
An Analysis of the Effects of Miss Clustering
on the Cost of a Cache Miss

Thomas R. Puzak, A Hartstein, P. G. Emma, V. Srinivasan, Jim Mitchell

IBM – T. J. Watson Research Center
PO Box 218

Yorktown Heights, NY 10598
914-945-4360

trpuzak, amh, pemma, viji, jammitch @ us.ibm.com

ABSTRACT
In this paper we describe a new technique, called pipeline
spectroscopy, and use it to measure the cost of each cache miss.
The cost of a miss is displayed (graphed) as a histogram, which
represents a precise readout showing a detailed visualization of
the cost of each cache miss throughout all levels of the memory
hierarchy. We call the graphs ‘spectrograms’ because they reveal
certain signature features of the processor’s memory hierarchy,
the pipeline, and the miss pattern itself. Next we provide two
examples that use spectroscopy to optimize the processor’s
hardware or application’s software. The first example
demonstrates how a miss spectrogram can aid software designers
in analyzing the performance of an application. The second
example uses a miss spectrogram to analyze bus queueing. Our
experiments show that performance gains of up to 8% are
possible. Detailed analysis of a spectrogram leads to much greater
insight in pipeline dynamics, including effects due to miss cluster,
miss overlap, prefetching, and miss queueing delays.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design studies, Measurement
techniques, Modeling techniques, Performance attributes

General Terms
 Algorithms, Measurement, Performance

Keywords
Cache, Pipeline, Algorithm, Spectrogram

1. INTRODUCTION
In order to improve the performance of a processor or an
application, designers have increased the amount of parallelism
between the levels of the memory hierarchy. This area of research,
termed memory-level-parallelism (MLP) has been explicitly
studied in [1, 2 ,3] while early studies focused on modeling and
evaluating performance with ILP processors [4, 5, 6]. Chou, et. al.
[7, 8] studied several techniques (out-of-order, runahead, value

prediction, prefetching, and store handling optimization) for
increasing MLP in applications that are dominated by memory
delays. They show that substantial amounts of performance gains
are possible by increasing the MLP in these applications. Qureshi
et al. [9] demonstrate that not all misses have the same cost and
measures miss parallelism to improve cache performance by
altering the replacement algorithm.

In this paper, we build on this work by describing a new
technique to measure the amount of parallelism between the
different levels of the memory hierarchy and describe a
mechanism for displaying images that permits the visualization for
the cost of a cache miss. We call this new technique ‘pipeline
spectroscopy’ and the graphs representing the miss cost a
‘spectrogram’. The graphs are called spectrograms because they
reveal certain signature features of the processor’s memory
hierarchy, the pipeline, and the miss pattern itself (e.g. amount of
overlap between misses in the miss cluster). Using pipeline
spectroscopy, we are able to measure the rate that misses are
satisfied from the different levels of the memory hierarchy and
quantify the cost of each cache miss. This quantification leads to a
much greater understanding of the amount of parallelism or
overlap that the micro architecture and application allow while a
miss is in progress.

Several mechanisms that measure the cost of a miss are described
in the patent literature [10-17]. Most embodiments describe the
difficulty in determining an accurate measure for the cost of the
miss and rely on hardware monitors to count events (cycles) that
indicate when the decoder or execution unit is delayed (stalled)
while waiting for an operand (data) to estimate this cost.
However, not all of these events contribute to the loss of
performance in a program. Today’s processors have superscalar
capabilities and parallel execution paths and a delay suffered in
one component of a processor can be overlapped with other
events to mask any loss due to the miss. For example, consider
two events occurring in parallel: a branch misprediction and a
cache miss. Simply counting the number of cycles an instruction
(in the decoder or execution unit) is stalled waiting on a miss is
not an accurate measure of the cost of the miss since many of the
stall cycles are already overlapped with the delays caused by the
branch misprediction.

Additional performance tools are described in: Dean et al. [18] a
technique for pairwise sampling used to track concurrent events to
measure performance, Fields et al. [19] use ‘shotgun profiling’
to construct dependence graphs and study the performance of an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CF’07, May 7–9, 2007, Ischia, Italy.
Copyright 2007 ACM 978-1-59593-683-7/07/0005...$5.00.

application, while Karkhanis et al. [20] use analytical models to
study the performance of concurrent events.

We apply pipeline spectroscopy to produce a cache miss
spectrogram which represents a precise readout showing a
detailed histogram (visualization) of the cost of each cache miss,
with and without overlap. Cache miss spectrograms are produced
by comparing instruction sequences and execution times that
occurred near a miss in a 'finite cache' simulation run to the same
set of instructions and their execution times in an 'infinite cache'
run. Cache misses are divided into clusters, and the miss penalty
associated with each cluster is determined by a two step process.
First, an upper and lower bound sequence of instructions is
identified that bounds each miss. Second, the cost of the miss
cluster is the difference (in time) between the finite cache and
infinite cache execution time of that specific instruction sequence.

Next we provide two examples that show how the information
displayed in a cache miss spectrogram can be used to optimize the
processor’s hardware or application’s software. The first
experiment uses a miss spectrogram to identify software
inefficiencies and describes solutions to improve performance.
The second example uses a miss spectrogram to highlight the
effects of bus queueing and describes a mechanism to improve
performance.

The rest of this paper is organized as follows: Section 2 contains
definitions and terminology. Section 3 describes constructing a
miss spectrogram. The simulation model is described in Section 4.
In Section 5 we measure the cost of a data miss. In Section 6 we
use the miss spectrogram to analyze software and hardware
performance problems and describe solutions to improve
performance. Summary and conclusions are discussed in Section
7.

2. PERFORMANCE TERMINOLOGY
The overall methodology used to calculate the cost of a miss and
the visualization process are explained as a prelude to analyzing a
miss spectrogram. First, the definitions and formulas used to
calculate the cost of a miss are described, then a description is set
forth relative to how misses cluster and affect the standard
operation of a high performance processor, followed by a
description of the visualization process.

The most commonly used metric for processor performance is,
“Cycles Per Instruction” (CPI). The overall CPI for a processor
system has two components: an “infinite cache” component
(CPIINF) and a “finite cache adder” (CPIFCA).

