
Exploring
the limits of
prefetching

P. G. Emma
A. Hartstein
T. R. Puzak
V. Srinivasan

We formulate a new approach for evaluating a prefetching
algorithm. We first carry out a profiling run of a program to
identify all of the misses and corresponding locations in the
program where prefetches for the misses can be initiated. We then
systematically control the number of misses that are prefetched, the
timeliness of these prefetches, and the number of unused prefetches.
We validate the accuracy of our approach by comparing it to one
based on a Markov prefetch algorithm. This allows us to measure
the potential benefit that any application can receive from
prefetching and to analyze application behavior under conditions
that cannot be explored with any known prefetching algorithm.
Next, we analyze a system parameter that is vital to prefetching
performance, the line transfer interval, which is the number of
processor cycles required to transfer a cache line. This interval is
determined by technology and bandwidth. We show that under
ideal conditions, prefetching can remove nearly all of the stalls
associated with cache misses. Unfortunately, real processor
implementations are less than ideal. In particular, the trend in
processor frequency is outrunning on-chip and off-chip bandwidths.
Today, it is not uncommon for processor frequency to be three or
four times bus frequency. Under these conditions, we show that
nearly all of the performance benefits derived from prefetching
are eroded, and in many cases prefetching actually degrades
performance. We carry out quantitative and qualitative analyses of
these tradeoffs and show that there is a linear relationship between
overall performance and three metrics: percentage of misses
prefetched, percentage of unused prefetches, and bandwidth.

1. Introduction

Historically the rate of increase of processor speed

has exceeded the rate of increase of memory speed.

Consequently, performance lost to cache misses has

become more and more significant. Prefetching can

mitigate this effect. Effective prefetching depends on

being able to accurately predict the addresses sufficiently

ahead of time and not causing cache pollution by

replacing a more desirable line to accommodate the

prefetched line.

In this paper we explore the limits of prefetching,

independently of any specific algorithm, and generically

characterize the prefetches made by any algorithm. First,

we characterize a prefetching algorithm in terms of three

metrics: the number of misses it is able to prefetch

(coverage), the distance between a prefetch and the

original miss (timeliness), and the probability that a

prefetched line is used before being replaced (accuracy).

In addition to these metrics, we analyze a system

parameter that is vital to prefetching performance,

namely the line transfer interval, which is the number

of processor cycles required to transfer a cache line

between different levels of the memory hierarchy.

Additionally, we analyze application behavior and the

potential benefits of prefetching that cannot be explored

through any known prefetching algorithm—by

increasing coverage, timeliness, and accuracy beyond

any values that can be achieved today. Our goal is to

understand the interplay among the different metrics

and to quantify their effect on overall performance.

�
Copyright 2005 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any

other portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 P. G. EMMA ET AL.

127

0018-8646/05/$5.00 ª 2005 IBM

In real prefetching algorithms, the metrics work against

one another. Aggressive prefetching, focusing on

improving coverage, reduces the accuracy of a prefetch

algorithm. Similarly, algorithms that improve the

timeliness of prefetches may issue prefetches too

soon and pollute the cache by replacing lines that are

more desirable, thereby causing additional misses and

decreasing the coverage. Finally, prefetching can also

have unintended side effects. For example, prefetching

reduces cache misses and can reduce application runtime;

however, in doing so, prefetching can also generate

additional misses. By removing memory stalls,

prefetching allows the processor to run ahead and

aggressively fetch and execute instructions along newer

control flow paths (which were not explored previously

because of stalls due to misses); in this process, new

misses are generated. Our simulations show that new

misses generated by this mechanism can account for up to

12% of the total number of misses! Ample bandwidth is

required to cope with these additional misses caused by

the above phenomena.

Specific prefetching algorithms have been evaluated

in numerous other papers. Initial work in prefetching

focused on identifying regular access patterns (i.e.,

constants or strides) for streaming applications and

triggering prefetches using hardware- or software-based

algorithms [1–5]. More recently, many more aggressive

prefetch algorithms that predict nonsequential access

patterns have been proposed. Some of them [6–14] focus

on improving the prediction accuracy of these access

patterns by either using confirmation (confidence)

hardware counters or inserting prefetch instructions using

profiling and compiler analysis to determine the data/

control flow path of a program. Others [15–20] focus on

improving prefetch timeliness by aggressively issuing

prefetches with sufficient prefetch lookahead distance.

We refer the reader to [21] for a survey of data prefetch

algorithms.

The rest of the paper is organized as follows: Section 2

contains definitions and terminology. Section 3 describes

performance metrics, and the prefetching model is

described in Section 4. Section 5 describes our simulator

and the benchmarks used in this study. In Section 6, we

separately analyze the effects of timeliness, coverage,

accuracy, and bandwidth. Section 7 covers prefetching

when it is constrained by limitations inherent in real

implementations. Results are summarized in Section 8.

2. Prefetching terminology

In this section, we define the metrics that we use to

characterize prefetching: raw misses, good prefetch, bad

prefetch, coverage, accuracy, timeliness, bus width, bus

frequency ratio, and line transfer interval.

The number of raw misses for a given application when

run on a processor is the number of misses generated

without any prefetching algorithm.

Prefetches are broadly classified into two categories:

good and bad. If a prefetched line is referenced by the

application before it is replaced, the prefetch is called

good; if the line is replaced before being referenced, the

prefetch is called bad.

Coverage is the ratio of good prefetches G to the

number of raw misses M. Since prefetching may generate

new misses over and above the raw misses, having a

coverage of unity does not imply that there are no misses.

Accuracy is the fraction of prefetches that are good.

Poor accuracy results in more bus traffic, and in the

possible replacement of live lines, hence in more misses.

If there are G good prefetches and B bad prefetches,

Accuracy ¼ G=ðGþ BÞ:
We use prefetch distance to measure the timeliness of a

prefetch, prefetch distance being the elapsed time between

a useful prefetch initiation and the next use of the

prefetched line; and we use the number of branches

between a prefetch and its use to describe timeliness.

Branches are chosen as the prefetch points (where a

prefetch is issued) because they represent points of

uncertainty in the instruction flow and often block or

hinder the movement of prefetches back in the instruction

stream to establish an earlier prefetching point. This can

occur for both hardware and software prefetching

algorithms. Prefetch distance can easily be converted

to time, measured in cycles, by knowing the number of

cycles per instruction and the average number of branches

per instruction. As timeliness increases from zero, more

memory latency is hidden. When all of the latency

becomes hidden, further increasing the timeliness can be

detrimental.

The bus width is the number of bytes moved per

bus cycle. This is determined by the number of wires

between the cache and the memory subsystem, which is

determined by packaging and power constraints. The

ratio of the cache line size to the bus width is the number

of packets in a line, which is also the number of bus cycles

required to move a line between levels of the memory

hierarchy.

The bus frequency ratio is the ratio of the processor

frequency to the bus frequency. It is determined by logic

speed, packaging, and power limits. The line transfer

interval (LTI) is the number of processor cycles needed to

move a cache line (also called a ‘‘block’’) on the bus and is

equal to the bus frequency ratio times the number of

packets.

3. Performance metrics
The most commonly used metric for processor

performance is instructions per cycle (IPC). In this paper,

P. G. EMMA ET AL. IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

128

we use its inverse, cycles per instruction (CPI). As shown

in [22], the number of cycles per instruction, or CPI, is

calculated directly as a product of event frequencies

and their corresponding event delays. Since the event

frequencies and delays are measured in our simulations,

CPI follows directly from these measurements.

CPI for a processor system can be decomposed into

two components: an infinite cache (CPI
INF

) and a finite

cache adder (CPI
FCA

):

CPI ¼ CPI
INF

þ CPI
FCA

:

CPI
INF

represents the performance of the processor in

the absence of misses (even compulsory misses). It is the

limiting case in which the processor has a cache that is

infinitely large. CPI
FCA

accounts for the delay due to

cache misses and is used here to measure the effectiveness

of prefetching.

Without prefetching, it accounts for the delay caused

by the total number of misses (defined as raw misses in

the previous section). Just as processor performance

(for both in-order and out-of-order machines) can be

expressed in terms of a CPI value, the memory adder can

be expressed as the product of an event rate (specifically,

the miss rate) and the average delay per event:

CPI
FCA

¼ misses

instruction

� �
cycles

miss

� �
: ð1Þ

Cycles per miss is an average processor delay caused

by each cache miss that we calculate through simulation

over a run without cache misses, as illustrated through

the following example: Consider a trace tape one million

instructions long and a processor organization where

each cache miss has a 20-cycle miss latency. If an

infinite cache simulation run requires one million cycles

(CPI
INF

= 1) and a finite cache simulation run requires

1.3 million cycles, cache miss stalls account for 300,000

cycles, and the total CPI = 1.3 and CPI
FCA

= 0.3. If

the finite cache simulation run generated 25,000 misses,

ðmisses=instructionÞ ¼ ð25;000=1;000;000Þ ¼ 1=40 and

ðcycles=missÞ ¼ ð300;000=25;000Þ ¼ 12: Note that the

ðcycles=missÞ term can be significantly less than the miss

latency. Obviously, an out-of-order processor can

account for this difference by overlapping useful work

during a cache miss.

