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Abstract 

Automated Ontology Learning systems are 
nowadays practical and used in a variety of 
domains. By using these systems, subject 
matter experts (SMEs) and ontology design-
ers can readily construct very large ontolo-
gies consisting of tens of thousands of con-
cepts and their relations based on a corpus. 
However, ontologies of this size make it ex-
tremely challenging for such SMEs to under-
stand and further tune these ontologies. Prior 
studies have proposed techniques for concept 
ranking based solely on the analysis of the 
structure of the ontology graphs. In this pa-
per, we propose a novel approach, which fur-
ther exploits a word-level summarization 
technique applied to the source documents 
used to generate the ontology. Using the doc-
ument summarization technique, we devise 
features that measure concept importance 
based on source documents where concepts 
are extracted. We demonstrate the effective-
ness of our approach by comparing with ex-
isting ranking methods and by devising a 
scalable evaluation process inspired from the 
document retrieval domain. 

1 Introduction12 

Automated Ontology Learning (AOL) from text 
is the task of creating ontologies without human 
involvement, based on input documents related 
to the domain of interest (Cimiano et al., 2006; 
Wong et al., 2012). The process for AOL typical-
ly includes the steps of domain terminology ex-
traction, word sense disambiguation, concept 
discovery, relation learning, etc. (Cimiano et al., 
2006). Enabled by recent advances in related re-
search areas such as Natural Language Pro-
cessing, Information Retrieval (IR), and Machine 
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Learning, practical systems for automated ontol-
ogy learning (e.g., ASIUM (Faure and Poibeau, 
2000), OntoLearn (Navigli and Velardi, 2004), 
Text-to-Onto (Cimiano et al., 2005)) have finally 
become a reality. 

Using AOL systems, subject matter experts 
and ontology designers can trivially create large-
scale ontologies, consisting of tens of thousands 
of concepts and their relations. This, in turn, 
makes it very challenging for (human) users to 
explore and understand these ontologies. Tradi-
tional information visualization tools (e.g. IsaViz, 
Stanford Protege) facilitate navigation in com-
plex ontology graphs, however the time and ef-
fort required to understand a very large ontology 
through visualization alone is still prohibitively 
high. Ontology Understanding by human users 
can be assisted through computational intelli-
gence (Wu et al., 2008).  

 To help with ontology understanding, meth-
ods that rank concepts according to their im-
portance in an ontology have previously been 
studied (Alani et al., 2006; Graves et al., 2008; 
Wu et al., 2008). Most of the existing techniques 
draw inspiration from the PageRank algorithm 
(Brin and Page, 1998) (e.g., Patel et al., 2003; 
Ding et al., 2004; Wu et al., 2008), since they 
typically consider an ontology as a directed 
graph and propagate the relative importance of 
concepts (i.e., vertices) via their associated rela-
tions (i.e., edges). Following this approach, high 
authoritative concepts are deemed more im-
portant. 

 
Figure 1: Concept Ranking Scenario 

Prior work has considered ranking of concepts 
derived from ontologies that have been manually 
created by subject matter experts. In contrast, in 



our scenario (Fig. 1), we assume that the user has 
collected some (source) documents of interest, 
and the corresponding ontology is created based 
on these documents, through the use of an AOL 
system. Our focus is on investigating the prob-
lem of ranking the importance of concepts de-
fined in this automatically generated ontology, 
which helps in understanding both the ontology 
as well as the source documents. Note that we 
use the terms “source documents” and “target 
documents” interchangeably to refer to the doc-
uments that the user provides as input to the 
AOL-based ontology generation process. 

We hypothesize that a concept is potentially 
“important” if it is effective in representing most 
of the other concepts in an ontology and our goal 
is to find a relatively small set of concepts, which 
includes most of the key ones in the generated 
ontology. Our key insight is that the aforemen-
tioned task is, in fact, the main goal of multi-
document summarization (e.g., Goldstein et al., 
1999; Lawrie, 2001); for given target documents, 
summarization techniques identify key sentences 
(or words) to represent the documents. Thus, we 
adapt a document summarization technique to 
our concept-ranking task and, through experi-
ments (Section 5), show that this technique is 
effective in identifying important concepts, com-
pared to how they would have been manually 
judged by humans. 