CPIOVERALL = CPIINF + CPIFCA (1)
CPIINF represents the performance of the processor in the absence
of misses (cache, and TLB). It is the limiting case in which the
processor has a first-level cache that is infinitely large and is a
measure of the performance of the processor’s organization with
the memory hierarchy removed. CPIFCA accounts for the delay due
to cache misses and is used to measure the effectiveness of the
memory hierarchy.

The “memory adder” term, CPIFCA, can be expressed as the
product of an event rate (specifically, the miss rate), and the
average delay per event (cycles lost per miss):

 CPIFCA = (Misses
Instruction)(Cycles

Miss) (2)

Substituting for CPIFCA in (1), the overall performance for a
processor can be expressed as:

CPIOVERALL = CPIINF +(Misses
Instruction)(Cycles

Miss) (3)
By rearranging this formula, the average cost of a cache miss can
be calculated. That is

Cycles
Miss = (CPIOVERALL − CPIINF) Instructions

Miss (4)

We use this formula to calculate the amount of time (cycles) a
processor loses due to each cache miss. The following example
illustrates calculating cycles per miss using Equation 4. Consider
an application whose entire run length is one million instructions
and a processor where each cache miss is satisfied from the L2
that is 20 cycles away. If an infinite cache simulation run takes

one million cycles(CPIINF = 1), and a finite cache simulation
run takes 1.3 million cycles, then cache misses account for

300,000 cycles and the total CPI = 1.3 and CPIFCA=.3. If
the finite cache simulation run generates 25,000 misses, then

(Misses
Instruction) = 25,000

1,000,000 = 1
40 and (Cycles

Miss) = 300,000
25,000 = 12.

By applying this equation over the entire length of an application,
the average cost for all misses can be calculated.

In the example above, we applied Eq. 4 macroscopically to
calculate the average cost of a miss over the total run time of an
application. However, Eq. 4 can also be used microscopically to
calculate the cost of a single miss. We will take a microscopic
approach in using Eq 4 to calculate the cost of each miss and
produce a miss spectrogram. As presented in Section 5, the
information contained in a miss spectrogram represent the cost of
all misses throughout all levels of the memory hierarchy,
including the amount of overlap (parallelism) achieved between
any two misses.

3. MAKING MISS SPECTROGRAM
A description of how misses can cluster and affect the
performance of a processor is now described. Figure 1 shows the
same five instructions executed as both an 'infinite cache'
sequence of instructions and a 'finite cache' sequence of
instructions. In the finite cache sequence, the instruction decode
times are shown in bold and instruction completion or EndOp
times are shown in parenthesis. In the infinite cache run only the
instruction decode times (in bold) are shown. Associated with the
finite cache run are two miss clusters, where a ‘miss cluster’ is a
continuous interval of time characterized by at least one miss in
progress at all times. The size of the miss cluster is the number of
misses that started during this interval. In the finite cache run, the
first miss cluster has three misses with overlap (size = 3) and the
second miss cluster is size = 1 (a miss in isolation). The time to
process the first miss cluster (in the finite cache run) is bounded
by the decode time for instruction I1 and the EndOp time of I3,
(I3EndOp - I1Decode)Finite Cache time. Instruction I1 represents the
greatest lower bound of the miss cluster, while instruction I3 is
the least upper bound of the cluster.

No Miss
Activity

I1 I2 I3 I4 I5

 I1 I2 I4 (I5)

miss miss missmiss

time

time

infinite cache

finite cache

����������	
�����	
�

(I2)I3 (I4)I5

Miss Cluster Size = 3
Miss Cluster Size = 1

Miss Cluster Size = Number of Misses During Miss Facility Busy Interval

(I1) (I3)

Figure 1. Miss Cluster Patterns for an Application, Cluster Sizes of 1 and
3 Misses are shown

We call these points (instructions) the infimum and supremum of
the miss cluster. By convention, the infimum of a miss cluster is
the last instruction that decoded just prior to the beginning of the
first miss in the miss cluster and the supremum is the first
instruction that completed (EndOp) just after the last miss in the
miss cluster finished. Similarly, the infimum of the second miss
cluster is instruction I4 and the supremum is I5. The time to
process the second miss cluster is then (I5EndOp - I4Decode)Finite

Cache. To calculate the amount of delay associated with the first
miss cluster we must subtract the amount of time to process the
same set of instructions in an infinite cache run from the finite
cache run. That is, [(I3EndOp - I1Decode)Finite Cache - (I3EndOp -
I1Decode)Infinite Cache] equals the number of cycles the pipeline was
stalled due to the first miss cluster. Similarly, the amount of delay
associated with the second miss cluster is [(I5EndOp -
I4Decode)Finite Cache - (I5EndOp - I4Decode)Infinite Cache].

The reader will note that in the derivation above and in the
equations presented in Section 2, no mention was made as to
whether the processor is in-order or out-of-order. That is because
out-of-order processing will not change the analysis. However, it
may affect the manner in which the infinite cache running times
for the sequence of instructions that surround a miss need to be
determined. For example, if instruction processing is from an out-
of-order processor, it may be necessary to save the sequence of
instructions between the infimum and supremum of the miss
(from the finite cache run) and use this same sequence of
instructions (and their order) while determining the infinite cache
run time.

By applying the above technique repeatedly, we can calculate the
cost of a miss or miss cluster for an entire application. Both in-
order and out-of-order processors can be evaluated this way. In
the example above, I1, I2, and I3 can even be from three different
threads running on a multithreaded processor (or three out-of-
order instructions), but as long as the same three instructions (and
their order) are used to determine the infinite cache run time, the
cost of the miss cluster can be determined.

There are certain boundary conditions that must be considered
when determining the infimum and supremum of a miss cluster.
For example, the infimum of a miss cluster can only be
established after the supremum of the previous miss cluster has
been determined. This ensures that one miss cluster is terminated

before another starts. If the upper and lower bounds of a miss
cluster cannot be uniquely established, the two adjoining miss
clusters are combined into a larger miss cluster.