Effective prefetching reduces CPI
FCA

, and if

prefetching reduces CPI
FCA

to zero without introducing

undesirable side effects (bad prefetches and new misses),

the processor will appear to run at infinite cache speed:

CPI
FCA

! 0 and CPI ! CPI
INF

:

When prefetching is introduced, a second term is added

to the memory adder equation: CPI
FCA

. The misses in

Equation (1) are now subdivided into two terms:

prefetches and remaining misses. Thus, some of the

misses (raw misses) from (1) are avoided (prefetched) and

transferred to a prefetch term. The expression for CPI
FCA

becomes

CPI
FCA

¼ misses

instruction

� �
cycles

miss

� �

þ prefetches

instruction

� �
cycles

prefetch

� �
: ð2Þ

Here, the misses-per-instruction term represents the

total number of misses that occur after a prefetch

algorithm is used; the prefetches-per-instruction term

represents the average rate at which prefetches are issued.

However, not all prefetches are used, and prefetching also

causes some new misses to occur. Therefore,

misses

instruction

� �
þ prefetches

instruction

� �
� rawmisses

instructions
: ð3Þ

Also, in (2) the cycles-per-prefetch term defines the

processor delay caused by each prefetch—and can again

be calculated through simulation in a manner similar to

the cycles-per-miss term. For timely prefetching, the delay

incurred for prefetches must be less than the delay for

misses. The more timely the prefetching, the stronger this

relationship. Thus,

cycles

prefetch

� �
� cycles

miss

� �
: ð4Þ

For CPI
FCA

to approach zero, both terms in (2)

must approach zero. This occurs when all misses are

prefetched ½ðmisses=instructionÞ ! 0� and prefetched

sufficiently far in advance of the miss to remove all delay

½ðcycles=prefetchÞ ! 0�: Here, we explore the limits of

prefetching to determine the conditions under which

CPI
FCA

! 0:

Unused prefetches also add delay. They can increase

both the (cycles/prefetch) and (cycles/miss) terms. A bad

prefetch can add delay in four ways: a) It may interfere

with processor accesses as it is written into the cache; b)

it will use the bus for a line transfer interval, during

which it may impede other miss and prefetch traffic; c)

it may saturate the memory hierarchy subsystem and

delay the initiation of a new miss or prefetch; and d)

it may replace a useful line in the cache and cause an

additional miss.

4. Prefetching model description

Trace-driven simulation is commonly used for evaluating

processor systems. We use such a simulation in this study

in a manner that is synergistic with our prefetching

model. Specifically, we use a miss file that is collected

from an initial simulation run to manipulate the

prefetching timeliness, coverage, and accuracy directly as

we rerun the trace. The manner in which we do this allows

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 P. G. EMMA ET AL.

129

us to vary these parameters independently, as explained

next.

Within the simulator, we first configure the details of

the processor to be studied (set cache parameters, pipeline

characteristics, etc). We start with prefetching turned off,

and run a trace through the simulator to produce a file of

the raw misses, as defined in Section 3. The raw-miss file

contains a list of the addresses of all L1 cache misses

(both instructions and data) that occurred in the

simulation in the order in which they occurred. This can

be thought of as the set of necessary accesses made by the

program for this processor organization.

Once a miss is recorded, we identify certain events prior

to the miss that we will use to issue a prefetch. The

distance between the prefetch and the miss is referred to

as the prefetch distance. There are many ways to measure

this distance: the number of cycles, the number of

intervening branches, the number of intervening

instructions, or the number of intervening misses. Each

measure is valid and conveys unique information. We use

the number of intervening branches between the prefetch

and the original miss to denote the prefetch distance.

Specifically, by expressing this interval in the number of

intervening branches, we are able to impart a level of

uncertainty between the prefetch and the miss due to

possible branch prediction error. (We feel that expressing

the prefetch distance in number of instructions or number

of cycles does not capture the degree of uncertainty

that can exist between the prefetch and miss.) Thus, if a

prefetch must be executed many branches in advance of a

miss in order to be sufficiently timely, this poses a real

challenge to the design of a prefetching mechanism

(hardware or software); i.e., to be able to accurately

anticipate the correct program flow and calculate the

correct prefetch address.

In addition to collecting all raw misses, with each miss

in the file we include a record of the position of the

instruction of the n branch instructions that precede the

miss, as shown in Figure 1. The n branches preceding a

miss are used as the set of possible prefetch trigger points

for the miss. Branches are chosen as the prefetch points

because they are the logical barriers to moving prefetches

back in the instruction stream to establish an earlier

prefetching point; i.e., they are points of uncertainty in

the instruction flow.

In this study, timeliness (prefetch distance) is varied by

moving prefetches back by a fixed number of branches;

i.e., for the n branches preceding each miss in the miss file,

we study the effect of increasing timeliness by rerunning

the simulation n times with prefetching turned on. On the

ith run, we issue prefetches i branches ahead of the miss.

This is done by matching instruction numbers from the

miss file with the corresponding instructions in the trace.

For example, on the first run, a prefetch for a miss

is issued when the branch instruction that immediately

precedes that miss is encountered. On the second run, a

prefetch is issued when the second branch preceding the

miss is encountered, and so on. In this study, we use

n = 20, which gives us a very wide range of prefetch

timeliness.

Since the prefetch distance is measured in the number

of branches, it is not uniform in time. First, the number

of instructions between successive branches is not a

constant, but has a distribution that we show later.

Second, the rate of instruction processing (instructions

per second) varies. Nonetheless, we use number of

branches as the unit of timeliness because the coverage

and the accuracy of any prefetch algorithm are directly

related to the degree of certainty in the future instruction

flow—which is determined largely by the branches.

Using the miss file to generate prefetches guarantees

that we can generate prefetches that match misses from

the original run. The prefetches are issued at a specified

time, and the penalty attributed to each miss (cycles per

miss) depends on the pipeline dynamics. The burstiness of

misses is preserved in the miss file and is carried over into

the prefetching runs. If the miss rate is bursty, the

prefetch rate will be just as bursty.

We vary the coverage and the accuracy of prefetching

probabilistically. Specifically, coverage and accuracy are

inputs to the simulator. For each miss in a run, we

generate its corresponding prefetch with a probability

equal to the desired coverage. To achieve a specified

accuracy, we generate a bad prefetch (to a set of

known unused addresses for each application) with the

appropriate probability each time we generate a good

prefetch. For example, to achieve an accuracy of 50%, we

generate one bad prefetch for every good prefetch. This

allows bad prefetches to occur in regions that are just

as bursty as the original miss rate.

Illustration of prefetching model data collection. Whenever a
miss occurs, the address of the miss along with the instruction
numbers of n previous branches (Br1, Br2, ...) are written to a
miss file. M1, M2, ... denote corresponding miss addresses.

Figure 1

Trace tape Time

Miss Miss

M1

Br1

Br2

Br3

M2

Br1

Br2

Br3

M3

Br1

Br2

Br3

M4

Br1

Br2

Br3

P. G. EMMA ET AL. IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

130

We use this methodology to analyze both hardware

and software prefetching algorithms. When evaluating a

hardware prefetching algorithm, our software simulator

(timer) is supplied with coverage, accuracy, and timeliness

parameters and prefetches are issued on the basis of these

inputs. However, when studying a software prefetching

algorithm, the effects of adding prefetching instructions

to the program are not explicitly modeled; i.e., the effects

of inserting prefetching instructions into a program and

thus increasing the footprint (binary size) of the program

are considered minimal. Prefetches are issued at the

specified prefetching distance supplied to the simulator.

Also, since prefetching timeliness is specified as the

branch distance between the prefetch and its use, this

distance is preserved for software prefetching because

prefetch instructions are not considered branches.

Finally, we study the effects of bandwidth by varying

the line transfer interval, which is done by varying the bus

frequency ratio, the cache line size, and the bus width.

These three parameters are inputs to the simulator, and

the line transfer interval is calculated directly from them.

Note that changing the cache line size causes a different

set of raw misses to occur. Therefore, simulation runs

using different line sizes use different raw-miss files (as do

simulation runs using different cache sizes). Typical cache

line sizes are 32, 64, 128, and 256 bytes. For the runs

carried out in this study, we focus mainly on a 128-byte

line size.

Bus frequency is generally one, two, three, or four

times slower than the processor, and could be larger

in the future. The ratio increases with the processor

frequency because the bus frequency does not tend to

keep pace. In most of this study, we set the bus frequency

ratio to unity. Thus, we vary the line transfer interval

merely by varying the bus width. This can be changed

from run to run, and it does not require a new miss file

(although bandwidth effects may cause the order of

misses to vary slightly). In the last section, we study the

effects of setting the bus frequency ratio to 2, 3, and 4.

We use bus widths of 16, 32, 64, and 128 bytes. For a

128-byte line size and a bus frequency ratio of unity, we

obtain line transfer intervals of 8, 4, 2, and 1 processor

cycles, respectively. When the bus frequency ratio is 2, the

respective line transfer intervals are 16, 8, 4, and 2 cycles.

Recall that for a fixed number of misses, the bus

utilization is proportional to the line transfer interval.

