
© 2012 IBM Corporation

Page:1
SWIFTSWIFT

OpenstackOpenstack SwiftSwift

Object Store Cloud Object Store Cloud

built from the grounds upbuilt from the grounds up

David David HadasHadas

Swift ATCSwift ATC

HRLHRL

davidh@il.ibm.comdavidh@il.ibm.com

© 2012 IBM Corporation

Page:2
SWIFTSWIFT

Object Store Cloud Services

PUT/GET/DELETE

Expectations:

• Huge Capacity (Scale)

• Always Available + Safe

• High Performance

• More PUTs than GETs

• Low Cost per TB

© 2012 IBM Corporation

Page:3
SWIFTSWIFT

High Level: Object Store vs. File System

� Interface:

– Web based: GET/PUT/DELETE

– RESTful: Stateless

– Metadata

� Synchronization

– Eventual Consistency

– No Distributed Locking

� Software Defined Storage

– Commodity hardware

– Designed to Fault but never Fail

– Built to auto-recover by design

� Features

– Basic services that scale (KISS)

– SW extendible with web interfaces

� Interface:

– Posix:

Open,Seek/Read/Write,Close

– Stateful

� Synchronization

– Always consistent

– Uses Distributed Locking

� Hardware and Software

– Best of breed hardware

– Designed not to fault

– Admin controlled recovery

� Features

– Abundant enterprise features built
into the products

Object Store File System

© 2012 IBM Corporation

Page:4
SWIFTSWIFT

Object Store Cloud Options

� Amazon S3

– Proprietary API

� Rackspace Cloud Files (Swift)

– Swift API

� Microsoft Blob Storage

– Proprietary API

� Google Cloud Storage

– Proprietary API

� HP Cloud Object Store (Swift)

– Swift API

� OpenStack Object Services

– Written in Python

- Apache license

– Interfaces:

- Native Swift 1.0

- S3, CDMI interfaces

© 2012 IBM Corporation

Page:5
SWIFTSWIFT

Historical Perspective

OpenStack
Rackspace contributes Swift

NASA contributes Nova

Rackspace Cloud Files V1
Distributed Storage

Centralized Metadata

Hard to scale – while growing

rapidly

Rackspace
designs Swift’

A
u
g

J
u
n

Rackspace Cloud Files V2 (‘Swift’)
Distributed Storage and Metadata

J
u
l

O
c
t

D
e
c

B
e
x
a
r

F
e
b

A
p
r

S
e
p

A
u

s
ti

n

C
a
c
tu

s

D
ia

b
lo

A
p
r

S
e
p

E
s
s
e
x

F
o

ls
o

m

A
p
r

G
ri

z
z
ly

Rackspace deployment of Swift
3 Data Centers

Migrated all customers

J
a
n

J
u
l

2008 2009 2010 2011 2012 2013

OpenStack
Foundation

2
0

0
6

Amazon S3 Launched

S3 holds 14 Billions Objects

© 2012 IBM Corporation

Page:6
SWIFTSWIFT

OpenStack - The Cloud operating System

�550K lines of code

�300K Downloads

�550 Developers

�7000 Individuals from 100 Countries

�850 Organizations

�10M$ Funding

�3000 participants in the last summit

© 2012 IBM Corporation

Page:7
SWIFTSWIFT

Swift

A massively scalable redundant storage system

– Replicate objects to disk drives spread as far apart as possible

� Scales horizontally (adding new servers)

– Known to work with

- ‘Thousands of servers’

- ‘Petabytes of data’

� Designed to contain high rate of failures

– Inexpensive commodity hard drives and servers can be used

– Maintains replication level following faults

� An Open Source Software

© 2012 IBM Corporation

Page:8
SWIFTSWIFT

Swift General Layout

� Swift Cluster

– Proxy Nodes

- Smart

– Storage Nodes

- Simple

– (Can be the same node)

� Object GET/PUT

– Web Clients use HTTP

– Approach a Proxy Node

– The Proxy node maps to storage devices

- Located on Storage Nodes

– Request is propagated to Storage Node

� A Cut-through technology

– Proxy and Storage Nodes never store the
entire object in memory

PUT
Proxy NodesProxy Nodes

Storage NodesStorage Nodes

© 2012 IBM Corporation

Page:9
SWIFTSWIFT

Swift API Examples

� GET MyAccount/MyContainer/MyObject

– Responder provides the object in the body + metadata in http headers

� PUT MyAccount/MyContainer

– Requester indicates container metadata in http headers => Responder indicates 201

� POST MyAccount/MyContainer

– Requester indicates container metadata in http headers => Responder indicates 200

� PUT MyAccount/MyContainer/MyObject

– Requester indicates object content in the message body + metadata in http headers