Also, when determining the infinite cache running time for an
instruction sequence that occurred during a miss cluster, it may be
necessary to prime the processor’s pipeline with some of the
instructions that occurred prior to the infimum instruction. This
ensures that the correct execution and EndOp times of the
infimum instruction are preserved as it passes through the
processor’s pipeline. By grouping misses according to their
cluster size and calculating the delay associated with a miss
cluster (number of stall cycles) using the method described above,
the amount of time a processor loses due to cache misses is
produced.

4. SIMULATION METHODOLOGY
To date, pipeline spectroscopy has been implemented in three
proprietary processor simulators. Each simulator has produced
results similar to those shown in Sections 5 and 6 below. Each
Simulator is cycle accurate and has been thoroughly validated
against existing hardware. The processor model used in this paper
is shown in Figure 2 and described in [21, 22], is a 4 issue
superscalar, with address generation and cache access an
independent out-of-order process. We use trace tapes produced

for the IBM zSeries processor family. Instructions that typically
produce addresses (LA, BXLE, SLL, SRL, ...) are pre-executed
after the decode stage of the pipeline to avoid future pipeline
stalls due to address interlocks. Loads are executed as soon as the
datum fetched returns from the cache and the results are
forwarded to all dependent instructions. The instruction window
was set at 32 entries. Separate L1 instruction and data caches were
modeled at 64 KB, the L2 size varies from 256K to 1 MB, and the
L3 (when modeled) was varied from 1 MB to 4 MB. This
processor model was chosen to illustrate the technique used to
construct a spectrogram, and does not represent any existing or
planned processor design. In our initial studies, Endop and those
instructions not pre-executed after the decode stage are completed
and executed in-order. Future work is planned to measure the
benefits of prefetching, SMT and SMT out-of-order execution.

 ����� � �� �� ��

� � � � � 	

���� �� � �� � �
� ���

� �

� �

F ig . 2 s h o w s th e p ip e lin e m o d e le d in th is s tu d y . T h e s ta g e s
in c lu d e : D e c o d e , R e n a m e , A g e n Q , A g e n , C a c h e A c c e s s ,
E x e c u te Q , E x e c u te , C o m p le tio n a n d R e tire .

We use instruction traces produced for the IBM zSeries processor
family. In order to stress different levels of the memory hierarchy
(L1, L2 or L3), we use applications with large instruction and
data footprints capable of stressing caches up to 4 Megabytes.
Typically, commercial database applications have these
characteristics [7]. In our study, we use six workloads drawn from
database workloads, SPEC 2000, and a C++ application. We use

three proprietary commercial database applications running on
zSeries servers, (oltp described in [23, 24] and oltp2, and oltp3);
mcf, from SPEC 2000, SPECjbb 2000, and perf1 [23, 24] a large-
processor simulator written in C++. Typically, trace lengths are 5
to 100 million instructions. The simulation environment can
handle all of the SPEC suite; the application subset used for this
work was chosen for its ability to stress L2 and L3 cache usage.

5. DATA MISS SPECTROGRAM
In order to examine the miss spectrogram for data misses alone,
we model an infinite or perfect instruction L1 cache, and set the
data L1 cache to 64KB. The L2 is set to 256KB with a 15 cycle
latency, and set L3 latency to 100 cycles. All L2 misses are
resolved in the L3. The line size and bus width are set at 128
bytes. No data prefetching was modeled. In fact, data prefetching
is very difficult for many of these applications.

Using the techniques described above, Figure 3 shows the miss
spectrogram for the oltp workload. The overall hit ratio of the L2
was approximately 50%. The miss spectrograms for cluster sizes =
1, 2, 3, and 4 are shown. The X axis represents the cost of the
miss cluster in cycles. The Y axis shows the percent of misses
with that cost.

0 15 30 45 60 75 90 105 120 135 150 165

cluster=1

0%

5%

10%

15%

20%

25%

30%

P
er

ce
n

t

0
15

30
45

60
75

90
105

120
135

150
165

180
195

210
225

cluster=2

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

P
er

ce
n

t

0
25

50
75

100
125

150
175

200
225

250
275

300
325

350

cluster=3

0%

1%

2%

3%

4%

5%

P
er

ce
n

t

0
25

50
75

100
125

150
175

200
225

250
275

300
325

350
375

400
425

450

cluster=4

0%

1%

2%

3%

4%

5%

6%

P
er

ce
n

t

15 Cycle L2, 100 Cycle L3

Fig 3, Miss Spectrogram for OLTP, L1=64K, L2=256K, Infinite L3

The cluster =1 plot (in Figure 3) shows two peaks. The first peak
is centered near 15 cycles (the L2 miss latency), and the second
peak is near 100 cycles (the L3 miss latency). The integral of the
areas under each peak is the percentage of L1 misses resolved in
the corresponding level of the memory hierarchy (i.e., the hit rates
for the L2 and L3, or 50% in each).

The cluster size = 2 plot shows peaks at 15 and 30, 100 and 115,
and 200 cycles. Each peak represents the amount of overlap
between two misses. Integrating the area under each peak, we see
that the costs are centered around 15, 30, 100, 115 and 200 cycles
and have probabilities of .138, .168, .288, .191, and .215,
respectively.

The peaks at 15 and 30 represent two L1 misses that both hit in
the L2 but highlight two distinctively different outcomes. In the
first case (peak at 15), both misses had a high degree of overlap
(MLP) and the overall cost was approximately the L2 miss latency

while in the second case there was little overlap and the cost of
the miss cluster was the sum of two L2 hits.

The peak at 100 again identifies two misses that were overlapped
(had a high degree of MLP). Whether it was two misses that hit in
the L3, or one miss that hit in the L2 and one that hit the L3, the
overall cost of the misses in the cluster was just the L3 miss
latency.

The peak at 115 identifies two misses that had little or no overlap.
Here, one miss hit in the L2 and one miss hit in the L3 but the
cost of the miss cluster was the sum of the individual miss
latencies. Finally, the peak at 200 identifies two misses that were
resolved in the L3 and there was little overlap.

The peaks in the cluster = 3 graph represent all of the hit/miss
combinations (with and without overlap) of length 3 using the two
miss latencies (15, 100) for the L2, and L3. For example, the
peaks at 15, 30, and 45 present three L2 hits where two misses
were overlapped, one miss was overlapped or no miss was
overlapped with the other misses in the cluster. However, the peak
at 300 represents three L3 hits with little overlap. Obviously, three
dependent misses that are resolved in the L3 can cause this miss
penalty. Finally, the peaks in the cluster = 4 graph show all of the
hit/miss, overlap/no-overlap, combinations of length 4 using the
miss latencies 15 and 100.