To apply this key insight, we devise novel 
metrics to measure the importance of each con-
cept. While most previous work measure “im-
portance” based solely on ontology structures 
(e.g., authority in PageRank and centrality within 
ontology graphs (Graves et al., 2008))), we pro-
pose new features that make use of the source 
documents where the ranked concepts are ex-
tracted from. Specifically, we assume that “im-
portant” concepts involve high topicality and are 
widely covering the others in the source docu-
ments (see Section 4 for more details). These 
document-based features are not considered in 
previous work, due to the basic assumption that 
they follow, which postulates that the ontology 
has been generated and curated by humans. Once 
the importance of each concept is estimated us-
ing our metrics, we apply a simple greedy algo-
rithm to generate a concept-level summary (i.e., 
a ranked list of concepts). This algorithm itera-
tively selects the most representative (i.e. poten-
tially important) concept so that the overall im-
portance value of the selected concepts is max-
imized. 

To evaluate our approach, we conduct manual-
ly judged experiments whose results are com-
pared with prior concept ranking algorithms (e.g., 
PageRank and CARRank), as well as with our 
approach. In addition, to provide a more scalable 
and robust evaluation, we further design large-
scale experiments relying on document retrieval 
techniques. Given a set of target (source) docu-
ments, we generate a concept ranking result, and 
examine whether the top ranked concepts are 
effective in retrieving the target documents out 
of a million documents. In other words, the target 
documents are successfully retrieved if the rank-
ing method selects really “important” concepts. 

In summary, the main contributions of our 
work are as follows. 
1) We cast new light to the problem of ontology 

concept ranking for ontologies that were au-
tomatically generated from a corpus of source 
documents and suggest the use of a document 
summarization technique on these source 
documents to solve this problem.   

2) We estimate the importance of concepts by 
using features extracted from the source doc-
uments where the concepts are discovered. 
Such source document-based features have 
seldom been investigated in prior work, which 
instead focused on the analysis of ontology 
graph structure (e.g., PageRank). 

3) We perform human-labeled evaluation as well 
as more scalable experiments aided by docu-
ment retrieval techniques. While almost every 
previous study relies on a manually labeled 
data set covering a few ontologies, we design 
a scalable experiment that can examine many 
different ontologies without requiring human 
effort; in the experiments, we examine 50 on-
tologies. 
The remainder of this paper is organized as 

follows. Section 2 describes relevant related 
work. In Section 3, we provide background of 
our automated ontology learning system. Section 
4 proposes our method to rank concepts, and 
Section 5 provides the evaluation of our ap-
proach. Section 6 concludes this paper. 

2 Related Work 

2.1 Ranking Concepts in Ontologies 

On the Semantic Web, ranking ontologies rele-
vant to user queries is important to retrieve rele-
vant information (e.g., Alani et al., 2007; Ding et 
al., 2005). Without user queries, ranking ontolo-
gy concepts has been researched to improve On-
tology Understanding (e.g., Wu et al.,2008). 



In the literature, PageRank (Brin and Page, 
1998) has much influenced on many methods 
(e.g., OntoKhj (Patel et al., 2003) and HITS 
(Kleinberg, 1999)). Typically, these approaches 
weight on high authoritative nodes in ontology 
graphs. As an extension of PageRank, Wu et al., 
(2008) have proposed CARRank that performed 
the reverse mechanism of PageRank. In addition, 
Zhang et al., (2006) have used PageRank with 
textual scores of words by finding (virtual) doc-
uments related to a target ontology. Moreover, 
Graves et al., (2008) have considered more 
central concepts as “important” because they can 
relatively easily access the others in ontology 
graphs. More recently, Chen et al. (2010) have 
propagated the importance of concepts by only 
semantically correct relations. 

2.2 Multi-document Summarization 

Multi-document summarization can be viewed as 
the problem of selecting sentences (or words) to 
represent target documents (Goldstein et al., 
1999). While sentence-level summaries are con-
sidered more reliable and easily readable, word-
level summarization can include intuitive key-
words and provide a succinct representation of 
target documents (Lawrie et al., 2003). Lawrie et 
al. (2001) has proposed a hierarchical summari-
zation method for identifying topic words. Ac-
cording to that, they iteratively choose the words 
which are highly probable in language models 
derived from the target documents and frequently 
co-occurring with other vocabulary. In this paper, 
we exploit this technique for our concept ranking 
problem, and incorporate with the features that 
can capture the importance of the target concepts. 