5. Simulation methodology
We use a proprietary, cycle-accurate simulator and traces

produced for IBM zSeries* processors in this study. The

simulator has three input files: 1) a design parameter file,

which includes the characteristics of the processor and

cache being simulated (including cache line size, bus

width, bus frequency ratio, a prefetch on/off switch, and

the desired prefetch coverage, accuracy, and prefetch

distance); 2) a raw-miss file containing all instruction and

data misses and corresponding prefetching points for

each miss (which is only used when prefetching is turned

on); and 3) a trace of the application code being studied.

When prefetching is turned off, the simulator produces

the raw-miss file. The simulator always produces a

summary file of performance statistics (miss rates, cycles

per instruction, etc.) including all of the statistics shown

in this paper.

We set the design parameter input file to model a four-

issue, superscalar processor with an instruction window

of 16, up to eight outstanding loads, four functional units,

a pipeline depth of nine cycles, and separate L1

instruction and data caches of sizes 32 KB, 64 KB, and

128 KB. Each cache is fed by a separate bus connected to

backing memory, the L2. Miss latency is measured in

terms of the number of cycles between detecting a miss at

the L1 cache and receiving the first datum (packet) from

the L2 for the miss. All misses are resolved in the L2.

We studied seventeen workloads from SPEC** CPU95,

SPEC CPU2000 (or simply ‘‘SPEC95’’ and

‘‘SPEC2000’’)
1
, database workloads, and Cþþ

applications. Because of space limitations, we present

(graph) the results for only the four workloads of Table 1.

The workload mcf is from the SPEC2000 suite, compress

is from the SPEC95 suite, oltp (online transaction

processing) is a workload originally written in IBM

System/360* assembler language, and perf1 is a

proprietary workload (a large-processor simulator

written in Cþþ). These workloads represent the typical

results (trends) observed in all of the larger set of

workloads studied.

As mentioned earlier, the interbranch distance is not

constant. Figure 2 shows the distance between a prefetch

and its use (a miss) for the perf1 workload. Shown are

the fractional number of misses (y axis) having a given

number of instructions (x axis) between the prefetch and

Table 1 Workload suite.

Application Suite Description

mcf SPEC CPU2000 Combinatorial optimization

compress SPEC CPU95 Data compression

oltp Transaction

processing

Database workload

perf1 Workstation Machine design (simulator)

1
SPEC CPU95 and SPEC CPU2000 are performance-measuring suites for comparing
performance across different hardware platforms. They were developed by the
Standard Performance Evaluation (SPEC) Corporation, a nonprofit group located in
Fairfax, VA (http://www.spec.org).

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 P. G. EMMA ET AL.

131

the miss. The associated distributions are for 1, 5, 10, 15,

and 20 branches ahead of the miss.

These distributions are approximately Gaussian. Since

the number of instructions between branches is (not

quite) 5, each addition of five branches to the prefetch

distance shifts the distribution (not quite) 25 instructions

to the right. As the number of branches increases and the

distribution shifts to the right, it also spreads.

The distribution for prefetch distance of ten branches

shows that all prefetches will be issued at least 20

instructions ahead of a miss, roughly half of the

prefetches will be issued 45 instructions ahead of a miss,

and a very few prefetches will be issued 100 or more

instructions ahead of a miss. Table 2 shows the mean and

standard deviation for these prefetch distances (1, 5, 10,

15, and 20) for each of the four workloads studied.

Real prefetching mechanisms have difficulty in

generating accurate prefetches at large prefetching

distances; uncertainty in the program flow and possible

branch prediction error add to this difficulty. The branch

prediction accuracy for perf1, oltp, and compress is

slightly over 80%, while mcf has a 90% branch prediction

accuracy. A 16K-entry branch-target-buffer is used in all

simulation runs. Thus, perf1, oltp, and compress have,

on the average, one mispredicted branch for each five

branches that a prefetch is issued ahead of its use. That is,

at a prefetch distance of 5, 10, 15, and 20 branches, oltp,

perf1, and compress have nearly one, two, three, and four

mispredicted branches, respectively. Similarly, mcf has,

on the average, one and two mispredicted branches at

a prefetch distance of 10 and 20 branches. Clearly, a

real prefetching algorithm must trade off increasing

prefetching timeliness (issuing prefetches at large

distances) versus its ability to issue accurate prefetches

even when the exact program flow is in doubt. However,

in our simulation we specify the accuracy of a prefetching

run through an input parameter. We examine the effects

of coverage, accuracy, timeliness, and bandwidth on

performance for the four applications discussed above.

We select coverage and accuracy values between 50 and

100% at various prefetching distances and bandwidths.

This allows us to study the effectiveness of prefetching

independently of any particular or even existing

prefetching algorithm.

Two popular prefetching algorithms are next-

sequential prefetching (prefetching the next line) and

Markov prefetching [8]. Table 3 shows coverage and

accuracy measurements (in percent) for these two

algorithms for prefetching instructions and data. The

cache modeled is 64 KB in size, four-way with a 128-byte

line and a one-cycle LTI. The processor organization

is four-issue, out-of-order, with a nine-stage pipeline.

Instruction prefetching coverage and accuracy figures for

mcf and compress are omitted because they have a small

instruction footprint and have only compulsory misses.

Before prefetching results are presented (in the next

section), it is useful to analyze the difference between the

prefetches issued by a specific prefetching algorithm

and those issued using our probabilistic treatment of

prefetching. Consider two random processes P
1
and P

2
.

Let each random process select n elements from a total

population of N objects, denoted as set n
1
and n

2
. The

cardinality of each set is denoted as jjn
1
jj and jjn

2
jj;

respectively. Then ðjjn
1
jj=NÞ ¼ ðjjn

2
jj=NÞ ¼ C (coverage),

Distribution of distances between cache prefetches and sub-
sequent use of the data for various branch prefetch distances.
Data is for the perf1 workload and a 64-KB cache with a 128-
byte line size.

Figure 2

0 50 100 150
Prefetch distance (instructions)

0

0.05

0.10

0.15
Fr

ac
tio

na
l n

um
be

r
of

 m
is

se
s

1 branch

5 branches

10 branches

15 branches

20 branches

Table 2 Mean and standard deviation for instruction distance between prefetch and original miss. Prefetch distance is measured in

numbers of branches.

Prefetch distance mcf compress oltp perf1

1 3.8 6 2.8 1.5 6 1.8 3.2 6 4.8 2.7 6 3.4

5 19.1 6 5.4 25.3 6 10.9 21.1 6 11.2 23.1 6 10.2

10 32.2 6 9.7 63.6 6 21.4 44.8 6 15.9 48.2 6 14.3

15 57.5 6 14.2 98.2 6 27.6 67.5 6 20.4 73.1 6 17.8

20 77.0 6 18.5 135.1 6 34.0 90.5 6 24.9 98.1 6 22.2

P. G. EMMA ET AL. IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

132

where C represents the percentage of items selected from

N. We are interested in the number of elements that

n
1
and n

2
have in common. The elements selected by

P
1
ðjjn

1
jj of them) can be partitioned into two disjoint

subsets: those in n
1
and those not in n

1
. The elements not

in n
1
are in the set (N � n

1
). The elements selected by P

2

will have, on average, C percent of its elements selected

from n
1
and C percent of its elements selected from

(N�n
1
). The number of elements common to P

1
and P

2
is

C � jjn
1
jj; and the percentage of common items selected is

ðCjjn
1
jj=jjn

2
jjÞ ¼ ðCjjn

1
jj=jjn

1
jjÞ ¼ C: Thus, on average,

the percentage of common prefetches between our

method and a real prefetching algorithm is equal to the

coverage.

This suggests that our prefetching model can accurately

measure the CPI
FCA

of a real prefetching algorithm. For

example, consider a prefetching algorithm that prefetches

75% of the misses. By specifying a coverage of 75%, our

prefetching model prefetches 75% of the same misses as

the prefetching algorithm. Thus, even though CPI
FCA

might be substantially reduced because of a high

prefetching coverage, we can expect a CPI
FCA

comparable

to that of the real prefetching algorithm. Similarly, if a

prefetching algorithm achieves a relatively low coverage,

say 25%, prefetching should have a limited benefit, and

only a small change in CPI
FCA

should result. Thus, our

method prefetches 25% of the same misses as the real

algorithm, and we can expect a similar CPI
FCA

:

Figure 3 shows this analysis by plotting the percentage

of prefetches that are common and unique to two random

processes, P
1
and P

2
, for a given coverage. We use P

1
and

P
2
to represent two different prefetching algorithms.

Coverage is varied between 0 and 100% (the diagonal

line). Prefetches common to both random processes (P
1

and P
2
) are shown in red, and prefetches unique to P

1
and

not prefetched by P
2
are shown in green. The yellow

section represents the rest of the misses not prefetched by

P
1
. The area between the dashed curve and the diagonal

curve (coverage) represents the misses prefetched by P
2

and not prefetched by P
1
. Note that these are P

1
misses.

As long as the prefetches unique to both P
1
and P

2
have

similar prefetching benefits [similar ðcycles=prefetchÞ
characteristics], there should be little difference in the

performance of the two prefetching algorithms. The

Central Limit Theorem allows us to assume that the

unique prefetches issued by P
1
and P

2
will have similar

average ðcycles=prefetchÞ values. This suggests that the
prefetching algorithms P

1
and P

2
should have similar

prefetching benefits for the same coverage, accuracy, and

timeliness.

