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Abstract—Performance monitoring and logging systems gener-
ate huge amounts of time series data and are a major component
of the cloud infrastructure. Cloud providers rely heavily on accu-
rate forecasting and analysis of the monitoring data for tasks such
as resource and performance management, anomaly detection
and meeting customer SLAs etc. Traditionally analytics systems
use statistical forecasting models for such resource management
tasks without utilizing the runtime interdependencies that exists
among different monitoring metrics. Finding such interdepen-
dencies is challenging but when known they can highly increase
the accuracy of the analytics systems. In this paper, we propose a
deep learning based management system that first discovers the
hidden dependencies in large scale monitoring data and uncovers
the runtime dependency graph of the cloud applications. The
system then feeds such information as extra features to a deep
learning based multivariate forecasting model to more accurately
forecast time series values for analytics tasks. We propose new
additions to the Long Short Term Memory (LSTM) networks
that enable us to extract the hidden relationships in the data. We
have run our system on data sets from two different commercial
cloud platforms and the results show that such interdependency
information is very crucial to improve the accuracy of analytics
tasks such as application performance forecasting and anomaly
detection. Moreover, our experimental results show that our
proposed deep learning based system outperforms traditional
statistical models based system by accurately forecasting time
series values, particularly for highly variable data.

Index Terms—Big Data; Machine Learning; Statistical learn-
ing; Supervised learning; Time series analysis; Neural networks;

I. INTRODUCTION

Modern cloud-native applications [1] follow a micro-
services based design [2] that decomposes the application logic
into a several interacting component services, which are often
independently developed and deployed in a cloud hosting envi-
ronment. This approach to cloud application development aims
to offer isolation in terms of component reliability and scaling,
increased portability regarding the hosting (execution) environ-
ment, as well as continuous development-to-deployment for
maximum agility. It enables rapid development and iteration
throughout the cloud application lifecycle, resulting in reduced
delivery times and improvements that reach end users in a
more timely manner.

However, cloud-native applications that make use of micro-
services also turn the task of application performance mon-
itoring substantially more complicated and challenging [3]:
visibility into key performance indicators and monitoring
metrics of the various application components becomes very
limited, as they are developed and operated by disparate
teams. The reduced visibility into the application structure
is compounded by the fact that the deployment environment
is a cloud hosting provider, with often seperately owned
and managed infrastructure, platform and application layers.
Hence, domain-knowledge regarding the deployment environ-
ment and the network application structure might simply not
be available. This is further complicated by the fact that
resource management objectives from the cloud infrastructure,
platform and application layers might be conflicting and con-
tinuously changing, resulting in a dynamic environment that,
for monitoring purposes, quickly renders obsolete any a priori,
static [4] application dependency configuration. A monitoring
system that learns the runtime dependencies amongst the cloud
application components is necessary in order to monitor the
performance of the heterogenous, dynamically changing and
opaque cloud-native environments.

Towards achieving the above goal, various statistical analy-
sis and machine learning-based techniques have been proposed
in the literature. They typically follow a black-box (i.e.,
without a priori domain knowledge) approach through log
analysis and mining, and discover relationships amongst key
performance indicators using various established statistical
characteristics such as Granger causality [5], pair-wise corre-
lations [6] [7], and clustering [8]. In this work, we expand
upon this line of research by exploring the application of
advances in machine-learning models, namely recurrent neural
networks [9], which have shown great promise in addressing
the limitations of prior approaches: ability to model only linear
relationships ([5]), need for extensive feature pre-processing
([6], [7]), and sensitivity to aberrant data measurements ([8]).

More specifically, we propose a novel use of Long-
Short Term Memory (LSTM) [10] recurrent neural networks
(RNNs), which excel in capturing temporal relationships in
multi-variate time series data, accurately modeling long-term
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dependencies, and being resilient to noisy pattern representa-
tions. We apply LSTM modeling using the time series data that
is collected as part of the performance monitoring of various
key performance indicators, which spans over any of the
infrastructure/platform/application layers of the cloud applica-
tions software stack. We further develop two new techniques
for analyzing dependencies in cloud application components
using LSTMs: first, a generic method for extending the feature
vectors used as input to LSTMs, which directs the neural
model to learn relationships of interest between the monitoring
metrics. Second, a novel approach that looks into the weights
of the neural connections that are learned through the training
phase of LSTMs, to uncover the actual dependencies that
have been learned. In a departure from classical application
of LSTM modeling, the latter technique examines the neural
model itself as opposed to its output, in order to uncover
dependencies of performance metrics that characterize the
various application component services.