3 Background: Automated Ontology 
Learning 

In this section, we provide a brief summary of 
our Automated Ontology Learning system for 
generating a target ontology. As described in 
Section 1, users provide the (source) documents 
of interest, and the target ontology is automati-
cally created from these documents. We use an 
automated ontology learning system that we built 
in-house, which can handle a large-scale corpus 
and systematically discover concepts and their 
relations. Note that the selection of that system 
was based solely on practical considerations; the 
ontology concept ranking techniques that we de-
scribe in this work are general and independent 
of the AOL system that is chosen, and can be 

readily applied using any other publicly available 
AOL system (e.g., Velardi et al., 2013)). 

Given a set of documents, the main steps to 
generate an ontology are as follows: 
§ Step-1: Term Extraction & Word Sense Dis-

ambiguation 
§ Step-2: Concept Discovery 
§ Step-3: Relation Extraction 
§ Step-4: Ontology Population 

Figure 2 depicts this process. For each document, 
we first recognize sentence boundaries, and then 
process each sentence to extract concepts and 
relations. The first step is identifying terms that 
appear in each sentence. We use a tokenizer and 
lemmatizer to recognize tokens and their most 
probable lemma (i.e., normalized) forms. Then 
we apply the Part-Of-Speech tagging and Word 
Sense Disambiguation (WSD). For WSD, we 
map each word to the most probable synset in 
WordNet (Miller, 1995). We assume that a word 
in a sentence includes only one sense (“one sense 
per word hypothesis”), and the similarity be-
tween sentence terms and each synset’s gloss is 
measured for the mapping. Then, dependency 
parsing is performed to identify a syntactic struc-
ture for each sentence. 

Based on the above, the next step is to discov-
er concepts that appear in each sentence. Typi-
cally, concepts can be any abstract or concrete 
objects. We syntactically define a concept as any 
possible noun phrase along with dependency re-
lations (recognized by the parser).  For example, 
from a dependency tree like:  
(((JJ	large)	(CC	and)	(JJ	heavy))	à	(NN	dog)) 

we can discover three concepts: “dog”, “large 
dog” and “heavy dog”. For each extracted con-
cept, we use its lemmatized form or synset id as 
a key, and consolidate two concepts into one if 
they share the same key. Once concepts are dis-
covered, we continue processing the sentence to 
identify taxonomic (i.e., hierarchical) relations 
within the identified concepts. We identify three 
main types of taxonomic relations:   
i) SubclassOf is a dependency-based relation 

which directly connects a parent concept to its 
child. As an example, a partial dependency 

 
Figure 2: Ontology Learning Workflow 
 



tree is given: (JJ	heavy)	à	(NN	dog), we dis-
cover two concepts, “heavy dog” and “dog”, 
and “heavy dog” is a sub-class of “dog”. 

ii) InstanceOf denotes a “is-a” relation between 
two concepts, e.g., “John” is a “student”. To 
identify this relation, we use lexical syntactic 
patterns like (subject	 [concept]	 and	 object	
[concept]	depend	on	a	verb	[“call”]). 

iii) Hypernym indicates a hierarchical relation 
between a more general concept (i.e., hyper-
nym, e.g., “color”) and a more specific con-
cept (i.e., hyponym, e.g., “red”). We create 
the relation if two concepts are connected via 
“hypernym-hyponym” in WordNet.        

The AOL system can extract non-taxonomical 
relations (e.g., “association”, “casuality”, etc.) as 
well based on the predicate of the sentence. 
However, in this paper, we explore using only 
taxonomic relations because most extracted rela-
tions are taxonomic, and utilizing non-taxonomic 
relations is left for future work. 