Each peak represents the amount of time the group of cache
misses (cluster) stalled the pipeline. By summing the ‘stall cycles’
calculated for each miss cluster, we can reconstruct the finite-
cache-adder for the entire run, one cluster at a time. In many cases
this involves summing the delay associated with 10s of thousands
to over 100,000 miss clusters. Using this technique, we have
always been able to calculate the total finite-cache-adder to within
5% (one cluster at a time), and in many cases the error is less than
2%. This shows how accurately we can identify miss clusters and
evaluate their costs.

Prefetching and bus delays can change the shape of the peaks in a
spectrogram. Prefetching can broaden the left shoulder of any
peak and show the degree that a prefetch is being issued in
advance of the nominal miss penalty. Queueing and bus delays
can increase the right shoulder of a peak, adding miss latency.

Figure 4 plots cluster size versus the amount of misses that
occurred in that cluster. Even though the maximum miss cluster
for the run was well over 1000 misses, typically the average miss
cluster size is much smaller. For example, over 80% of the misses
occur to miss clusters of size 6 or less and over 40% of the misses
are a miss in isolation. This was observed for most applications
used in this study.

1 2 3 4 5 6 7 8 9 10

Cluster Size

0

0.1

0.2

0.3

0.4

0.5

F
ra

ct
io

n
of

 M
is

se
s

Misses By Cluster Size

F i g u r e 4 . M i s s e s b y C l u s t e r S i z e

Figure 5 plots the average cost of a miss versus cluster size.
Notice how the average miss penalty decreases as the cluster size
grows. The slope of the line indicates the degree that miss
parallelism or miss overlap is occurring. Obviously, the greater
the amount of miss overlap the greater the slope of the line. In this
example the cost of a miss at a cluster size = 10 is approximately
two thirds the cost of an isolated miss. This is far less than the
potential for complete overlap.

1 2 3 4 5 6 7 8 9 10

Cluster Size

25

30

35

40

45

50

55

60

65

C
yc

le
s

P
er

 M
is

s

F igure 5 Average Cycles Per M iss Versus C luster S ize

Next, we repeat the above experiment but use the oltp2 workload
with the following memory hierarchy: data L1=64KB, L2=256KB
15 cycle latency, L3=1MB 75 cycle latency, and 300 cycle
memory latency. Figure 6 shows the data miss spectrogram for
cluster sizes = 1, 2, and 3.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900
0%

4%

8%

12%

P
er

ce
n

t Cluster Size = 2

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900
0%
1%
2%
3%
4%
5%
6%

P
er

ce
n

t

Cluster Size = 3

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 9000
0%

5%

10%

15%

20%

P
er

ce
n

t Cluster Size = 1
L2 = 15 Cycles
L3 = 75 Cycles
Memory = 300 Cycles

Figure 6. Data Miss Spectrogram for OLTP2, L1=64K, L2=256KB 15 Cycle Latency, L3=1Meg
75 Cycle Latency, Memory = 300 Cycle Latency

The cluster = 1 plot shows three peaks. The first peak is centered
near 15 cycles (the L2 miss latency), the second peak is near 75
cycles (the L3 miss latency) and the third peak at 300 cycles (the
memory latency). Integrating the area under each peak is
approximately the hit ratio (regarding L1 misses) for that level of
the memory hierarchy (i.e. the hit ratios for the L2, L3, and
memory). Examining the plots for cluster sizes equal 2 and 3, we
see that they show all of the hit/miss, overlap/no-overlap
combinations of length 2 and 3 using the 3 miss latencies: 15, 75
and 300. Obviously the peak at 15 for the cluster size = 3
indicates a great deal of overlap among the three misses.
However, the peak at 390 (for cluster size =3) indicates very little
overlap among the three misses. Here, one miss was resolved in
the L2, one in the L3, and one went to memory but the total miss
penalty for the whole cluster is the sum of the individual miss

latencies (15, 75, and 300). Similar hit/miss patterns and
overlap/no-overlap conclusions can be drawn for examining any
peak in the miss spectrogram.

We will refer to spectrograms like the one shown in Figure 6 as
the ‘canonical’ representation for the cost of a miss in a multilevel
memory hierarchy. It is a canonical form because it represents the
most general form (combinations) of the miss patterns in a
memory hierarchy. Obviously, prefetching and bus queueing can
alter the miss patterns, and costs. By including the possibility of a
peak at zero, a miss spectrogram can have all possible
combinations of the miss latencies from each level of the memory
hierarchy for a given cluster size. We show in Appendix A that for
a memory hierarchy with N cache levels (L1, L2, L3,..., LN,
memory) and a miss cluster of size C, there are

C + N
C (5)

possible penalties (peaks) that characterize the canonical form
hit/miss and overlap patterns. A peak at zero has the physical
meaning that a miss or cluster of misses has zero delay.
Prefetches, if issued far enough in advance of their use,
speculative misses that do not interfere with any other cache
accesses, or unused prefetches have the possibility of causing zero
delay. Using (5), and the memory hierarchy described in Figure 6,
we see that plotting miss clusters of size 4, 5, and 6 could have
35, 56, and 84 peaks, respectively.

Each of the spectrograms above aids the hardware/software
designer by measuring the cost of a miss and by identifying
potential performance bottlenecks. For example, merely
identifying that an instruction is always causing a cache miss is
not sufficient to identify a performance problem. Consider a
processor with the following memory hierarchy: L1, L2, and
memory with latencies of 15 cycles for an L2 hit, and 300 cycles
for a miss to memory.

Now consider a three miss cluster where all three misses are
resolved in the L2 (L2 hits). If a software designer identifies that
an instruction is always causing a miss and the cost of the miss
cluster is 15 cycles, there is probably little benefit in removing
(improving) the miss latency associated with those instructions
since two out of the three misses are overlapped. However, if the
cost of the miss cluster is 45 cycles, then very little of the miss
latency is overlapped and it is probably worth the effort to
investigate the source code to improve performance. Pipeline
spectroscopy gives this information.