We evaluate our approach through controlled experiments
that we conduct by deploying and monitoring the performance
of a sample cloud application serving trace-driven workloads,
as well as by analyzing a data set of measurements obtained
from the monitoring infrastructure of a public cloud service
provider. Three monitoring use cases were considered: (1)
finding strongest performance predictors for a given metric, (2)
discovering lagged/temporal dependencies, and (3) improving
accuracy of forecasting and dynamic baselining for a given
metric using its strongest predictors (early performance in-
dicators). Our results demonstrate that the use of LSTMs not
only improves accuracy of dynamic baselining and forecasting
by a factor of 3-10 times, as compared to more classical
statistical forecasting techniques such as ARIMA and Holt-
Winters seasonal models [11], but is also able to discover
service component dependencies that concur with the findings
of the well-established Granger analysis [5].

In summary, this work makes the following contributions:

e a novel application of Long-Short Term Memory net-
works for dynamically analyzing cloud application com-
ponent dependencies, which is robust to noisy data pat-
terns and able to model non-linear relationships.

e an analysis on three use cases for the use of LSTMs
in the performance monitoring setting, namely the iden-
tification of early performance indicators for a given
metric, discovery of lagged/temporal relationships among
performance metrics, as well as improvements in dynamic
baselining & forecasting accuracy through the use of
additional indicators.

o performance evaluation of the approach through con-
trolled experiments in a cloud-deployed testbed, as well
as through real-world monitoring measurements from an
operational public cloud service provider.

The remainder of this paper is organized as follows: Sec-
tion II provides background information on recurrent neural
networks (RNNs), the basic modeling technique used in this
work. Section III describes our proposal for cloud application

monitoring using RNNs, whereas Section IV provides perfor-
mance evaluation results through controlled experiments and
analysis of real-world cloud measurement datasets. Section V
discusses various issues that arise through the application of
our proposed technique. Section VI provides review of the
related research literature and finally Section VII concludes
this paper.

II. BACKGROUND

Deep neural networks such as Recurrent Neural Networks
(RNNs) have been shown to be very effective in modeling
time series and sequential data. The Long Short-Term Memory
(LSTM) networks [10] are a type of RNNs that are suitable
for capturing long-term dependencies in sequential data, a
property that makes them particular appealing for our appli-
cation domain. A brief description of their design follows,
while the interested reader is referred to [10] for more details.
Neurons (also called “cells” in neural networks) are organized
in layers that are connected with one another. The first (input)
layer receives the input data, computes weighted sums on it
and then applies an activation function (e.g. tanh, sigmoid,
etc.) that produces an output, which is then consumed by the
neurons or cells in the next layer and/or itself, as in the case
of RNNs. During the training phase, the network tries to learn
the weights that minimize the error between the final output
of the network and the real value of the data.
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Fig. 1. Architecture of a cell in LSTM networks

In the case of LSTMs, the basic building block is the
cell as shown in Fig. 1 [12], which has multiple gates i.e.,
Input, Output, and Forget gates that control what information
is maintained, forgotten and provided as output by the cell,
respectively. Multiple cells are chained together in a repeating
structure and each connection carries an entire vector. The Cell
stores values and acts as memory that is reused over time. Of
specific interest to our work is the Input gate, which decides
on what new values are important to be stored in the Cell. It is
essentially a non-linear function o applied to the weighted sum
of the current input values (z;), feedback from the previous
stage (hy—1) and a bias b; (see eq. 1).

iv = o(Wixy + Uihy—1 + b;) )



III. METHOD AND SYSTEM DESIGN FOR DEPENDENCY
ANALYSIS USING RNNs

To use LSTMs for dependency analysis of service compo-
nents, we first extend the LSTM model to extract information
relevant to this task. In the following, more details are provide
on these LSTM extensions, as well as an overview of the
system architecture that implements the overall approach.