To test this hypothesis, two experiments are performed.

First, we study the variability of the CPI
FCA

produced by

our prefetching model. For each application we study,

nine sets of simulation runs are performed. Prefetching

coverage is set to 25, 50, and 75%, and prefetching

distance is varied among one, five, and ten branches.

Accuracy is fixed at 100% for each set. Each simulation

run is repeated ten times, with different initial random

seeds used to generate different groups of prefetches

relative to the specified coverage and prefetch distance.

For each simulation run, we calculate the maximum

difference (D) in CPI
FCA

; that is, D ¼ maxðCPI
FCA

Þ

Number of common and unique prefetches between two inde-
pendent prefetching algorithms, P1 and P2, as a function of coverage.

Figure 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Coverage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
na

l n
um

be
r

of
 m

is
se

s

Comparison of misses and prefetches

Rest of P1 misses

Common
prefetches
between
P1 and P2

Covera
ge

P1

P2

Unique p
ref

etc
hes

Unique p
ref

etc
hes

Table 3 Coverage and accuracy measurements for next-sequential and Markov prefetching instructions and data.

Application Next-sequential Markov

Instructions Data Instructions Data

cov acc cov acc cov acc cov acc

oltp 40 98 25 85 64 92 50 84

perf1 50 90 19 74 61 85 56 81

compress — — 9 18 — — 18 23

mcf — — 15 46 — — 33 58

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 P. G. EMMA ET AL.

133

�minðCPI
FCA

Þ for the ten prefetching runs with different

random seeds.

We then calculate the maximum variation (e) as the
ratio between the maximum difference and the CPI

FCA

without prefetching; that is, e ¼ ðD=CPI
FCA

Þ: This
represents the percentage of difference relative to CPI

FCA

without prefetching. These percentages (max. variation)

are listed in Table 4.

As can be seen from the values in the table, the

maximum variation is small. For all but two sets of

simulation runs, the maximum variation is less than 1%.

Only perf1 has values greater than 1% (2.8% and 2.6%).

For these two cases, the maximum difference has a

CPI
FCA

greater than the other nine simulation runs in the

group, and the next greatest variation is less than 1%.

The second experiment measures the ability of our

prefetching model to evaluate the performance of the

Markov prefetching algorithm for each application listed

in Table 3. We model the same cache and processor

organization described above. While simulating the

Markov algorithm, the average prefetch distance is

determined for each application. For example, the oltp

application has an average prefetch distance of nine

instructions, or about 1.8 branches, while modeling the

Markov algorithm. Next, the coverage and accuracy

values from Table 3, along with a prefetch distance, are

supplied as inputs to our prefetching model to produce

estimates of the CPI
FCA

for each application.

Figure 4 shows the results of these simulations. We plot

the normalized CPI
FCA

as a function of the prefetch

distance (values 1 through 4 are modeled). That is, each

CPI
FCA

is normalized relative to the CPI
FCA

of the

application without prefetching. Our estimates for the

Markov algorithm are plotted as four curves (with

labels), one for each application, and the four CPI
FCA

produced by modeling the Markov algorithm are plotted

as four separate points (with workloads identified by

arrows) at the appropriate prefetch distance. Note that

the average prefetch distance for the Markov algorithm

was never an integer. As can be seen, the agreement

between our estimates and the measured CPI
FCA

for the

Markov algorithm is good. Values for perf1 and mcf

basically lie on the curve representing our estimate of

Markov. The value for compress is slightly below our

estimate (curve) but clearly within the upper and lower

bounds of the nearest prefetch distance modeled (integer

value). The value for oltp is slightly above the curve

representing our estimate. The average error for all four

applications is less than 2%.

We should offer a few comments regarding the last two

experiments. First, we find that the variability of the

CPI
FCA

produced by our prefetching model for a fixed

coverage was relatively small. Second, we find that our

model can approximate the CPI
FCA

of a real prefetching

model when appropriate values for coverage, accuracy,

and timeliness are supplied. Clearly, the model does not

prefetch exactly the same misses as the Markov algorithm

for a specified coverage, and accuracy. However, it

attempts to issue a prefetch from the population of all

previous misses, much like other prefetching algorithms.

Also, it attempts to issue prefetches across the entire

program, much like other algorithms. Thus, even if it

does not duplicate the exact order of prefetches issued by

another prefetching algorithm, and might prefetch the

miss before or miss after a prefetch issued by that

algorithm, the CPI
FCA

produced by the model and the

real algorithm are similar.

Table 4 Maximum percentage of difference of CPI
FCA

among the ten simulation runs with varying random seeds.

Coverage compress mcf oltp perf1

Prefetch distance: 1 5 10 1 5 10 1 5 10 1 5 10

25 0.3 0.3 0.3 0.1 0.5 0.4 0.3 0.3 0.9 2.8 2.6 0.5

50 0.3 0.3 0.3 0.1 0.1 0.3 0.3 0.2 0.3 0.2 0.4 0.3

75 0.3 0.3 0.5 0.2 0.5 0.4 0.3 0.6 0.4 0.2 0.3 0.3

Direct comparison of the normalized finite cache adder for the
Markov prefetching algorithm and probabilistic prefetching model.

Figure 4

1 2 3 4
Prefetch distance (branches)

0.5

0.6

0.7

0.8

0.9

1.0

1.1
N

or
m

al
iz

ed
 fi

ni
te

 c
ac

he
 a

dd
er

compress

oltp
perf1

mcf

P. G. EMMA ET AL. IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

134

6. Simulation results
We express all performance relative to the original finite

cache adder. As above, we first measure CPI
FCA

with

prefetching turned off, and normalize all prefetching

results to this number. We independently study

timeliness, coverage, accuracy, and bandwidth, as

described in the following subsections.

Most of the data obtained was for 64-KB, four-way

set-associative caches with a 128-byte line size. In most

cases, we use a miss latency of 20 cycles, with the cache-

miss interface configured to be able to process six misses

(or prefetches) at any time: three for instructions and

three for data. In an investigation of timeliness, we also

use a miss latency of 100 cycles. For this longer latency,

we assume an interface that can handle more than six

outstanding misses.

Timeliness and coverage

We first study performance as a function of timeliness for

various coverages, eliminating the effects of accuracy and

bandwidth by setting the accuracy to 100% and the bus

width to 128 bytes. Figure 5 is a plot of the computed

compress and mcf workloads, showing normalized values

of CPI
FCA

as a function of timeliness for coverages of 50,

67, 80, and 100%. The miss latency modeled is 20 cycles.

These curves show that most (but not all) of the

CPI
FCA

is eliminated if every miss is prefetched (i.e.,

100% coverage) five or more branches ahead. There is

a very small improvement by prefetching ten branches

ahead (although no real algorithm could make this

change without losing more coverage) where the

performance reaches a limit.

This demonstrates that at some point (in this case, ten

branches), prefetching becomes early enough to hide all

of the latency that it is possible to hide. Prefetching any

earlier than this does not help; in fact, it can have

undesirable effects, as discussed later.

For compress, the calculated performance improvement

is nearly equal to the coverage, e.g., covering half of the

misses eliminates half of the delay. For mcf the trend is

the same, but the amount of delay removed is a little

less than the coverage (e.g., 90% of the delay is removed

at 100% coverage).

The conclusion is that with perfect accuracy, ample

bandwidth, and adequate timeliness, the performance

improvement is proportional to coverage. In general, it is

not possible to remove all of the delay (i.e., the constant

of proportionality is less than unity). In this particular

case, ‘‘adequate timeliness’’ means ten branches. From

Table 2, a timeliness of ten branches is an average of

64 instructions for compress and 32 instructions for

mcf. In the next section we explore much larger miss

latencies (100 cycles) and the impact on timeliness

and maximum prefetching performance.

It is important to note that the flexibility of our model

allows us to analyze prefetching by varying coverage,

accuracy, and timeliness independently. In a real

prefetching algorithm these parameters can actually

compete against one another. For example, techniques

used to increase prefetching timeliness can reduce

accuracy; increasing coverage can also reduce accuracy.

Similarly, increasing accuracy can lead to a reduction in

coverage and timeliness. In our model we have the ability

to vary timeliness from one to 20 branches without

negatively affecting accuracy. However, it is known

that it is difficult to design a prefetching algorithm that

achieves an acceptable coverage and accuracy even with

a timeliness of two or three branches, let alone 20.

In our next experiment, we fix the timeliness and vary

the coverage (the reverse of the previous experiment).

Again, we maintain the accuracy at 100% and the bus

width at 128 bytes. Figure 6 shows data for the compress

workload. Shown in the figure is the normalized CPI
FCA

as a function of coverage (between 50% and 100%) for

timeliness values of one, two, three, five, and ten

branches. The curves in the plot are regression lines.

The figure shows that the performance improvement is

linear in coverage for each value of timeliness (given

100% accuracy and ample bandwidth). Again, for a

timeliness of ten branches, most of the delay is eliminated

at a coverage of 100%; also, the performance

improvement approaches a limit at a timeliness of five to

ten branches. For a timeliness of one branch, compress

receives a negligible benefit from prefetching. This is

roughly independent of coverage in this range (50% to

100%). For a timeliness of two branches, the amount of

delay eliminated for compress varies linearly from 25% to

50% as the coverage is varied from 50% to 100%.