6. SPECTROGRAM ANALYSIS
In this section we provide two examples that use the information
displayed in a cache miss spectrogram to optimize the processor’s
hardware or application’s software. The first experiment
demonstrates how a miss spectrogram can aid software designers
in analyzing the performance of an application. The second
example uses a miss spectrogram to analyze hardware
performance.

 Each experiment highlights the effects that bus queueing has on
performance. Bus queueing can occur whenever the linesize of
the cache is greater than the bus width and multiple cycles are
needed to transfer a line between levels of caches during a miss.
We begin by defining the terms that will be used throughout this

section. Bus queueing time is lengthened whenever the bandwidth
between cache levels is decreased or the bus frequency ratio is
increased.

Term Definition
Bus Width The number of bytes moved in or out

of the cache per cycle during a miss.
Packet Subsection of cache line. Equals size

of bus width (in bytes). Multiple
packets makeup a cache line

Packets Per Line The ratio of cache linesize to bus
width (packet size). This is also the
number of bus cycles needed to move
a line between levels of the memory
hierarchy

Miss Latency Number of cycles before first data
(packet) returned after a cache mss is
detected

Leading Edge penalty Once a cache miss is detected, amount
of time the processor stalls waiting for
the first data (packet of line) to
returned.

Trailing Edge Penalty The observed cost of caching the
remainder of the cache line after first
packet is returned. The trailing-edge
penalty would be zero if the entire line
could be returned and installed in the
cache in a single cycle. However, few
designs can afford the implied luxuries
of a line-wide data-return bus and
cache-write capability.

Bus Frequency Ratio The ratio of the processor frequency to
the bus frequency. It is determined by
logic speed, packaging and power
limits.

Line Transfer Interval
(LTI)

The number of processor cycles
needed to move a cache line (Packets)
on the bus and equals bus frequency
ratio times the packets per line.

The baseline processor organization and memory hierarchy are
described in Table 1. The L2 is set at 512 KB with a 15 cycle
latency with an infinite size L3 set at 75 cycles (i.e. all L2 misses
are resolved at the L3, 75 cycles away). A 256 byte line size is
modeled throughout all three levels of the memory hierarchy. We
consider an on-chip L2 and configure the bus connecting the L1
and L2 to be able to move 32 bytes each processor cycle. Thus the
LTI for an L2 hit is 8 cycles.

L 1 C a c h e
C o n fig u ra tio n

S p lit I a n d D e a c h 6 4 K B , 4 W a y
S e t A s s o c ia t ive 2 5 6 B yte L in e 2
C yc le a c c e s s

L 2 C a c h e
C o n fig u ra tio n

U n if ie d 1 /2 M e g , 8 -W a y S e t
A s s o c ia tv ie , 2 5 6 b y te L in e , 1 5
c yc le a c c e ss

L 3 C a c h e
C o n fig u ra tio n

4 M e g , 8 -W a y S e t a c c o c ia tiv e ,
2 5 6 b yte lin e , 7 5 c yc le a c c e s s

P ro c e s so r P ip e lin e 4 is su e s u p e rs c a la r ,
o u t-o f-o rd e r a d d re s s g e n e ra t io n
a n d c a c h e a cc e s s , in -o rd e r
e xe c u tio n , 3 2 e n try in s tru c tio n
w in d o w

Ta b le 1 B a s e lin e P ro c e s s o r C o n fig u ra t io n

We consider an off-chip L3 with a 32 byte bus and consider three
different line transfer rates for an L3 hit: 32 bytes are transferred
(from the L3 to the L2 and L1) every other cycle, every third
cycle, or every fourth cycle. Thus it takes 16, 24, or 32 cycles to
transfer a line from the L3 to the L2 and L1 (on a L3 hit).

Figure 7 shows a miss spectrogram for OLTP3 for cluster size= 1
using the three different LTIs for L3 hits. Immediately visible, in
all three graphs, is the similarity in the peaks centered at 15
cycles (an L2 hit). Recall the L2 is on chip and all three processor
configurations deliver 32 bytes every cycle for an L2 hit. Each
graph has a small left shoulder (at 15 cycles) and shows some
misses costing as low as 8 cycle (leading edge penalty). However,
the right shoulder is much larger (in area) than the left shoulder
with many misses costing more than the 15 cycle miss latency.
Also notice, the peak at 75 cycles is different in the three graphs.
The right shoulder grows as the line transfer interval grows from
16 cycles, 24 cycles, to 32 cycles. There are two very
distinguishable sub peaks in the right shoulder of the three graphs.
The spectrogram for a 16 cycle LTI has sub peaks at 84 and 90
cycles. Similarly the spectrograms for the 24 and 32 cycle LTIs
have sub peaks at 92 and 98 cycles, and 100 and 108 cycles,
respectively. Notice, as the line transfer intervals grows the sub
peaks correspondingly shift eight cycles to the right.

0 10 20 30 40 50 60 70 80 90 100 110 120

Cycles Per Miss

0%

5%

10%

15%

20%

P
er

ce
nt 24x32

24 Cycle Line Transfer Interval (32 Bytes Every Third Cycle)

0 10 20 30 40 50 60 70 80 90 100 110 120

Cycles Per Miss

0%

5%

10%

15%

20%

P
er

ce
nt 16x32

16 Cycle Line Transfer Interval (32 Bytes Every Other Cycle)

0 10 20 30 40 50 60 70 80 90 100 110 120

Cycles Per Miss

0%

5%

10%

15%

20%

P
er

ce
nt

32x32

32 Cycle Line Transfer Interval (32 Bytes Every Fourth Cycle)

Figure 7, Cluster Size = 1 Miss Spectrogram for OLTP3 fofr 16, 24, and 32
Cycle Trailing Edge

In order to investigate the cause of these sub-peaks, we use two
reports that are produced during a spectroscopy run: the Miss-
Cost report and Cost-Analysis report1. Figure 8 gives an example
of a small portion of the Miss-Cost report for the 24 cycle LTI
spectrogram. It lists every miss by cluster size, cost, infimum and
supremum instruction on the trace, miss address and instruction
address that make up the miss spectrogram.