A. Extensions to LSTM Model

The main idea is to use the training mechanism of LSTM
to learn dependencies among performance metrics of service
components that the user might be interested in. In order to
achieve this, we introduce a new addition to the Input gate.
This extra input consists of a Probe Matrix V' and the
features data matrix ‘d’. We construct the ‘d’ matrix using
a user defined Feature Learning Function that represents the
type of dependency the user is trying to discover for a target
variable. A target variable is the variable for which we would
like to find dependencies. Equation 2 shows the updated Input
gate that we use to extract dependencies.

iy = o(Wixy + Vidy + Uihe—1 + by) @)

With the new design of the Input gate, we feed the network
with input data and the ‘d’ matrix. The matrix ‘d’ works as
matrix of extra features that we feed into the network and dur-
ing training network uses more relevant features accordingly.
The output of the network is the forecasted values of target
variable for which the user wants to discover dependencies.
Once the network is trained, we extract back the ‘V’ matrix
and analyze it. During the training process, the LSTM network
assigns higher weights to the features in the ‘d’ matrix that
are more relevant to the target variable. This way we can infer
that the target variable has stronger dependency on features
or variables ‘d’ with higher weights assigned to them. In the
following subsections, we explain how to build the matrix ‘d’
using user defined Feature Learning Function and how we
summarize the ‘V’ matrix called as Probe Matrix.

1) Feature Learning Function: We name the function that
is used to build feature matrix ‘d’ as Feature Learning Func-
tion because that is the function used to generate features from
the data that represent dependencies in the data. Generally
speaking, the learning function can be written as in eq 3.

d=g(X,Y) 3)

X and Y represent time series data sets on which learning
function ‘g(.)’ is applied.

In scope of this paper, we compute ‘d’ for two types of
dependencies, (i) Finding strongest predictors or direct depen-
dency among variables (ii) Finding time-lagged dependency
among variables. For (i) and (ii) the learning functions and
matrix ‘d’ notations are shown by eq 4 and eq 5 respectively.

gla,b,..,z) = [at,be, .., 2t] where a,b, ...,z are predictors
d; = [metrict, metric?, metric?, ...
t to t

“4)

d= g(Xa Y)
d; = [metricy, metricy_,...,metric{_;] where h is the

lag horizon
&)

2) The Probe Matrix: The Probe Matrix is essentially
the weight matrix associated with the feature data matrix
generated using Feature Learning Function. The dimensions
of the Probe Matrix depend on dimensions of the data matrix
‘d’. During neural network training phase the values of this
Probe Matrix are updated by the error propagation algorithm
e.g., SGD (Stochastic Gradient Dissent) and once the training
is finished we extract the Probe Matrix with final values. In the
Probe Matrix we have weights corresponding to each feature
in the matrix ‘d’ and we have one such Probe Matrix for each
cell or neuron in the network. These Probe Matrices can be
analyzed in different ways but for this paper we average out
weights for each feature across all the neurons or across all
Probe Matrices. The eq. 6 shows an example of how problem
matrix V; and data matrix d; are combined and fed to network
using eq 2

w1

Vidy = . [metricl metric? metric”] (6)
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B. System Architecture for RNN-enabled Cloud Monitoring

The system architecture that utilizes LSTM network both
for extracting dependencies and then using that informa-
tion in time series forecasting is shown in Figure 3. It
ingests performance measurements from monitoring systems
collected at various layers of the cloud stack (infrastruc-
ture/platform/application). When new monitoring data from
any layer is available, the system prepares it for model
(re)training. It generates the feature matrix ‘d’ using the user
defined Learning Function, as described in section III-A1 and
initializes the probe vector ‘V’. It then feeds the feature matrix
‘d’ along with the monitoring metric for which the forecasting
is desired to the LSTM neural network.

