, including effects due to 
prefetching, bus queueing, and underlying architectural features 
that allow or inhibit memory level parallelism. 
 
In this study, we have demonstrated that pipeline spectroscopy 
can be used to explore the amount of memory level parallelism an 
application can achieve. Two examples were presented using the 
information contained in a spectrogram. The first identified 
software abnormalities and helped produce a more optimal data 
layout. The second identified bus queueing and miss processing 
stalls. Armed with this information hardware and software 
designers can devise solutions and evaluate performance 
improvements. Future work is needed to study in-order versus 
out-out-order effects on MLP, as well as SMT processor 
organizations, in addition to the shape of a spectrogram (left and 
right shoulders), and positions of each peak (and sub-peak). 
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9. APPENDIX A 

We prove there are 
C + N

C  possible miss penalties in a cluster 
of C misses with a memory hierarchy of N levels (L1, L2, ..., LN, 
and memory) with N distinct (non-multiple) miss latencies. Let 
each level of the memory hierarchy be represented by a distinct 
(non-multiple) number, there are N of them. We represent this 
problem as sampling with replacement to determine the number of 
unique combinations (sums) using these numbers. It is sampling 
with replacement because there is an inexhaustible supply of miss 
latencies regardless of the cluster size. We use the notation 

N
C  to denote N items choose C (the cluster size) for sampling 

with replacement. The problem can then be expressed as 
determining the number of unique sums from N items as we vary 

the number of picks from 0 to C.                  

� N
i

0�i�C=
N
0

+
N
1

+
N
2

+
N
3

+,...,+
N
C            (1a).  

Note that i and C can be greater that N in (1a) because sampling is 
done with replacement. 

From [29]   

N
k

= N + K − 1
K

 so we can rewrite (1a) as 
                           

N−1
0 + N

1 + N+1
2 + N+2

3 ... N+C−1
C       (2a) 

Also, from [29]        
N
k = N−1

k−1 + N−1
k                              (3a) 

So we can combine the first two terms of (2a) and obtain 
                                  

N+1
1 + N+1

2 + N+2
3 ... N+C−1

C                   (4a) 
Applying (3a) repeatedly the series collapses and the desired sum 

is produced 
C + N

C . 

 