1In the analysis that follows we investigate the cause of the sub
peak at 98 cycles shown in the 24 cycle LTI spectrogram. The sub
peak at 92 cycles is caused by a similar addressing pattern and
discussions regarding its removal are omitted for brevity (but
accomplished in the same manner).

Cluster Size Cost Infimum Supremum Miss Inst Inst
 Num Inst Inst Address Address Number

27973 1 98 348389 348417 20B1FA20 000668EC 348389

27984 3 75 348421 348449 20C1FD20 00066EEC 348421
27984 3 75 348421 348449 20C1FE40 00066EEC 348433
27984 3 75 348421 348449 20C1FF00 00066EEC 348441

Figure 8. Miss Cost Report For OLTP3

Figure 9 shows the Cost-Analysis report. It summarizes all misses
according to the instruction that generated the miss and sorts them
by frequency (number of times the instruction generated a miss)
and by cost (total cost of misses). The top five

Highest count items:
ASID Inst Addr Count % of Total
012E 93DAA 4410 0.49%
0134 9CDAA 3854 0.43%
0146 3B46E 3023 0.34%
0146 9724EA6 2596 0.29%
012E 3CF3DD62 2444 0.27%

Highest cost items:
ASID Inst Addr Total Cost % of Total
0146 9724EA6 144045 0.33%
0146 3BE10A3E 142423 0.32%
0146 3BE10A02 139804 0.32%
0146 96F2A68 136345 0.31%
012E 93DAA 125253 0.28%

Figure 9 Cost Analysis Report for OLTP3
instructions generating the most misses (by frequency) along with
their address-space-identifier (ASID) are shown on the left, while
the top five instructions generating the most miss cost are shown
on the right. Notice that the instruction positions change when
sorted by frequency and then by cost. That is, only two of the
instructions that produced the most misses (when sorted by
frequency) are in the top five instructions that produced the most
cost (when sorted by miss cost). Obviously, software tuning
would focus on miss-penalty cost rather than miss frequency
because most of the cost of a miss can be overlapped with another
miss if it occurs in parallel with other misses. This was clearly
highlighted in Figures 3 and 6 when examining cluster size 3
misses and observing miss penalty peaks at 15, 30, and 45 cycles.

Returning back to Figure 8, the file was sorted on cost and cluster
size and misses that make up the sub peak at 98 cycles were
identified. Once the infimum and supremum instructions on the
trace are known, the simulation run is repeated and a detailed
cycle-by-cycle instruction trace (report) is produced highlighting
the events that occurred during the miss.

Examination of the cycle-by-cycle traces shows that the sub peaks
were caused by two byte-compare instructions, two instructions
apart. Figure 10 illustrates the cause for this cost. The miss
address (generated by the first byte compare) was to the 6th 32
byte packet of a 256 byte line. This is the first packet that is
returned on the bus when processing the miss. During the miss,
packets are returned in increasing order (starting from the miss
address) until the end of the line is reached, then processing
continues to the beginning of the line until the entire line is
transferred. Thus, the 8 packets that make up the line are returned
in the following order: 6, 7, 8, 1, 2, 3, 4 and 5.

The next reference to the line (the second compare instruction,
two instructions later) is 10 bytes prior to the miss address and
depending on byte alignment is to the preceding 32 byte segment
(the 5th packet) in the line. The targets of both compares are
referenced using a common base register (data structure) and these
two compare instructions always referenced two different bytes,
10 bytes apart. Since the packets in the line are returned in

ascending order until the end-of-line is reached then wrapping
around to the beginning of the line, the packet containing the
second byte will not be available on the bus until the entire line is
transferred to the cache (when they are not in the same packet).
This accounts for the 8 cycle sub peak shift as the TLI is increased
from 16, to 24, and 32 cycles. This instruction sequence occurred
repeatedly on the trace (hundreds of times) and depending on byte
alignment within a cache line would generate a miss cost of
approximately 75 cycles (if both bytes were contained in the same
32 byte packet) or 98 cycles if the two bytes were in neighboring
packets.

256 Byte Line

Eight 32 byte Packets

First Reference to Line Is Miss Address

Second Reference to Line 10 Bytes Prior to Miss

1 2 34 5 6 7 8

Transfer Order For
Eight 32 Byte Segments

1 2 3 4 5 6 7 8

From
Bus

Figure 10. Miss Pattern For 96 Cycle Cost Per Miss For OLTP3

Once the cause of the miss cost was identified a second simulation
run was conducted to test whether the sub peaks can be removed.
The instruction trace was modified and the two bytes compared by
each instructions were switched. This can be accomplished (in
reality) by switching the locations of the two bytes in the data
structure. Now the instruction that compares the first byte in the
line (the first reference to the line) is 10 bytes prior to the second
byte compared (referenced) in the line. With these bytes switched,
the first reference will cause a cache miss (as before) however the
second reference to the line will be to a byte that is 10 bytes after
the miss location and be available on the same cycle, if contained
in the first packet returned during a miss, or one packet (transfer)
later.

The simulator was rerun using the modified trace and data
structure (MtDStr) and the spectrogram for the original run and
modified data structure are shown in Figure 11. Most of the two
spectrograms overlap along the X axis between miss values of 0 to
70 cycles. This should be expected because the L2 bussing
strategy was not changed between the two simulation runs.

0 10 20 30 40 50 60 70 80 90 100 110 120
0%

5%

10%

15%

20%

P
er

ce
nt

24x32
MtDStr

0 10 20 30 40 50 60 70 80 90 100 110 1200
0%

5%

10%

15%

20%

P
er

ce
nt

16x32
MtDStr

0 10 20 30 40 50 60 70 80 90 100 110 120

Cost of Miss

0%

5%

10%

15%

20%

P
er

ce
nt

32x32
MtDStr

Figure 11 Spectrogram for OLTP3 with Location of Compare Bytes Switched

Cluster Size = 1

Cluster Size = 1

Cluster Size = 1

However, notice the change in the shape of the spectrogram
between 75 cycles to 110 cycles is all three graphs. The sub peaks
from the original run are gone and more misses now have a cost
near 75 cycles, the miss latency for a L3 hit. The results show that
swapping the locations of the bytes compared reduces the cost of
the targeted misses and the sub peaks are removed. Recall, this
instruction sequence was identified through the use of the miss
spectrogram.