Once the network is trained and the training error converges
to a desired minimum level, the system makes available the
probe vector weights to the Probe Matrix Analyzer, which then
produces runtime dependencies, e.g., list of strongest predic-
tors, that exists in the input data for the desired monitoring
metric. This dependency knowledge can further be used as
additional features for future model training and to produce
models that can more accurately forecast a monitoring metric,
as will be shown in the respective use case in Section IV. The
Data Preparation for Forecasting module prepares data for
forecasting on a trained model that was produced based on the
runtime dependency graph information. The forecasted values
are used by the Analytics Systems to perform various tasks,
such as anomaly detection on application or infrastructure-
level metrics, detecting SLA violations, application perfor-
mance tuning etc. The model is continuously updated and and



retrained at intervals defined by how dynamic is the cloud
application and infrastructure. For example, for applications
or infrastructures that are highly elastic and their usage is very
dynamic, the dependency graphs might need to be extracted
more often than those applications that have more stable
applications or workloads.
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Fig. 2. LSTM Based Neural Network Layers
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IV. EXPERIMENTATION AND PERFORMANCE EVALUATION

We conducted a series of experiments on the two datasets
using our updated LSTM model and compared it to popular
statistical techniques. Figure 2 shows our neural network
model, our LSTM layer consists of 64 cells. For training we
use 500 epochs, the activation function as tanh, loss function
as M SE and for optimizer we use RM S Prop [13], all these
options are available in Python Keras library that we used for
implementation. The data was log-dransforemed before we ran
the experiments on it.

We performed experiments on two types of datasets ex-
plained in the following sections. These datasets are not only
different in nature based on their variability but are also
obtained from two different infrastructures. Our experiments
show that our system performs very well in both the situations.

A. Experiment 1: Measurement Data of Sample Cloud App
Deployed in AWS (DataSet-I)

Our first dataset consists of data that is an emulation
of a multi-tiered cloud application following traffic patterns
obtained from real world traces from an ISP (Internet Service
Provider). This dataset has a more predictable traffic pattern
and corresponding time series measurement data. Figure 4
shows the architecture of our traffic generation and data collec-
tion platform. We use Amazon Web Services (AWS) [14] as our
cloud provider where we deploy the testbed. The testbed has
a front-end Python Flask web-application that runs in an AWS
EC2 instance and a backend Amazon RDS Database, which
runs in a separate AWS EC2 instance. We collected cloud
performance data using AWS Cloud Watch and implemented
a python web service client, which automatically downloads
the cloud monitoring data (total of 11 metrics shown in figure
4 for application and database) using the AWS CloudWatch
APIs. The monitoring data is collected every minute, so the
dataset has a data point for every minute.

In order to generate load on the cloud application, we use
Apache JMeter [15] to send REST requests to our Python-
Flask web-application. For realistic load, we used Clark-Net
HTTP Dataset [16], which are traces collected from an ISP
in the metro Baltimore-Washington DC area. The Clark-Net
HTTP Dataset [16] contains mostly Http GET requests. We
transformed the traces so that they can be sent as REST
requests by the load generator. In transforming traces, we made
sure that the REST requests are replayed as per the original
timestamps and intervals thus maintaining the traffic pattern of
the original traces. The Python-Flask web-application accepts
requests and based on the request type it either retrieves values
from the backend database or inserts new values into the
database. Since most of the requests in the original data were
Hittp Get, we used random sampling to convert some of them
to Http POST requests so that, we can emulate data insertion
in the database as well as retrieval from the database.
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Fig. 4. Data Generation Testbed

The figure 5 shows the plots of collected metrics data from
our deployed testbed.
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1) Use case 1: finding strongest predictors: In our DataSet-
I, we want to infer the application graph and find out strongest
predictor for our metric of interest, which in this case is AWS
RDS’s Network Rx Throughput (db-rx). Using our proposed
system we trained the neural network model with the aim
to reduce Mean Squared Error (MSE) for forecasting AWS
RDS’s Network Rx Throughput (db-rx). We extracted the Probe
Matrix and analyzed it. Figure 6 shows a heat map of our
analyzed Probe Matrix with neurons (or cells) on the x-axis
and predictors on y-axis. The average weights across all 64
neurons for a particular predictor are also shown along y-axis
legend. The purple box shows the strongest predictors for db-
rx namely, app-cpu,app-rx,app-tx. The network assigned on
average high weights to these features/metrics as compared to
other features that were supplied to the network. We generated
our feature matrix ‘d’ using function ‘g’ shown in eq. 4 and
provided all the performance metrics that we collected.
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From figure 6, we can also infer the application perfor-
mance runtime dependency graph for AWS RDS’s Network
Rx Throughput (db-rx) to be dependent on the strongest
predictors. Figure 7 shows the application graph inferred based