After identifying concepts and their relations, 
we populate a target ontology by generating tri-
ples. We define a triple as a directional associa-
tion of two concepts by a taxonomic relation, i.e., 
c= >

c?  where ci is a child (“dog”) concept, cj is 
a parent (“animal”) concept, and r	∈	{SubclassOf,	
InstanceOf,	 Hypernym}. To build an ontology, 
we create a root concept (i.e., namely “thing”). 
Then, every triple whose parent concept does not 
appear in a child concept of any other triple is 
attached to the root concept as a child. Further-
more, we connect other triples following the hi-
erarchical relations, and finally a large single 
concept hierarchy is generated. Note that the root 
concept is not used in concept ranking. 

4 Ontology Concept Ranking 

In this section, given an ontology generated from 
Section 3, we first generate a directed graph rep-
resenting the ontology. Then, we describe our 
ranking model based on this graph. 

4.1 Ontology Graph 

In the literature, graph-based ontology represen-
tation is commonly used for identifying im-
portant concepts (e.g.,Wu et al., 2008; Graves et 
al., 2008). Since our ontology consists of triples, 
graph representation is straightforward. We de-
fine this ontology graph as follows. 
Definition 1. Given an ontology O, the ontology 
graph K = M, N  of O is defined as a directed 
graph where V is the set of vertices representing 

all discovered concepts in O and E is a set of di-
rected edges representing all relations in O. 

4.2 Concept Ranking Model 

4.2.1 Problem Formulation 

Multi-document summarization aims at extract-
ing key text fragments that effectively represent 
the whole target text. Given target documents, 
this technique focuses on selecting key sentences 
(or words) to represent (i.e., summarize) the tar-
get documents. Inspired from this, we exploit 
such keyword selection process for identifying 
(potentially) important concepts in the ontology. 
We formulate this ranking problem as follows.  

Given an ontology graph G containing a set of 
concepts (as vertices) V, our task is to find a sub-
set of V, which ideally contains all important 
concepts to summarize G. We view this problem 
as a variant of the Dominating Set Problem as: 

Let E be a set of edges (i.e., relations) in G,	
and we generate a sub-set of V so that for every 
vertex not in S, an edge from this vertex to any 
one in V exists and the weight of vertices (i.e., 
the importance of concepts) in R is maximized. 
In a formal notation, find S ⊆  V such that, 
∃ U, V ∈ N  for ∀U ∈ M − R  and ∃V ∈ R  where 
U ≠ V, and  argmax

[
\]]∈[  where \] is an im-

portance value of V. 
Note that the original problem in (Garey and 

Johnson, 1979) is minimizing the number of the 
vertices in R, and (Lawrie et al., 2001) also ap-
plied this dominating set problem to identifying 
keywords of an input text by generating word-to-
word graphs.  

Solving this problem, we obtain the dominat-
ing set S, which can be interpreted as an efficient 
concept-level summary for G. In the next section, 
we describe how to solve this problem. 

4.2.2 Concept Ranking Algorithm 

The Dominating Set Problem is NP-hard, so it is 
not easily solvable. However, a simple but effec-
tive greedy solution is proposed in (Lawrie et al., 
2001). Based on this, we provide a greedy con-
cept ranking algorithm to find R. 

The concept ranking algorithm is depicted in 
Figure 3. This algorithm takes the ontology 
graph	K = M, N  and the source documents D  
(used for generating G) as inputs. For each con-
cept (V ∈ M), we first identify its children con-
cepts (line 2). Since we only use hierarchical re-
lations, every edge in K indicates a parent-child 



relationship between two concepts. Then, we 
estimate the importance of	V in two different di-
mensions: topicality and coverage. The topicality 
(_`) means some topical importance of V based 
on D, i.e., how much important is V with respect 
to D	 (line 3). The coverage (aM) denotes how 
strongly children are related to V, i.e., a weight of 
the edge incoming to V (line 4). We provide 
more details of these measures in Section 4.2.3. 

Next, we initialize R, the ordered list where 
“important” concepts will be added; the insertion 
order denotes the rank of each concept (line 6). 
Besides, DC is the set that will hold the concepts 
dominated (i.e., covered) by the concepts in R 
(line 6). As we select dominated concepts, the 
weak relation between child and parent concepts 
is not sufficient proof that the child concept is 
“truly” covered by its parent concept. So, we val-
idate by imposing a threshold; we define a rela-
tion-dependent threshold by taking a mean of 
every edge weight (line 8). 