We should offer a few comments regarding this experiment. First,
we only changed the addresses generated (compared) by two
instructions and the results are clearly visible in the corresponding
spectrogram. The total number of misses for each simulation run
was virtually the same, however, the sub peaks from the original
runs are gone and the peak at 75 cycles (for the new simulation
run) grew indicating that the cost for these misses is shifted to the
nominal miss penalty (latency) for an L3 hit. Second, individual
misses can be identified and investigated using the miss-cost
report or the cost analysis report. For example, a software
designer can list the ‘top 100 instructions’ that caused the most
misses (by cost). Once an instruction or miss is identified, a cycle-
by-cycle trace will reveal the cause of the miss and miss cost.
Substantial performance gains are possible even if only 10 to 20
percent of the misses (from the top 100 instructions) can be
optimized. For example, the performance gain in just this one
example was approximately 0.2 %. Third, pipeline spectroscopy
has both the accuracy and precision we need to measure the cost
of even a single cache miss. Accuracy is demonstrated by having
the ability to reconstruct the true total finite cache adder by
adding the cost of each individual miss cluster. Precision is
demonstrated by the repeatability of the readings. For example, in
the experiment above the LTI for an L3 hit was modeled at 16, 24,
and 32 cycles and a shift of eight cycles was observed for each
LTI change in the sub peaks shown in Figure 11.

In our next experiment we attempt to reduce the trailing edge
penalty of a cache miss even further by modifying the order that
the packets within a line are returned on the bus. That is, instead
of returning packets in a fixed order (from the miss address, to the
end-of-line address, then wrapping around to the beginning of the
line) hardware is modeled that can transfer the line (packets) in
the order they are referenced by the processor. Other mechanisms
aimed at reducing the trailing edge penalty can be found in [25-
28]. These describe techniques that multiplex data on the bus
from concurrent misses, or can remember the referencing pattern
generated by the processor during a prior miss and can rearrange
the returning packets to match the previous referencing pattern
when the miss or instruction causing the miss repeats.
In our scheme, we also have the ability to transfer the packets in a
line in an out-of-order sequence. This applies to both L2 and L3
hits. Obviously, this involves adding (modeling) hardware that
recognizes the order that the bytes are referenced within a line and
supplying the packet (within the line) on the next available bus
cycle along with the packet address. If there is not a new reference
to the line during the time the line is being transferred between
caches, the line is transferred in the original order as described
above (the next in order packet).

Again we model the same L2, L3 and bus structure and model the
three LTIs as before (16, 24, and 32 cycles). Figure 12 shows the

before and after miss spectrogram for the OLTP3 workload for a
miss cluster of size = 1. The modified data return is labeled MDR.
The extent that this improves performance should be immediately
visible by examining the shape of the miss spectrogram peaks
centered at 15 (an L2 hit) and 75 (an L3 hit). Notice the change in
the shape of the right shoulder for each peak, indicated a change
in the trailing edge penalty. In each graph, the right shoulders for
the peaks at 15 and 75 are reduced and more misses are shifted to
have a nominal 15 or 75 cycle miss penalty.

0 10 20 30 40 50 60 70 80 90 100 110 120
0%

5%

10%

15%

20%

25%

P
er

ce
n

t

MDR
24x32

0 10 20 30 40 50 60 70 80 90 100 110 120
0%

5%

10%

15%

20%

25%

P
er

ce
n

t MDR
16x32

0 10 20 30 40 50 60 70 80 90 100 110 120

Cost of Misses

0%
5%

10%
15%
20%
25%

P
er

ce
n

t MDR
32x32

Figure 12 Modified Data Return for OLTP3

Cluster = 1

Cluster = 1

Cluster = 1

Each workload described in Section 4 was rerun though the
simulator using the modified data return mechanism described
above. Figure 13 shows the overall performance impact for the six
workloads studied. The performance improvements of changing
the order that the line is returned increases as the number of
cycles to transfer a line increases from 16, to 24, and 32 cycles.
Depending on the LTI, performance improvements range from
.5% to over 8%.

OLTP1 OLTP2 OLTP3 SPECJBB MCF PERF1

Workload

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%

P
er

ce
n

t
Im

p
ro

ve
m

en
t

16x32
24x32
32x32

Modified Data Return, Percent Improvement

F ig u re 1 3 P e rce n t Im p rov em e n t

7. SUMMARY
A new technique has been presented for calculating the cost of a
miss and displaying images that represent their cost. We call this
technique pipeline spectroscopy. The underlying principles of this
technique are very simple: the cost of a miss can be determined by
knowing the finite cache and infinite cache execution times for the
same sequence of instructions. The difference between these two
times is the cost of the miss (cluster).

We used this principle to produce a miss spectrogram, which
represents a precise readout of the cost of every miss throughout
all levels of the memory hierarchy. A miss spectrogram has

enormous value in analyzing the performance of an application or
microarchitecture. Detailed analysis of a spectrogram leads to
insights in pipeline dynamics, including effects due to
prefetching, bus queueing, and underlying architectural features
that allow or inhibit memory level parallelism.

In this study, we have demonstrated that pipeline spectroscopy
can be used to explore the amount of memory level parallelism an
application can achieve. Two examples were presented using the
information contained in a spectrogram. The first identified
software abnormalities and helped produce a more optimal data
layout. The second identified bus queueing and miss processing
stalls. Armed with this information hardware and software
designers can devise solutions and evaluate performance
improvements. Future work is needed to study in-order versus
out-out-order effects on MLP, as well as SMT processor
organizations, in addition to the shape of a spectrogram (left and
right shoulders), and positions of each peak (and sub-peak).

8. REFERENCES
[1] A. Glew, “MLP yes! ILP no!,” in ASPLOS Wild and Crazy

Ideas Session , October 1998.

[2] V. Pai and S. Adve, “Code Transformations to Improve
Memory Parallelism,” in 32nd International Symposium on
Microarchitecture, November 1999.

[3] H. Zhou and T. Conte, “Enhancing Memory Level Parallelism
via Recovery-Free Value Prediction,” in International
Conference on Supercomputing, June 2003.