– Responder indicates 201

� GET MyAccount/MyContainer

– Responder provides the list of objects in the body + metadata in http headers

� DELETE MyAccount/MyContainer/MyObject

– Responder indicates 200

© 2012 IBM Corporation

Page:10
SWIFTSWIFT

Principles of Operation - Mapping

� Mapping must allow us to stay:
– Distributed

– Scalable

– Load Balanced

– Highly Available

� Fortunately, “All problems in computer science can be solved by
another level of indirection (David Wheeler)“

� Double mapping to allow virtualization of Disk space
– Objects are stored in virtual partitions

– Partitions are stored in “devices”

- Typically a device is a local hard drive in a server

- Device can be anything

- Allowing another level of indirection

© 2012 IBM Corporation

Page:11
SWIFTSWIFT

Mapping Implementation

� Consistent Hashing concepts

– Only K/n keys are remapped

– Evenly distributed load during changes

� Mapping of Objects to Partitions

– Partition determined by MD5(Fully Qualified Object

Name)

– Uses Partition-Power highest bits of the MD5 result

– Can elastically grow and shrink

� Mapping Partitions to devices

– Using a ‘Ring’ which maps each partition to D devices

(i.e. D replications)

– The Ring is consistent allowing addition of removal of

devices

- Used mainly to grow the cluster

Devices:

5, 2, 14

MD5(‘FQ Object Name’)

Partition 3

Device Table
ID IP:PORT
1
2 1.2.3.4:6010

…

sde1 partitions

2, 3, 8, 21

Device

sde1

1.2.3.4:6010

© 2012 IBM Corporation

Page:12
SWIFTSWIFT

Principles of Operation - Eventual Consistency

� Faults are assumed
– Disk faults

– Server faults

� Service continues normally during faults
– Continue servicing both PUTs and GETs

– Continue offering the same level of replication

� Distributed, on-going recovery
– Handoff replicas are created following lost of replica

� Always strive for consistency
– Replicas look for the way ‘back home’

© 2012 IBM Corporation

Page:13
SWIFTSWIFT

Eventual Consistency Implementation

� PUT/POST/DELETE Object
Add/Update an object at D replicas

– Respond after RoundDown(D/2 +1)

- On failure:
place on a handoff device

- Any device may serve as a
handoff for any object

– Update the container

- On failure: Queue in
async_pending for later update

– …Delete marks an object for deletion

� GET Object
Get one of the replicas

– Would only try the D replicas at the
Ring

� Replicator Daemon
– Crawl local devices

– Replicate locally found replicas to its
designated place

- Delete successful and handoff

- Signatures for objects + partitions
used for efficiency and speed

� Updater Daemon
– Crawl local devices looking for

async_pending

– Updates container about an object

� Auditor Daemon
– Crawl local devices

– Audit the object signatures

� Expirer Daemon
– Deletes cold objects

© 2012 IBM Corporation

Page:14
SWIFTSWIFT

Principles of Operation - Containers and Accounts

�Containers and Accounts are Objects

– The content of the object is the list of items it contains

– GET /myaccount/mycontainer retrieves the list of objects

– PUT /myaccount/mycontainer creates a container

– PUT /myaccount/mycontainer/myobject adds an object to a container

© 2012 IBM Corporation

Page:15
SWIFTSWIFT

Containers and Accounts - Implementation

� The Container/Account is an SQLite3 DB.

– Today used for

� Separate Rings

– Allow store on separate devices (SSDs for containers/accounts):

- Objects

- Containers

- Accounts

� Containers and Accounts have their own set of eventual
consistency daemons:

– Replicators

– Updaters

– Auditors

– Expirer

© 2012 IBM Corporation

Page:16
SWIFTSWIFT

Swift Architecture

M
D
5

Swift

Proxy

Swift

Proxy

Swift

Proxy

Load Balancer

Client

PUT

PUT

PUT

Extensions Extensions Extensions

Swift
Storage Node

XFS Node

Object Server
Container Server
Account Server

Extensions

Authentication

Authorization

Logging

CORS

CDMI and S3 APIs

Scale-out architecture

Commodity hardware

Replicator
Updater
Auditor
Expirer

‘John/videos/bungee2.mpg’

Device Table
ID IP:PORT
1
2 1.2.3.4:6010

…

Device

sde1

© 2012 IBM Corporation

Page:17
SWIFTSWIFT

IBM Participation – Create Enterprise Grade Swift

� Contributions to Open Source
– Done:

- CDMI Support

- Swift as a request processor of Apache

– On going:

- Account ACLs

- Account Listing

- Enable Ring Size to Grow

- Swift Crawler

– Future

- Object ACLs

- Metadata Extendibility

- Undelete

© 2012 IBM Corporation

Page:18
SWIFTSWIFT