Algorithm 1. Concept Ranking 
Input: 
D is the set of source documents to construct 
an ontology O. 
K = M, N  is the ontology graph based on O 
where	V is the set of concepts and E is the set 
of hierarchical relations. 
Output: 
S is the ranked list of important concepts. 
Process: 
1: foreach ∀V ∈ M do 
2: set ch V = U ∈ M ∃ U, V ∈ N  
3: compute TP V  
4: compute CV V = \ d,]d∈ef ]  
5: endfor  
6: R ← ∅ 
7: ia ← ∅ 
8: θ = mean \ ]k,]l  where ∀ Vm, Vn ∈ N 
9: while R ⊂ M and M > 0  do 
10: V ← argmax

]∈r
TP V ×CV V  

11: Add V into the last position of R 
12: M ← M ∖ V  
13: _ ← ∅ 
14: foreach U ∈ ch V  
15: if \ d,] > θ then 
16: _ ← _ ∪ U 
17: endif 
18: endfor 
19: foreach U ∈ _ ∖ ia do 
20: foreach V ∈ M do 
21: CV V ← CV V − \ d,]  

22: endfor 
23: endfor 
24: DC ← DC ∪ T 
25: endwhile 
26: return R 

Figure 3: Concept Ranking Algorithm 

Based on these, we now select important con-
cepts until every other concept is dominated 
(covered) by the selected ones. We iteratively 
select the most important concept V by calculat-
ing the product of its topicality and coverage 
values (line 10). After adding V into S, we select 
dominated children for V  based on the threshold 
(line 13-18). Then, we update the coverage val-
ues for the other concepts since the dominated 
children are not necessarily considered further 
(line 19-23). Finally, we store the dominated 
concepts for the next iteration, and return the list 
of dominating concepts after all iterations.  

In terms of complexity, this algorithm per-
forms in v M w . We can cut-off some very 
rarely observed concepts (e.g., only once ap-
peared in D) in V if too many concepts are given. 

4.2.3 Concept Importance Measures 

For our concept ranking algorithm (Fig. 3), we 
estimate the importance of each concept in two 
different dimensions: topicality and coverage. 
We describe each dimension as follows. 

Topicality: the topicality of a concept measures 
the extent of how informative the concept is to 
describe the target ontology O. To measure this, 
we adopt a language modeling approach (Ponte 
and Croft, 1999) using the source documents D. 
In other words, topically important concepts in D 
may be also important in O. Specifically, we first 
generate concept-specific language models from 
D. We define one large pseudo-document xy by 
concatenating every source document (i.e., xy =

z{∈y ). For each concept |}~, we compute its 
generative probability based on xy as: 

P |}~ xy ≈ P \ xy
Ä∈ÅÇÉ

 

where \ is a word that appears in |}~. 
Since a concept can contain multiple words, we 
use unigram language models to estimate the 
whole concept’s probability. The unigram lan-
guage model is given as: 

P \ xy =
freq \: xy

xy
 

where freq \: xy  is the word frequency in xy 
and xy  is a word-level document length. 

Petros Zerfos


Petros Zerfos


Petros Zerfos




Then, the topicality TP |}~  of a concept is es-
timated as its contribution to the Kullback-
Leibler divergence between this concept-specific 
model and a general language model: 

TP |}~ = P |}~ xy ∙ logá
P |}~ xy
PÅ |}~

 

where PÅ |}~  is a general probability of |}~. 
The general probability can be estimated from a 
general English corpus (e.g., Google n-gram) or 
some large document corpus in the same domain 
of the source documents (e.g., academic paper 
repository if the user inputs academic papers). 
By doing this, we can identify “important” con-
cepts that are highly generative from D and rela-
tively less common in general. This divergence-
based measure is typically used in the area of 
Information Retrieval (Cronen-Townsend, 2002).  
Coverage: the coverage of a concept denotes the 
extent to which the concept can represent its 
children concepts. Note that the ontology con-
tains only hierarchical relations (i.e., {Hypernym,	
InstanceOf,	SubclassOf}). We assume that a par-
ent concept strongly related to its children con-
cepts would effectively represent the children. In 
other words, more widely covering concepts are 
more “important”. To capture this, given a con-
cept, we collect its every child, and estimate the 
weight of the edge (i.e., relation) from the child 
to its parent. This relation weight denotes how 
strongly a parent concept can subsume its chil-
dren. To estimate this, we use the source docu-
ments. Given a relation from a child concept U to 
a parent concept V, its weight \ d,]  is calculated 
as: 