Normalized finite cache adder vs. prefetch distance for several
values of prefetch coverage. Data are for both the compress and
mcf workloads, a 64-KB cache, a 128-byte line size, and 128 bytes
per cycle transferred to specified locations (“put away”).

Figure 5

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 fi
ni

te
 c

ac
he

 a
dd

er

100%

80%

67%

50%

compress

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1.0
mcf

100%

80%

67%

50%

Prefetch distance (branches)

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 P. G. EMMA ET AL.

135

The linear dependence of performance on coverage

is easily understood. For each cache miss that is not

prefetched, due to lack of coverage, a demand fetch must

subsequently be made. This incurs a penalty of a fixed

number of cycles. Since the penalty for each miss is

independent, unless queuing effects become important,

the resulting decrease in performance is linear in the

number of these coverage misses. This is observed for

both in-order and out-out-order scheduling.

All four of the applications exhibited a linear

relationship between coverage and performance. Table 5

lists the linear coefficient of this change (slope of the line,

expressed as a positive percentage) for all workloads at

the prefetch distances simulated. Each value is listed as a

percentage of change in performance relative to a change

in coverage. The slope becomes constant once the

prefetching is sufficiently timely (e.g., ten branches). It

becomes as large as 0.99 for compress and as small as 0.6

for perf1. This means that for each 1% gain in coverage,

there is a 0.99% decrease in CPI
FCA

for compress, and a

0.6% decrease in CPI
FCA

for perf1 at a prefetch distance

of 20 branches.

More on timeliness

To further investigate timeliness by itself, and to study the

robustness of our prefetching model, we set both the

coverage and accuracy to 100% and increase the miss

latency to 100 cycles. (Here all misses have a miss latency

of 100 cycles.) This variation allows us to focus on

prefetching for the L2 and beyond—and to analyze

changes in the prefetching distance needed to compensate

for large miss latencies. For example, we are interested in

studying the prefetch distance needed to run at infinite

cache speeds when each miss has a latency of 100 cycles

ðCPI
FCA

! 0Þ: To fully investigate the longer latency, we

generate new raw-miss files (with 100-cycle miss latencies)

and allow the timeliness to be as large as 50 branches (it

had been a maximum of 20 branches). We also enable the

cache-miss interface to be able to handle 24 outstanding

misses.

Figure 7 shows normalized values of CPI
FCA

as a

function of timeliness (to 50 branches) for the oltp

and perf1 workloads where the maximum number of

outstanding misses allowed is either 6 or 24. In the figure,

CPI
FCA

using a 100-cycle latency is normalized to

CPI
FCA

with a 20-cycle latency and no prefetching. Thus,

the normalized CPI
FCA

becomes greater than 5 (100/20),

and is very dependent on the number of outstanding

misses allowed.

When the number of outstanding misses is limited

to 6, the normalized CPI is 6 without prefetching, and

asymptotically approaches 2 as timeliness is increased. A

timeliness of five to ten branches is sufficient for nearing

this asymptote. (Thus, allowing a timeliness of 50

branches is unnecessary, although helpful in illustrating

the asymptote.) Recall that for a latency of 20 cycles, with

perfect coverage, accuracy, and sufficient timeliness (five

to ten branches in that case), CPI
FCA

vanishes (i.e., all

delay is eliminated). When the latency is 100 cycles, the

asymptote at 2 shows that all delay cannot be eliminated.

When prefetching runs five to ten branches ahead, it

generates an average of six prefetches. If it tries to run any

farther ahead, it cannot issue the prefetches, because all

of the six prefetch buffers are busy. Thus, the limited

number of buffers (six in this case) artificially constrains

the prefetching to behave as if it is only five to ten

branches ahead, even when it is much farther ahead

(50 branches in the experiment). All prefetches beyond

six are buffered instead of issued. They are not issued

until a buffer becomes free.

Normalized finite cache adder as the prefetch coverage is varied
for several values of the prefetch branch distance. Data for
prefetch distances greater than ten branches coincide with the 10-
branch curve. Data are for the compress workload, a 64-KB
cache, a 128-byte line size, and 128 bytes put away.

Figure 6

50 60 70 80 90 100
Prefetch coverage (%)

0

0.2

0.4

0.6

0.8

1.0
N

or
m

al
iz

ed
 fi

ni
te

 c
ac

he
 a

dd
er

1 branch

2 branches

3 branches

5 branches

10 branches

Table 5 Percentage of change in performance with respect to

change in coverage.

Prefetch distance mcf compress oltp perf1

1 0.20 0.02 0.2 0

2 0.50 0.50 0.5 0.03

3 0.70 0.70 0.7 0.38

4 0.80 0.80 0.8 0.52

5 0.90 0.90 0.8 0.60

10 0.93 0.98 0.9 0.60

20 0.93 0.99 0.9 0.60

P. G. EMMA ET AL. IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

136

When the number of outstanding misses is allowed

to be 24, CPI
FCA

keeps dropping until it reaches its

asymptote at a timeliness of 15 to 20 branches. For perf1,

the asymptote is at zero. For oltp, the asymptote is not

zero, but the remaining delay cannot be imputed to either

timeliness or buffer limits. Referring again to Figure 5:

For mcf, 12 outstanding misses are needed for the

performance asymptote to approach zero.

These results raise interesting design problems. With a

100-cycle miss latency and 24 active misses, a new miss

is discovered nearly every four cycles. As processor

frequencies increase, and thus miss latency (measured in

processor cycles) increases, the cache-miss interface must

allow for more misses in-flight to hide the added latency.

Ideally, the maximum number of in-flight misses a bus

can sustain (without multiplexing misses on the bus) is

the miss latency divided by the line transfer interval

(miss latency 4 LTI). As the number of in-flight misses

increases, so must the complexity of the cache coherency

logic. Symmetric multiprocessor (SMP) clusters of

hundreds of processors may require thousands of misses

in flight at once.

In addition, if coverage or accuracy is less than perfect,

the in-flight prefetch traffic will utilize buffers and bus

cycles that cannot be used by exigent misses (that were

missed by the coverage of the algorithm). This effect is

compounded by bad prefetches and is exacerbated if data

and addresses share the same physical bus [which is

sometimes done to limit the number of input/output

(I/O) pins needed].

All of these issues raise some challenging design

problems. Memory designs should be more pipelined, and

bus frequencies should be scaled in order to cope with the

added bandwidth. Since the point-to-point wire latencies

do not scale, signaling protocols and the logic that

surrounds the associated buffers will become more

complex. Addressing these issues drives additional

demands for power in the I/O components and

subsystems.

Timeliness and misses

It is important to note that non-prefetch misses still occur

during a simulation run, even when running with 100%

coverage and 100% accuracy. Note that the miss file

contains all of the misses generated by a previous

simulation run, and when coverage and accuracy are set

at 100%, all of the misses are prefetched in the exact order

in which they occurred—at a specified point in time (the

prefetching distance). We measure the number of extra

misses generated during one of these runs. For each

experiment, we put each cache miss into one of three

categories: a) prefetch miss—requests generated by the

prefetching algorithm (from the miss file); b) necessary

demand-misses—requests that caused a miss (i.e., not

covered by prefetching) to data (or instructions) that are

essential to the application; or c) unnecessary demand-

misses—requests that caused a miss for speculative data

(or instructions) that are not essential to the application.

When running with 100% coverage, necessary and

unnecessary demand-misses can still occur for two

different reasons. First, a prefetch can cause a

replacement of data that is still in use or about to be used.

The earlier a prefetch is issued ahead of its use, the higher

the probability that an additional miss (to prefetch the

discarded line) can occur. If the processor requires the

discarded line in order to decode or execute an

instruction, the miss is necessary. Second, unnecessary

demand-misses occur if the processor is able to speculate

more because it is running faster because of the

prefetching. In this case, a prefetch has removed a

pipeline stall which occurred on a cache miss, and the

processor is able to speculate farther down a program

path and cause extra fetches and cache misses that were

seen in a non-prefetching simulation run. Hence, the

number of misses with prefetching turned on can be

larger than the number of raw misses. We directly

measure the increase in miss rate caused by prefetching by

measuring the unnecessary and necessary demand-misses.

Depending on the application, these can account for as

much as 12% more misses.

Table 6 shows the percentage of necessary and

unnecessary demand-misses for different prefetch

timeliness. The data tabulated is for the workloads oltp

and perf1; data for the workloads mcf and compress is

omitted, since their small instruction working sets do not

require many demand misses (increases were less than

0.1%). For oltp and perf1, the instruction working sets

are large, and demand misses are very apparent. The

Finite cache adder for a 100-cycle memory access relative to a
20-cycle memory access as the prefetch distance is varied for two
workloads (oltp and perf1), and for 6 and 24 miss facilities.

Figure 7

0 10 20 30 40 50
Prefetch distance (branches)

0

1

2

3

4

5

6

7

R
el

at
iv

e
fi

ni
te

 c
ac

he
 a

dd
er

6 miss facilities

24 miss facilities

oltp

oltp perf1

perf1

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 P. G. EMMA ET AL.

137

percentage of demand misses grows with increased

timeliness.