on Probe Matrix analysis.
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Fig. 7. Runtime Application Performance Graph
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In order to verify our findings regarding the strongest
predictor, we analyzed the metrics data using the well-known
statistical technique of Granger’s Causality. Since, the actual
Granger Causality finds dependences between only pairs of
variables, we computed Granger Causality between db-rx and
every other variable. The top three predictors for db-rx found
by Granger Causality method overlaps with findings from our
method. The results are shown in table in figure 8. Note that
our Granger Causality test was based on F-Statistics, so we
are selecting top predictors based on the F-Statistic value. The
results indicate that the top predictors from our mechanism
match quite well with those obtained through the Granger
Causality test.

Independent variable F Statistic Value | p-value or Pr(>F)

App CPU Utilization (app-cpu) 4794.8 2.2e-16 ***
2.2e-16 ***
2.2e-16 ***

14346

10994

166.94 2.2e-16 ***
2.2e-16 ***

0.0196 *

184.9
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DB Server Read Latency (db-rlatency) 5.4615

11.714

DB Server Network Transmit Throughput
(db-tx)

DB Read Throughput (db-rxdb) 2.0672
46.489
DB Server Write Latency (db-wlatency) 12,827

Significance codes: 0 ***" 0.1% “** 1% * 5%

0.1508
1.458e-11 ***
0.0003554 ***

DB Write Throughput (db-txdb)

Fig. 8. Granger’s Causality Test Results

2) Use case 2: finding temporal & lagged depenencies:
For this use case, the goal is to learn lagged dependencies of
the metrics in the DataSet-I. We trained the neural network
model with the aim to reduce Mean Squared Error (MSE) for
forecasting AWS RDS’s Network Rx Throughput (db-rx). The
goal is to find out if there is any lagged dependency between
db-rx and Application Packet Received(app-rx). We extracted
the Probe Matrix and analyzed it. Figure 9 shows a heat map
of our analyzed Probe Matrix with neurons or cells on x-axis
and lagged predictors on y-axis, the average weights across
all 64 neurons for particular lagged predictor are also shown
along y-axis legend. We generated our feature matrix ‘d’ using
eq 5, with A=5. As one can see from the results, db-rx has
stronger lagged dependency on app-rx at t-1 and #-2 in past 5
values of app-rx.

Figure 10 shows results of the Granger Causality test and
these results confirm that db-rx has a strong dependency on
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3 42448 2.2e-16 *¥**
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Fig. 10. Granger’s Causality Test Results for Lagged Dependencies in
DataSet-1

3) Use case 3: more accurate forecasting using strongest
predictors: Our proposed system can analyze application run-
time dependency information and we can use this information
to further improve the forecasting accuracy on time series data.
We applied well-known statistical forecasting algorithms on
our DataSet-I, to evaluate their performance. More specifically,
we used ARIMA, BATS, HoltWinters Additive and HoltWinters
Multiplicative [17] algorithms to forecast values of AWS RDS’s
Network Rx Throughput (db-rx), the results of which are shown
in Table 1. As one can observe from the results, the statistical
models perform well on this particular data set, since the
pattern in the data is predictable so most of the statistical
models can forecast values with around 22% MAPE (Mean
Absolute Percentage Error). We also used LSTM recurrent
neural network model named as LSTM(U) in the table for
forecasting and, as shown in the table, it performs slightly
better than the statistical models. However, the LSTM(U)
model acts as univariate model in this particular experiment
and makes use of only one variable, i.e., db-rx, to forecast
its future values. Figure 11 shows the plot of true value and
predicted values by BATS algorithm.
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Forecasting values using BATS Algorithm

We applied our followed our LSTM-based approach to the
DataSet-I and added all the variables as input to the model,
essentially treating is as multi-variate; we immediately notice
that it improves upon the prior results. The details are shown
in Table II and Figure 12 shows the plot of the performance of
the multivariate LSTM model, when forecasting future values
for db-rx; it decreases MAPE to 7% from the best univariate
value of 21%. Note that the results shown in Table II make
use of all (11) the metrics as features that were included in
matrix ‘d’.