\ d,] ≈ Pà V U =
freqà V, U
freqâ U

 

where z is the size of a word window and 
freqà U  is the number of windows containing U 
in the source documents. 
We use the conditional probability within U, V  
as the weight, derived from D. So, the child U 
highly co-occurring with its parent V in D is con-
sidered as “covered” by V. Note that, alternative-
ly, point-wise mutual information can be used, 
but to capture the “subsumption” of children 
concepts, the conditional probability looks intui-
tively more effective. In experiments, we empiri-
cally set z	as 20, which can vary up to the num-
ber of source documents.  

5 Evaluation 

For evaluation, we choose the patent domain as 
our target domain, and automatically generate a 

patent ontology by applying the AOL system 
(Section 3) to patent documents. After generating 
the ontology, we conduct two different experi-
ments: (1) Ranking Quality Experiment and (2) 
Retrieval Experiment.  

5.1 Ranking Quality Experiment 

5.1.1 Experimental Setup 

Ontology Generation. To generate a target on-
tology, we first collect a set of source documents. 
For this, we use “coffee process” as a query, and 
retrieve relevant patents from a patent search 
engine. Then, we manually select 15 “relevant” 
patents used for building a “coffee process” pa-
tent ontology. As a result, we extract 1,934 con-
cepts with 2,011 (hierarchical) relations. Based 
on these, we perform concept ranking algo-
rithms, and evaluate final ranked results. 
Evaluation Metrics. To measure the quality of 
concept ranking results, we can employ a number 
of IR metrics used for evaluating ad-hoc retrieval 
methods (e.g., document ranking algorithms). 
Among them, we use Precision, NDCG (Normal-
ized Discounted Cumulative Gain (Jarvelin and 
Kekalainen, 2002), and Recall, which are typi-
cally used in ad-hoc retrieval tasks. To use these 
metrics, we basically need a rank result (i.e., a 
list of ranked concepts) and a set of labeled in-
stances (i.e., a list of “important” concepts). We 
describe how to obtain these labeled instances 
later in this section. 
Baseline Ranking Methods. As baselines, we 
employ two existing concept ranking algorithms: 
1) PageRank (Brin and Page, 1999) and 2) 
CARRank (Wu et al., 2008). We choose Pag-
eRank since it has been widely used in the ontol-
ogy ranking problem domain and inspired other 
ranking methods (e.g., OntoKhoj (Patel et al., 
2003) and Swoogle (Ding et al., 2004)). In addi-
tion to this, we employ CARRank that has been 
shown as outperforming several ranking methods 
including PageRank. Thus, we compare our 
ranking approach with these baseline methods. 
Importance Label Judgment.  To obtain la-
beled concepts, we employ two human annota-
tors who are graduate students and can under-
stand the content of “coffee process” patents. We 
first ask each annotator to read all 15 patents. 
Then, we show the list of all concepts for deter-
mining which concepts are more “important” 
than the others, i.e., binary judgment whether 
each concept is “important” or not. For evalua-
tion, we obtain 54 “important” concepts where 
both annotators agree on the judgment. 



 
Figure 4: Ranking Quality Comparison 

5.1.2 Ranking Quality Results 

We verify the quality of the ranked result ob-
tained by each method. Figure 4 shows the eval-
uation result by Precision at top 20, NDCG at top 
20, and Recall at top 100. In that, PageRank and 
CARRank denote the baseline methods, and 
DSRank means our dominating-set-based rank-
ing algorithm (Algorithm 1 in Fig. 3). 

 

Table 1: Ranked Concept Examples 
 

 First, our ranking algorithm can outperform the 
baseline algorithms in every metric. That is, 
DSRank can effectively select “important” con-
cepts. While the baseline methods only use rela-
tions to propagate relative importance, we use 
topical importance directly estimated from the 
source documents. This difference looks signifi-
cant to find “important” concepts that the users 
manually identified. Second, DSRank dramati-
cally performs better in terms of Recall. Compar-
ing to early performance metrics (i.e., Precision 
@20 and NDCG@20), the improvement in Re-
call@100 means that the users can obtain more 
important concepts as they observe more ranks. 