The data shows that the likelihood of a prefetch

replacing ‘‘live’’ lines (those that will soon be used) is

small (these are the necessary demand-misses—less than

1% for perf1 in all cases, and less than 4.5% for oltp

at a prefetch distance of 50 branches). However, the

likelihood increases as prefetching is made more timely—

because of deeper speculation, resulting in additional

misses. If misses are removed (via prefetching), the

processor stalls less often and will fetch and decode more

instructions, some of them unnecessary.

These effects are shown in Figure 7. The minimum

CPI
FCA

value is reached at a prefetch distance between 20

and 30 branches. As the prefetching distance is increased

to 50 branches, more necessary and unnecessary demand

misses are generated and a slight increase in the CPI
FCA

occurs. This trend continues if the prefetching distance is

increased.

Accuracy

In this experiment, we vary the accuracy from 50% to

100% for several fixed values of timeliness (exactly like

the previous experiment for coverage). In order to study

only accuracy, we set the coverage to 100% and the line

size to 128 bytes. Figure 8 shows the results of this

experiment for the mcf workload. Performance is linear

in the number of bad prefetches. Since in these runs

the number of good prefetches is constant, the x-axis

is normalized to the number of good prefetches. The

number of useless prefetches then becomes proportional

to the ratio of bad to good prefetches, which is a function

of accuracy, viz.,

bad prefetches=good prefetches¼ ð1�accuracyÞ=accuracy:

An increase in the number of bad prefetches

corresponds to a decrease in accuracy. The far right value

(bad/good = 1) corresponds to an accuracy of 50%, and

the far left value (bad/good = 0) corresponds to an

accuracy of 100%. An additional axis is plotted above the

curves, showing the accuracy in terms of percentage of

all of the prefetches.

When the accuracy and coverage are both 100%,

roughly 90% of the delay is eliminated for ample

timeliness (ten branches). As the accuracy decreases

(meaning that more useless prefetches are done), CPI
FCA

increases proportionately. If the timeliness is insufficient,

the performance loss can be severe. For mcf, with

accuracy at 50% and a timeliness of one branch, the

relative CPI
FCA

is 80% of the original CPI
FCA

. At a

timeliness of two branches, CPI
FCA

is improved by nearly

50%. Again, a limit is approached as the timeliness

increases to ten branches.

The dependence of the performance on the number of

bad prefetches is linear, as in the case of its dependence

on coverage. Bad prefetches may result in no performance

penalty if they neither delay demand misses nor push

useful cache lines out of the cache. However, if a useful

cache line is replaced, a new demand fetch must be made,

and a penalty (linear in scale) will occur, just as in the

coverage case. The only difference is that since only a

fraction of the bad prefetches result in demand misses, the

Normalized finite cache adder as the prefetch accuracy is varied
for several values of the prefetch branch distance. Data for
prefetch distances greater than ten branches coincide with that for
the 10-branch curve. Data are for the mcf workload, a 64-KB
cache, a 128-byte line size, and 128 bytes put away.

Figure 8

0 0.2 0.4 0.6 0.8 1.0
Bad prefetches/good prefetches

0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 fi
ni

te
 c

ac
he

 a
dd

er

1 branch

2 branches

3 branches

5 branches

10 branches

5060708090
Prefetch accuracy (%) Table 6 Percentage of necessary and unnecessary misses as

prefetch distance is increased.

Prefetch

distance

oltp perf1

Necessary

demand-

misses

Unnecessary

demand-

misses

Necessary

demand-

misses

Unnecessary

demand-

misses

1 1.6 4.3 0.27 1.6

2 1.7 4.4 0.27 1.9

3 1.9 4.6 0.30 2.3

4 2.3 4.9 0.32 2.4

5 2.6 5.2 0.35 2.6

10 2.8 5.4 0.46 3.5

20 3.6 6.5 0.52 5.8

50 4.3 7.7 0.82 6.5

P. G. EMMA ET AL. IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

138

coefficient of the performance degradation with bad

prefetches will be smaller than the coefficient in the

coverage case.

All four applications exhibit a linear relationship for

performance vs. number of bad prefetches. Table 7 lists

the relevant linear coefficients (slope, expressed as a

percentage) for relating performance to the percentage of

unused prefetches for each workload at the values of

timeliness studied.

It is important to note that designers are often faced

with the need to increase coverage at the expense of

accuracy. For example, should prefetching coverage

be increased by aggressively issuing more speculative

prefetches which may have an accuracy rate of 50%? That

is, does an application benefit if two new prefetches are

issued, one good and one bad, i.e., unused? Using

Tables 5 and 7, we can compare changes in performance

when coverage and/or accuracy are varied (for a defined

region of interest). Notice that this is done independently

of a prefetching mechanism and is calculated for an

application. For the applications for which the change in

coverage is greater than the change in accuracy (at a given

prefetch distance), performance benefits are possible. A

performance loss will result if the accuracy slope is greater

than the coverage slope.

Additionally, designers are faced with applications that

do not respond well to prefetching even when the values

of coverage and accuracy are acceptable. For example,

consider the situation in which coverage is 50%, accuracy

is 75%, timeliness is unknown, and simulation models

show that the application loses performance only when

prefetching is modeled. Our prefetching model allows a

designer to analyze the performance sensitivity of the

application to coverage or timeliness changes. By

profiling the application (collecting misses and prefetches

in the miss file), the designer can systematically increase

accuracy and/or timeliness and determine performance

sensitivity with respect to each parameter. Again, this

allows designers to focus their efforts, in both time and

dollars, to develop the most cost-effective means to

improve application performance.

Bandwidth

In our next set of experiments, we study how bandwidth

affects prefetching performance. We use LTI, as defined

in the section on terminology, to analyze bandwidth. If

the cycles per instruction were constant, bus utilization

would be directly proportional to LTI. Although it is

time-independent (which is why we chose it), we use it

here as a tractable measure of ‘‘bandwidth.’’

First, we set the coverage and accuracy to 100%, the

bus frequency ratio to unity, and the line size to 128 bytes.

We vary the bus width between 128 and 16 bytes to give

us LTI values of one, two, four, and eight cycles. Figure 9

shows normalized values of CPI
FCA

as a function of LTI

for the perf1 workload for timeliness values of one, two,

three, five, and ten branches. Each curve in the figure is a

regression line and is approximately linear. At one cycle,

CPI
FCA

vanishes at a timeliness of ten branches. From

one to eight cycles (achieved by reducing the bus width,

hence the bandwidth), CPI
FCA

increases from 0 to 0.15,

approximately linearly. The rate of increase (slope)

increases slightly as timeliness increases.

Table 8 shows the linear coefficient (slope, expressed

as a percentage) of each regression line for each of the

workloads at a number of different timeliness values. The

linear coefficient represents a percentage performance

difference per cycle. In all cases, as the timeliness

increases, the coefficient increases. This shows that as

Table 7 Percentage of change in performance with respect to

change in accuracy.

Prefetch distance mcf compress oltp perf1

1 0.05 0.17 0.39 0.31

2 0.13 0.20 0.52 0.44

3 0.15 0.22 0.61 0.53

4 0.29 0.25 0.67 0.58

5 0.33 0.28 0.69 0.61

10 0.35 0.29 0.72 0.64

20 0.35 0.33 0.73 0.64

Normalized finite cache adder as the bus transfer rate is varied for
several values of the prefetch branch distance. Data for prefetch
distances greater than ten branches coincide with that for the ten-
branch curve. Data are for the perf1 workload, a 64-KB cache, a
128-byte line size, and 128 bytes put away.

Figure 9

0 1 2 3 4 5 6 7 8
Line transfer interval (cycles)

0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 fi
ni

te
 c

ac
he

 a
dd

er 1 branch

2 branches

3 branches

5 branches

10 branches

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 P. G. EMMA ET AL.

139

the timeliness increases, the performance becomes more

sensitive to bandwidth.

In our next to last experiment, we fix the bus width at

32 bytes and vary the cache line size. Not only does this

change the LTI, but it also changes the miss rate (recall

that a different miss file is required for each line size). For

a fixed cache size (64 KB in this experiment), cutting the

line size results in doubling the number of lines if both

halves of the lines are used. If the useful content remains

the same, the system with the smaller line size will incur

two misses for every miss incurred by the other system.

The LTI for those misses will be cut in half, but the total

traffic will be the same.

As before, we set the coverage and accuracy to 100%,

the bus width to 32 bytes, and the bus frequency ratio to

unity. We use line sizes of 128, 64, and 32 bytes, which

results in LTI being equal to four, two, and one cycles,

respectively. Since the number of misses that must be

handled is larger for smaller line sizes, we change the

capability of the cache-miss interface to allow for 6,

12, and 24 simultaneous misses in flight, respectively.

Figure 10 shows normalized values of CPI
FCA

as a

function of timeliness for the three line sizes of the oltp

workload. The CPI
FCA

is normalized to its value for the

128-byte line without prefetching. Without prefetching

(timeliness = 0), CPI
FCA

for a 64-byte line is 20% larger

than that for a 128-byte line, and CPI
FCA

for a 32-byte

line is 50% larger. As timeliness increases, the three curves

converge, at slightly different values of timeliness,

indicating that regardless of line size, timeliness is a

crucial factor for improving the effectiveness of

prefetching.