TABLE II
FORECASTING ERROR COMPARISON BETWEEN DIFFERENT MODELS
Error Statistical Models LSTM LSTM
Measure (BATYS) (univariate) | (multivariate)
MSE 200 K 196 K 19 K
MAPE 23.09% 21.44% 6.88%

TABLE 1
FORECASTING USING STATISTICAL MODELS AND RNN
Error ARIMA BATS Holt-Winters | Holt-Winters LSTM
Measure Additive Multiplicative | (univariate)
MSE 206867 215049 211939 194122 196678
MAPE 22.17% | 23.09% 22.82% 21.92% 21.44%

Multivariate LSTM Prediction on AWS ClarkNet Data
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Fig. 12. Forecasting values using RNNs

Using our mechanism, we can learn the strongest predictors
for db-rx and use only those to improve the forecasting error,
while reducing the amount of data that is provided as input to
the neural network. By inferring application runtime depen-
dency information, we introduce only the strongest predictors
and the results show that we can significantly lower the MAPE
value and achieve high accuracy in forecasting of the time
series data. Table III shows results from reduced number of
predictors based on dependency information that we extracted
using our mechanism. Results in Table III show that we
can achieve approximately same low MAPE with 4 effective
metrics and 3 strongest predictors namely app-cpu, app-rx and
app-tx. Table III also shows that we can forecast better than



the best statistical model with lower MAPE, using only 1 other
strongest predictor which was extracted using our method.

TABLE III
FORECASTING USING STRONGEST PREDICTORS

Error All metrics 4 effective metrics 2 effective metrics
Measure (11) (db-rx, app-cpu, app-rx, app-tx) | (db-rx, app-cpu)

MSE 19 K 22 K 44 K
MAPE 6.88% 7.27% 10.10%

The improved forecasting achieved using our LSTM-based
approach can be used for various cloud performance monitor-
ing tasks such as anomaly detection. An example of anomaly
detection for RDS Network Receive Throughput is plotted
in figure 13, which shows that we can detect anomalies
with higher accuracy in RDS Network Receive Through-
put and act accordingly. In figure 13, we used mean =+
3o (StandardDeviation) values to calculate upper and lower
bounds for error margins.
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Fig. 13. Anomaly detection in DataSet-I using RNN Enabled Cloud Appli-
cation Management

B. Experiment 2: Analysis of Operational Measurements from
a Public Cloud Service Provider (DataSet-II)

Our second dataset contains real world cloud performance
data obtained from a major cloud service provider. This dataset
contains application/service-level traces, measured from the
container infrastructure of the cloud provider. The data is
highly variable, as micro-services are invoked by other micro-
services, as per real world usage. Figure 14 shows the plots for
data set I1, consisting of Cpu Utilization, Network Tx, Network
Rx and Memory Utilization. The metrics were collected every
30 seconds.

We evaluated the same set of use cases as in Section IV-A,
using data set II. As we can see from figure 14, time series
data in data set II is very volatile and not as predictable as
in data set I, even though the data shown in figure 14 log-
transformed, a common technique in time series analysis that
reduces variability.

1) Use case 1: finding strongest predictors: From data set
II, we are interested in finding the strongest predictor for cpu
utilization. Figure 15 shows the heat map of analyzed Probe
Matrix with neurons (or cells) on x-axis and predictors on y-
axis. The average weights across all 64 neurons for a particular
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Fig. 14. Data Set-II plot

predictor are also shown along y-axis legend. We can see from
the plot that the network-tx is the strongest predictor for cpu.
The neural network learning process assigned high weights to
the network-tx metric, as compared to other features that were
used as input. We generated our feature matrix ‘d’ using eq. 4
and provided all the four performance metrics that we received
in data set II. We also performed Granger Causality test to
verify the strongest predictor and we can see from figure 17
that cpu has indeed the strongest dependency on network-zx.
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Fig. 15. Strongest Predictors for cpu

2) Use case 2: finding temporal & lagged depenencies:
Similar to use case 2 in Section IV-A, we are interested
in finding the lagged dependency of cpu on network-tx. As
shown by the heat map of Probe Matrix in Figure 16, cpu has
lagged dependency on past values of network-tx except for
t-3, for which our model shows weak dependency (we only
checked for last 5 values i.e., h=5). For validation, the Granger
Causality test results shown in figure 17 seem to confirm our
findings.