Third, CARRank performs slightly better than 
PageRank within top 20 ranks. However, ob-
serving top 100 ranks, PageRank can find slight-
ly more important concepts than CARRank. 

We further analyze the quality of ranking results 
using some examples. Table 1 shows the top 10 
concepts ranked by each method. In that, we in-
dicate manually-judged “important” concepts by 
bold typeface. A first observation is that Pag-
eRank is effective in finding very general con-
cepts, which would contain more children (e.g., 
“beverage” and “product”). This is because Pag-
eRank generally promotes high “authority” (i.e., 
containing more children) concepts. However, 
this algorithm fails to place topically important 
concepts (e.g., “coffee bean” and “coffee con-
centrate”) at higher ranks. A second observation 
is that CARRank can find not only general con-
cepts, but also some specific concepts (e.g., “cof-
fee formulation” and “calibration solution”). This 
is because CARRank weights the relations started 
from “hub” concepts (containing more outgoing 
edges). However, this algorithm is also missing 
topically important concepts. Third, different 
from these, our DSRank method looks effective 
in finding topically important concepts (e.g., 
“coffee bean”, “coffee beverage”, and “coffee 
concentrate” as well as generally important con-
cepts (e.g., “process” and “extraction”). These 
concepts seem to be useful to express key infor-
mation about “coffee process”.  

5.2 Retrieval Experiment 

We now conduct a more robust and scalable ex-
periment. Although the previous evaluation di-
rectly verifies the ranking quality by human-
labeled examples, due to the manual judgment, 
this experiment is limited in testing with many 
more ontologies generated from different docu-
ments. To overcome this limitation, we design a 
document retrieval-based evaluation. For that, 
we hypothesize that “important” concepts can 
represent not only a target ontology but also its 
source documents, and a search query containing 
such concepts should be effective in retrieving 
all the source documents. In other words, we set 
source documents as “relevant” documents, and 
generate a concept-based query for retrieving the 
source documents. Figure 5 depicts this work-
flow. 

Rank PageRank	 CARRank	 DSRank	
1 group product  coffee 
2 meat collection berry  
3 beverage coffee aroma 
4 coffee aroma coffee bean 
5 powder coffee  

formulation 
coffee  
beverage 

6 nutrient organism process 
7 liquid distribution acid 
8 acid calibration 

solution 
Solution 

9 part grinding coffee  
concentrate 

10 product dry  
ingredient 

extraction 



 
Figure 5: Retrieval Experiment Workflow 

5.2.1 Experimental Setup 

Test Collection: As a test collection, we use the 
USPTO (United States Patent and Trademark 
Office) patents provided by NTCIR-6 (Fujii et 
al., 2006). This collection includes 981,948 pa-
tents published from 1993 to 2000, and provides 
a pool of topics (as initial search queries) and the 
list of “relevant” patents for each topic. To de-
velop the sets of source documents, we randomly 
select 50 topics, and use their relevant patents as 
the source documents. Accordingly, we automat-
ically construct 50 different topic-specific on-
tologies. The average number of the source doc-
uments over the 50 topics is 14.4. 
Baseline Methods: As done in the previous ex-
periment, we use PageRank and CARRank as 
baselines in this evaluation. In addition to this, 
we adopt MEAD, a text summarization method 
described in (Radev et al., 2004), to validate the 
retrieval performance gained by concept queries. 
MEAD directly generates a summary from the 
source documents without the ontology, and the 
words appeared in the summary are used in a 
search query. The reason to employ MEAD is 
that we compare our concept-based summary 
with a traditional sentence-based summary in 
terms of retrieval performance. 
Retrieval Model: For retrieval, we use the Indri 
search engine (Strohman et al., 2005) and the 
query likelihood model (Ponte and Croft, 1999) 
is employed. Since we measure the retrieval per-
formance purely affected by the selection of que-
ry terms (i.e., by concept ranking algorithms), 
more advanced query models that influence on 
the retrieval by query term weighting (e.g., Rele-
vance Models (Lavrenko and Croft, 2001) and 
Dependence Models (Metzler and Croft, 2006)) 
are not considered. 
Search Query Generation: For each topic, we 
generate a concept-based search query by select-
ing the top-k concepts among all ranked con-
cepts. In the experiment, we consider k values 
ranging from 20 to 200 with an increment of 20, 
and select an optimal k value (see Fig. 6). Then, 
we use MEAD to generate a sentence-level sum-
mary with the same size to the concept query, 
and perform a summary-based retrieval by the 