7. Bandwidth and realistic prefetching limits
In most of the experiments thus far, we have used

coverages and/or accuracies of 100%, a bus frequency

ratio of unity, a fairly modest miss latency (20 cycles), and

arbitrarily good timeliness to permit individual analysis

of the components that affect prefetching. In real systems,

coverage, timeliness, accuracy, and LTI are much

less optimal; in fact, they interact antagonistically.

Furthermore, as processor frequency continues to scale,

and as multiprocessor systems become larger, these

characteristics of prefetching may continue to degrade.

A 20-cycle miss latency at 1 GHz becomes a 200-cycle

miss latency at 10 GHz if the miss access time, its physical

size, and its distance to the processor do not scale. If more

processors interact with the memory subsystem, the

expected latency can be much worse than this, once

prioritization logic, queuing, and coherency protocols are

included. Furthermore, bus frequency cannot scale at this

rate, since it is limited by different physical properties

than logic speed. We should expect to see bus frequency

ratios grow.

As logic density has increased and processor

frequencies have increased, local caches have become

progressively larger—both because they could be made

larger, and because larger caches were required to hold

the same temporal content (when time is fixed and the

processor runs faster), i.e., to contain the temporal rate of

misses. Since the speed of the directory is crucial, its size

must not grow (much) to allow for a fixed access time (in

cycles) as cycle time decreases. By increasing the line size,

the cache size can grow while the directory remains the

same size. This allows for a constant directory access

even as the frequency of the processor increases.

While an increase in bus width is possible, any increase

is limited to some extent by considerations regarding

packaging costs, the number of I/O pins, and power.

Therefore, as both the line size and the bus frequency

ratio increase, the increase in line transfer interval, or LTI

(hence bus utilization) compounds.

Normalized finite cache adder for three line sizes and number of
miss facilities relative to a 128-byte line (BL) with six miss
facilities (MF) as the prefetch distance is varied. Data shown are
for the oltp workload and 32 bytes put away.

Figure 10

0 5 10 15 20
Prefetch distance (branches)

0

0.5

1.0

1.5

N
or

m
al

iz
ed

 fi
ni

te
 c

ac
he

 a
dd

er

128 BL, 6 MF

64 BL, 12 MF

32 BL, 24 MF

Table 8 Percentage of change in performance with respect to

change in bandwidth.

Prefetch distance mcf compress oltp perf1

1 1.2 0.2 2.0 1.6

2 1.3 0.7 2.0 1.7

3 1.4 0.8 2.3 1.7

4 1.4 1.1 2.4 1.8

5 1.4 1.1 2.6 2.0

10 1.5 1.9 2.7 2.1

20 1.5 2.3 2.7 2.2

P. G. EMMA ET AL. IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

140

To evaluate these effects, we perform a final experiment

in which we further increase the LTI. We use a 64-KB

cache, a 20-cycle miss latency, a 128-byte line, a 16-byte

bus, and bus frequency ratios of 2 to 1, 3 to 1, and

4 to 1. Thus, the LTI is 16, 24, or 32 cycles. To make the

prefetching more realistic, we set the coverage to 80%

(which is still very respectable for any real prefetching

algorithm).

Figure 11 shows the normalized CPI
FCA

as a function

of the number of bad prefetches for the perf1 and

compress workloads at a fixed prefetch distance of ten

branches. All points above 1.0 indicate that a design

incorporating prefetching is inferior to one without

prefetching. The figure shows that for even larger values

of LTI at 80% coverage, it is very difficult to remove the

cache penalty. At an accuracy of 50%, prefetching

actually increases CPI
FCA

by 50 to 90% (over no

prefetching) for perf1 and by 5% to 100% for compress

at more than adequate timeliness (ten branches). As

the prefetching accuracy increases to 100%, prefetching

reduces the CPI
FCA

by only 20% when the processor/bus

ratio is 2/1; no reduction is observed if the processor/bus

ratio is 4/1 for either application. In fact, a reduction of

the CPI
FCA

by only 10% is observed when the processor/

bus ratio is 3/1 at 100% accuracy.

In perf1, prefetching causes a performance loss if

accuracy is less than 67% with a 2/1 bus ratio; even with a

very impressive 90% accuracy (which is nearly impossible

to achieve at 80% coverage), performance gain is less than

5% at a 3/1 bus ratio. Since a coverage of 80% should

remove 80% of the penalty under these conditions, the

difference is primarily due to bandwidth limitations.

Similar results are obtained for compress.

Therefore, limiting bandwidth should limit (or even

reverse) any theoretical performance gains achieved with

prefetching. When the LTI grows larger, queuing effects

should emerge. Although we cannot examine these effects

in detail, we can state briefly that there are nonlinear

effects that can quickly dominate system performance if

bus utilization is driven too hard. The underlying reason

is that misses cluster, and the clustering of misses can

quickly push bus utilization to undesired levels. These

queuing effects can completely obviate any potential

gains made by prefetching.

Figure 12 shows the cumulative distribution function

for the number of instructions between successive cache

misses for the four applications studied. Clearly, misses

tend to cluster: Nearly 50% of the misses for oltp and

perf1 occur within a distance of five instructions or less

of the prior miss, and 80% of the misses occur within

a distance of 15 instructions. The same miss rate is

observed for mcf, even though its misses are mainly

data misses. Similar effects are observed for compress,

though they are not as severe; 50% of the misses occur

within 15 instructions of the prior miss. Recall that

nearly all of the misses for compress were data misses.

At these instruction/miss distances (times), the bus is

still processing the previous miss (prefetch) while the next

miss (prefetch) has been initiated. Recall that the LTI is

between 16 and 32 cycles for the memory subsystems

discussed in Figure 11.

A typical queuing model demonstrates the problem.

The average bus utilization q is the product of the arrival

Figure 11

Normalized finite cache adder as the prefetch accuracy is varied for several values of bus frequency ratio. Data are for the perf1 and
compress workloads, a 64-KB cache, a 128-byte line size, 80% coverage, 16 bytes put away, and a prefetch branch distance of 10.

Bad prefetches/good prefetches

0 0.2 0.4 0.6 0.8 1.0
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

N
or

m
al

iz
ed

 fi
ni

te
 c

ac
he

 a
dd

er

4/1

3/1

2/1

5060708090

0 0.2 0.4 0.6 0.8 1.0
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

4/1

3/1

2/1

5060708090
Prefetch accuracy (%)

perf1 compress

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 P. G. EMMA ET AL.

141

rate k and the average service time S; i.e., q ¼ kS: The
average wait time W is equal to S=ð1� qÞ: The service

time of a bus is what we have been calling the line transfer

interval. Thus, S ¼ LTI:

With the use of the bus configurations described in

Figure 11 and a 2-to-1 processor/bus ratio, S = 16 cycles

for a 128-byte line. If we assume that each application

runs at CPI = 1, nearly 80% of the time a cache miss

(or prefetch) will encounter a bus that is busy processing

a prior miss. Even at a bus utilization of 50%, the

average delay is doubled. That is, an LTI of 16 cycles

‘‘looks like’’ a 32-cycle delay when the bus is 50% utilized.

8. Concluding remarks

We have extracted the raw misses from trace-driven

simulations and have associated possible prefetch points

in a trace with each miss. (The prefetch points are the

set of branches preceding each miss in a workload.) We

have parameterized a prefetch with three parameters:

timeliness, coverage, and accuracy. These parameters,

which are inputs to the simulator that govern how

information in the raw-miss file is used (or not) to

prefetch, have enabled us, by varying the parameters and

rerunning the simulation, to explore the entire space

of prefetching algorithms while not simulating any

particular algorithm (or even requiring that such an

algorithm be possible).

Using this methodology, we have computed the limits

of prefetching under perfect conditions, and have shown

how degrading those conditions (hence, applying real

prefetching algorithms in real systems) can affect the

potential for improving performance. In much of the

space explored, prefetching actually resulted in a loss

of performance.

With perfect coverage and accuracy, sufficient

timeliness, ample bandwidth, and sufficient buffering,

prefetching can eliminate (almost) all delay caused by

cache misses. Interestingly, when portions of this delay

are eliminated, a superscalar processor runs farther down

speculative paths and generates new misses. This effect is

not major, but in principle it prevents prefetching from

eliminating all misses.

In any real prefetching algorithm, the three parameters

(which we varied independently in our study) are

mutually antagonistic. Improving timeliness by issuing

prefetches earlier introduces more uncertainty in the

prefetching, hence reducing accuracy. Improving

accuracy by being more careful about what to prefetch

reduces coverage. When we model more realistic values of

these parameters, the results are sometimes discouraging.

The maximum number of misses (including prefetches)

that can be outstanding at any time (i.e., the number

of buffers) is crucial to the effectiveness of prefetching.

Insufficient buffering prevents the prefetching from being

able to get ahead (i.e., from working), and it causes the

prefetching to obstruct urgently needed miss data.

We used the line transfer interval to study the effects of

bandwidth on prefetching performance. Misses tend to

cluster in time, and they must contend with prefetching

for bus cycles. Without very ample bandwidth, queuing

grows during intervals in which the miss rate is high. This

can add significant delays to the miss traffic.