[4] D. Sorin et al, “Analytic Evaluation of Shared-Memory
Systems with ILP Processors,” in 25th International
Symposium on Computer Architecture, 1998.

[5] V. Pai, P. Ranganathan and S. Adve, “The Impact of
Instruction- Level Parallelism on Multiprocessor
Performance and Simulation Methodology,” in International
Symposium on High Performance Computer Architecture,
February 1997.

[6] P. Ranganathan, K. Gharachorloo, S. Adve and L. Barroso,
“Performance of Database Workloads on Shared-Memory
Systems with Out-of-Order Processors,” in ASPLOS-VIII,
1998.

[7] Y Chou, B. Fahs, and S Abraham, “Microarchitecture
Optimizations for Exploiting Memory-Level Parallelism
Exploiting Memory-Level Parallelism” in 31st International
Symposium on Computer Architecture, 2004.

[8]Yuan Chou, Lawrence Spracklen, Santosh G. Abraham. “Store
Memory-Level Parallelism Optimizations for Commercial
Applications,” pp. 183-196, 38th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO'05),
2005.

[9] Moinuddin Qureshi, Daniel Lynch, Onur Mutlu, Yale Patt, “A
Case for MLP-Aware Cache Replacement” in 33rd
International Symposium on Computer Architecture, June
2006

[10] A. Zahir, V. Hummel, M. Kling, T Yeh, US. Patent
6,353,802, “Apparatus and Method for Cycle Accounting in
Microprocessors”

[11] B. Gaither, R. Smith, US Patent 6,892,173 B1, “Analyzing
Effectiveness of a Computer Cache By Estimating a Hit Rate
Based on Applying a Subset of Real-time Addresses to a
Model of the Cache”

[12] H. Ravichandran, US Patent 6,341,357 B1, “Apparatus and
Method for Processor Performance Monitoring”,

[13] R. Trauben, US Patent 5,594,864, “Method and apparatus for
unobtrusively monitoring Processor States and
Characterizing Bottlenecks in a Pipeline Processor Executing
Grouped Instructions”

[14] G. Brooks, US Patent 5,845,310 “System and Methods For
Performing Cache Latency Diagnostics in Scalable Parallel
Processing Architectures Including Calculating CPU Idle
Time and Counting Number of Cache Misses.

[15] W. Flynn, US Patent 6,256,775 B1, “Facilities For Detailed
Software Performance Analysis in a Multithreaded
Processor”

[16] F. Levine, B. McCredie, W. Starke, E. Welbon, US Patent
5,862,371, “Method and System for Instruction Trace
Reconstruction Utilizing Performance monitor outputs and
bus Monitoring”

[17] F. Levine, B. McCredie, W. Starke, E. Welbon, US Patent
5,894,575 “ Method and System for Initial State
Determination for Instruction Trace Reconstruction,

[18] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and G.
Z. Chrysos. ProfileMe : Hardware support for instruction-
level profiling on out-of-order processors. In MICRO'97:
pages 292--302, 1997.

[19] Brian A. Fields, Rastislav Bodik, Mark D. Hill, Chris J.
Newburn., Interaction cost and shotgun profiling. ACM
Transactions on Architecture and Code Optimization, Vol 1,
No. 3. Sept 2004.

[20] Tejas Karkhanis,James E. Smith, A First-Order Superscalar
Processor Model. Proceedings of the 31st ISCA. pages 338–
349, June 2004.

[21] A. Hartstein and T. Puzak. The optimum pipeline depth for a
microprocessor, 29th International Symposium on
Microarchitecture, pages 7-13 May 2002.

[22] A. Hartstein and T. Puzak. Optimum power/performance
pipeline depth. 36th Annual IEEE/ACM International
Symposium on Microarchitecture In MICRO, Dec. 2003.

[23] T. Puzak, P. Emma, A. Hartstein, V. Srinivasan, “When
prefetching Improves/Degrades Performance” Conference
On Computing Frontiers Proceedings of the 2nd conference
on Computing frontiers 2005, Ischia, Italy May 04 - 06,
2005.

[24] P. Emma, A. Hartstein, T. Puzak, V. Srinivasan, “Exploring
the Limits of Prefetching”, IBM Journal of Research and
Development Volume 49 , Issue 1 (January 2005).

[25]US Patent 5,636,364 Method for enabling concurrent misses
in a cache memory

[26] US Patent 5,233,702 Cache miss facility with stored
sequences for data fetching

[27]IBM Technical Disclosure Bulletin, “A Protocol for
Processing Concurrent Misses”, Dec. 1993, vol. 36 No. 12.

[28]IBM Technical Disclosure Bulletin, vol. “Design for
Improved Cache Performance via Overlapping of Cache
Miss Sequences” vol. 25 No. 1B Apr. 1983 pp. 5962-5966.

[29] R. Bartoszynski, M Niewiadomska-Bugaj,Probability and
Statistical Inference, (Wiley series in probability and
statistics) 1996

9. APPENDIX A

We prove there are
C + N

C possible miss penalties in a cluster
of C misses with a memory hierarchy of N levels (L1, L2, ..., LN,
and memory) with N distinct (non-multiple) miss latencies. Let
each level of the memory hierarchy be represented by a distinct
(non-multiple) number, there are N of them. We represent this
problem as sampling with replacement to determine the number of
unique combinations (sums) using these numbers. It is sampling
with replacement because there is an inexhaustible supply of miss
latencies regardless of the cluster size. We use the notation

N
C to denote N items choose C (the cluster size) for sampling

with replacement. The problem can then be expressed as
determining the number of unique sums from N items as we vary

the number of picks from 0 to C.

� N
i

0�i�C=
N
0

+
N
1

+
N
2

+
N
3

+,...,+
N
C (1a).

Note that i and C can be greater that N in (1a) because sampling is
done with replacement.

From [29]

N
k

= N + K − 1
K

 so we can rewrite (1a) as

N−1
0 + N

1 + N+1
2 + N+2

3 ... N+C−1
C (2a)

Also, from [29]
N
k = N−1

k−1 + N−1
k (3a)

So we can combine the first two terms of (2a) and obtain

N+1
1 + N+1

2 + N+2
3 ... N+C−1

C (4a)
Applying (3a) repeatedly the series collapses and the desired sum

is produced
C + N

C .