same retrieval model. Note that we remove basic 
stop-words (e.g., prepositions) in each query.  
Evaluation metrics: Since we attempt to exam-
ine the effectiveness of ranked concepts by re-
trieving the source documents for each ontology, 
the rank of each retrieved source document is 
less important. In other words, the queries would 
be effective if all source documents are retrieved 

within some reasonable rank point (e.g., top 20). 
Thus, instead of rank-sensitive metrics (e.g., 
NDCG), we largely use Recall at top 20 and 100 
for evaluation. Besides, MAP (Mean Average 
Precision) is employed to identify overall per-
formance of retrieval results. 

5.2.2 Retrieval Results 

We evaluate our concept ranking method 
(DSRank) by comparing with various baselines 
(PageRank,	 CARRank, and MEAD). We first 
identify how many concepts are effective in re-
trieving the source documents. Figure 6 shows 
the recall performance at the top 100 documents 
obtained by the concept queries using various 
numbers of concepts (i.e., top-k). First, we find 
that the queries using the top 120 or 140 con-
cepts look more effective than the others. Se-
cond, all three concept ranking algorithms be-
have similarly in the retrieval task. Third, 
DSRank outperforms both baselines in most cas-
es (from the top 40 to 160 concepts). We provide 
more detailed analysis of this result later of this 
section. Note that due to the limited space, the 
results with other rank points (e.g., top 20) are 
omitted, but they also showed the same trends. 

Next, we evaluate with MEAD. Figure 7 shows 
the retrieval performance comparison using 
MEAD. We note that concept queries (i.e., Pag-
eRank, CARRank, and DSRank) perform better 
than MEAD queries (except for the case of Pag-
eRank and MEAD by Recall@100).  

 
Figure 6: Recall@100 by top k concepts 

 



 
Figure 7: Retrieval Performance Comparison 

To validate this, we perform Wilcoxon Rank-
Sum test between two series of each metric val-
ues with 95% confidence (i.e, } < 0.05), and 
CARRank and DSRank can significantly outper-
form MEAD in the recall metrics. Thus, the 
ranked concepts are beneficial to retrieve the 
source documents. Second, DSRank is more ef-
fective in top ranks (i.e., Recall@20, c.f., Re-
call@100). The statistically significant im-
provement of DSRank over all baselines is ob-
tained in Recall@20 (using the Wilcoxon Rank-
Sum test). This means that more “relevant” (i.e., 
source) documents are more efficiently retrieved 
by our method in early ranks. Overall, from this 
scalable experiment, we identify the retrieval 
effectiveness of the concepts obtained by our 
approach over various baselines. 

6 Conclusion 

In this paper, we described the problem of 
ranking ontology concepts extracted automatical-
ly from a corpus of source documents through 
the use of an Automated Ontology Learning 
(AOL) system. To solve this, we generate con-
cept-level summaries to identify more important 
concepts. Comparing with existing ranking ap-
proaches, we introduce a novel summarization-
based technique and further exploit the features 
that measure topicality and coverage as estimat-
ed based on the source documents. These tech-
niques have not been explored in previous stud-
ies. Through extensive experiments, we demon-
strate the effectiveness of our method in terms of 
ranking quality and retrieval effectiveness. 

Our approach is based on the source docu-
ments and an AOL-based ontology generated 
from these documents. However, this technique 
can be easily extensible to handle well-known 
ontologies manually generated for target do-

mains (e.g., Travel ontology and MeSH3) by re-
trieving the source documents relevant to the 
descriptions of concepts that have been used as 
input by the subject matter experts. Moreover, 
we can generate virtual documents matched with 
ontologies as done in (Qu et al., 2006). As future 
work, we will examine our approach using non-
taxonomical relations, and test with other do-
mains (e.g., legal documents). 
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