In many processors today, line sizes are modest (e.g.,

32 bytes), bus widths are sufficiently matched to the line

size (e.g., 8 bytes), and processor frequency is comparable

to bus frequency (e.g., 1:1 or 2:1). For such systems, the

LTI is small (e.g., four cycles) but still measurable.

However, the factors that drive packaging technology

and logic speed and density will cause LTI to increase,

resulting in serious effects that could render prefetching

useless. We have shown this trend even at high levels

of coverage and accuracy.

In this study, we have demonstrated that prefetching

can be evaluated without regard to any particular

algorithm by using a generic model that makes it possible

to systematically and independently vary coverage,

accuracy, and timeliness.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Standard Performance
Evaluation Corporation.

References
1. D. Callahan, K. Kennedy, and A. Porterfield, ‘‘Software

Prefetching,’’ Proceedings of the 4th International Conference

Cumulative percentage of number of instructions between suc-
cessive cache misses for a 64-KB cache with 128-byte line size.
Data are for the mcf, oltp, perf1, and compress applications.

Figure 12

0 10 20 30 40 50 60 70 80 90 100
Instructions between misses

0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
pe

rc
en

ta
ge compress

mcf oltp

perf1

P. G. EMMA ET AL. IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

142

on Architectural Support for Programming Languages and
Operating Systems, April 1991, pp. 40–52.

2. T. Chen and J. Baer, ‘‘A Performance Study of Software and
Hardware Data Prefetching Schemes,’’ Proceedings of the 21st
Annual International Symposium on Computer Architecture
(IEEE), April 1994, pp. 223–232.

3. J. D. Gindele, ‘‘Buffer Block Prefetching Method,’’ IBM Tech.
Disclosure Bull. 20, 696–697 (July 1977).

4. N. P. Jouppi, ‘‘Improving Direct-Mapped Cache Performance
by the Addition of a Small Fully-Associative Cache and
Prefetch Buffers,’’ Proceedings of the 17th Symposium on
Computer Architecture, May 1990, pp. 364–373.

5. A. Smith, ‘‘Cache Memories,’’ ACM Computing Surv. 14, 473–
530 (September 1982).

6. M. Charney, ‘‘Correlation-Based Hardware Prefetching,’’
Ph.D. Dissertation, Cornell University, Ithaca, NY, August
1995.

7. R. Cooksey, S. Jourdan, and D. Grunwald, ‘‘A Stateless,
Content-Directed Data Prefetching Mechanism,’’ Proceedings
of the ACM Thirteenth Annual International Conference on
Architectural Support for Programming Languages and
Operating Systems, October 2002, pp. 279–290.

8. D. Joseph and D. Grunwald, ‘‘Prefetching Using Markov
Predictors,’’ Proceedings of the 24th International Symposium
on Computer Architecture (IEEE), May 1997, pp. 252–263.

9. M. Lipasti, W. Schmidt, S. Kunkel, and R. Roediger,
‘‘SPAID: Software Prefetching in Pointer and Call Intensive
Environments,’’ Proceedings of the 28th Annual International
Symposium on Microarchitecture (IEEE), November 1995,
pp. 231–236.

10. C.-K. Luk and T. Mowry, ‘‘Compiler Based Prefetching for
Recursive Data Structures,’’ Proceedings of the ACM Seventh
Annual International Conference on Architectural Support for
Programming Languages and Operating Systems, October
1996, pp. 222–233.

11. D. Ortega, E. Ayguade, J.-L. Baer, and M. Valero, ‘‘Cost
Effective Compiler Directed Memory Prefetching and
Bypassing,’’ Proceedings of the 2002 International Conference
on Parallel Architecture and Compilation (IEEE, ASM, etc.),
pp. 189–198.

12. J. Pomerene, T. Puzak, R. Rechtschaffen, and F. Sparacio,
‘‘Prefetching System for a Cache Having a Second Directory
for Sequentially Accessed Blocks,’’ U.S. Patent 4,807,110,
February 1989.

13. A. Roth and G. Sohi, ‘‘Effective Jump-Pointer Prefetching for
Linked Data Structures,’’ Proceedings of the 26th International
Symposium on Computer Architecture (IEEE), May 1999, pp.
111–121.

14. Y. Solihin, J. Lee, and J. Torrellas, ‘‘Using a User-Level
Memory Thread for Correlation Prefetching,’’ Proceedings
of the 29th Annual International Symposium on Computer
Architecture (IEEE), May 2002, pp. 171–182.

15. A. D. Berenbaum and T. E. Jeremiassem, ‘‘History-Based
Prefetch Cache Including a Time Queue,’’ U.S. Patent
5,778,435, July 1998.

16. J. Collins, S. Sair, B. Calder, and D. Tullsen, ‘‘Pointer Cache
Assisted Prefetching,’’ Proceedings of the 35th Annual IEEE/
ACM International Symposium on Microarchitecture,
November 2002, pp. 62–73.

17. W.-C. Hsu and J. E. Smith, ‘‘A Performance Study of
Instruction Cache Prefetching Methods,’’ IEEE Trans.
Computers 47, 497–508 (1998).

18. J. Pierce and T. N. Mudge, ‘‘Wrong-Path Prefetching,’’
Proceedings of the 29th International Symposium on
Microarchitecture (IEEE), December 1996, pp. 165–175.

19. V. Srinivasan, E. S. Davidson, G. S. Tyson, and M. Charney,
and T. R. Puzak, ‘‘Branch History Guided Instruction
Prefetching,’’ Proceedings of the Seventh Annual International
Symposium on High-Performance Computer Architecture
(IEEE), January 2001, pp. 291–300.

20. Y. Zhang, S. Haga, and R. Barua, ‘‘Execution History Guided
Instruction Prefetching,’’ Proceedings of the International
Conference on Supercomputing, June 2002, pp. 129–147.

21. S. Van der Wiel and D. Lilja, ‘‘A Survey of Data Prefetching
Techniques,’’ Technical Report No. HPPC 96-05, University of
Minnesota, October 1996.

22. P. G. Emma, ‘‘Understanding Some Simple Processor
Performance Limits,’’ IBM J. Res. & Dev. 41, 215–232 (1997).

Received March 22, 2004; accepted for publication
July 9,

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 P. G. EMMA ET AL.

143

2004; Internet publication November 24, 2004

Philip G. Emma IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (pemma@us.ibm.com). Dr. Emma received B.S., M.S.,
and Ph.D. degrees in electrical engineering from the University
of Illinois, joining the IBM Thomas J. Watson Research Center
in 1983. He is currently the manager of the Systems Technology
and Microarchitecture Department. Dr. Emma has worked in the
areas of microarchitecture, architecture, systems, circuit design,
packaging, and interconnection technology. He was a team leader
in the IBM G4 and G5 zSeries processor design efforts, responsible
for design reliability. Dr. Emma holds roughly 100 patents; he is
an IBM Master Inventor, a member of the IBM Academy of
Technology, and a Fellow of the Institute of Electrical and
Electronics Engineers.

Allan Hartstein IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (hart@watson.ibm.com). Dr. Hartstein is a Research Staff
Member in the Systems Technology and Microarchitecture
Department at the Thomas J. Watson Research Center. He
received a B.S. degree in physics from the California Institute
of Technology in 1969 and a Ph.D. degree in physics from the
University of Pennsylvania in 1973. He joined the IBM Research
Division in 1974. Dr. Hartstein’s research interests have focused
on the study of transport properties and electron tunneling
phenomena in silicon MOSFETs, artificial neural networks, and,
more recently, computer architecture. He has received an IBM
Outstanding Innovation Award and two IBM Outstanding
Technical Achievement Awards. Dr. Hartstein is a Fellow
of the American Physical Society and a Senior Member
of the Institute of Electrical and Electronics Engineers.

Thomas R. Puzak IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (trpuzak@us.ibm.com). Dr. Puzak received a B.S. degree
in mathematics and an M.S. degree in computer science from
the University of Pittsburgh, and a Ph.D. degree in electrical and
computer engineering from the University of Massachusetts. Since
joining IBM in 1970, he has spent more than 25 years working
in the IBM Research Division. Dr. Puzak has received IBM
Outstanding Achievement, Contribution, and Innovation Awards
and has served as Chairman of the Computer Architecture
Professional Interest Community at the Thomas J. Watson
Research Center. He holds several patents in computer architecture
on topics pertaining to branch prediction, pipeline structure, and
memory hierarchy. His areas of interest include processor design,
concentrating on cache and pipeline performance.

Vijayalakshmi Srinivasan IBM Research Division, Thomas
J. Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (viji@us.ibm.com). Dr. Srinivasan joined the IBM
Thomas J. Watson Research Center in 2001 as a Research Staff
Member. She received a B.S. degree in physics from the University
of Madras in 1990, an M.S. degree in computer science and
engineering from the Indian Institute of Science in 1994, and
a Ph.D. degree in computer science and engineering from the
University of Michigan in 2001. From 2001 to 2003, Dr. Srinivasan
was part of a power-aware microsystems project focusing on the
development of high-level energy models to evaluate power–
performance tradeoffs in high-performance server processors. Her
areas of research include computer architecture, microarchitecture,
and performance analysis.

P. G. EMMA ET AL. IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

144