3) Use case 3: more accurate forecasting using strongest
predictors: As in use case 3 in the previous Section, we
generated well-known statistical forecasting models and as
well as LSTM on data set II and measured their predictive



network-tx[t]
(0.63] 1.6
A8 ML T
network-tx[t-2] o8
(0.24)
network-tx[t-3]
(-0.10)
network-tx[t-4]
(0.17)
network-tx[t-5]
(0.20)
target (cpu) -2
(0.24) |} |} .

0 10 20 30 40 50 60
Neuron #

network-tx[t-1]
(0.12)

(average temperature)

Time-lagged dependency variable

Fig. 16. Lagged Dependencies for cpu on network-tx

Independent F Statistic Value p-value or Pr(>F)
variable
#Packets 2303.1 2.2e-16 ¥**
Transmitted
2.2e-16 ***
2.2e-16***

(network-tx) 1164.2

w
i
S
=)
=2
©
(7]
o
a

789.87

@
o
Q0
c
o
S
5
&

570.88 2.2e-16***

464.63 2.2e-16***

#Packets Received
(network-rx)

0.0673 0.7953

7.1696 0.0007896 ***
0.0006516 ***
5.0198 0.000502 ***
6.5022 5.248e-06 ***

Memory Utilization
(memory)

8.3326 0.003936 **

6.5575 0.00145 **

4.8716 0.002229 **

il
2
3
4
5
1
2
3 5.7471
4
5
1
2
3
4 4.4349 0.001432 **
5 3.2734 0.006007 **

Significance codes: 0 ***0.1% **' 1%’ 5% /

Fig. 17. Granger’s Causality Test Results for Lagged Dependencies

performance. Table IV and Figure 18 show the results that
we obtained. MAPE error is very high for this data set for
all models, while the ARIMA model cannot even detect any
discernible pattern in the data. The LSTM(U) is the univariate
version of LSTM neural network model and, while it performs
slightly better than the classical statistical models,it merely
succeeds in capturing the mean of the data as shown in
figure 19. From Table IV and Figure 19, LSTM(U) fails to
properly model the peaks and troughs in the data, which is
critical in order to detect anomalies.

TABLE IV
FORECASTING USING STATISTICAL MODELS AND RNN
Error ARIMA BATS Holt-Winters Holt-Winters LSTM
Measure Additive Multiplicative | (univariate)
MSE 58.47 58.72 58.58 58.56 51.05
MAPE | 227.20% | 226.04% 227.13% 227.30% 61.56%
TABLE V
FORECASTING VALUES USING LSTM MODEL
Error Statistical Models LSTM LSTM
Measure (BATYS) (univariate) | (multivariate)
MSE 58 51 4
MAPE 220% 60% 24%

From the results of use case 1 for data set II, we know
that the strongest predictor for cpu is network-tx, therefore
we make use of this dependency information in our LSTM
model as an extra feature. The results, as plotted in Table V,
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Fig. 18. Forecasting values using ARIMA Algorithm

show that this extra feature drastically improves the forecasting
accuracy by decreasing the forecasting error (as measured by
MAPE) from 220% to 24%. More importantly, they show that
the improved model more is able to capture the peaks and
troughs in the data, as shown in Figure 20.
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The improved forecasting capability allows to more ac-
curately perform dynamic baselining for cpu utilization and
detect anomalies as shown in Figure 21. In Figure 21, we used
mean + 3o (StandardDeviation) values to calculate upper
and lower bounds for error. Accurate performance metric
forecasting and ability to detect anomalies can help cloud
service providers avoid SLA violations, by allocating more
resources to the application in cases where cpu utilization is
expected to go high and could impact application performance.

V. DISCUSSION

The approach for dependency analysis of cloud applications
described in this work requires consideration of some practical
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ment

aspects, towards becoming a fully automated system that can
operate with minimal human supervision. In the following, we
describe some of these issues and offer potential resolution.

Automating the discovery of service component dependen-
cies: in the LSTM-based approach that we proposed, strong
predictors (or indicators) for certain variable(s) of interest are
found by providing all the available predictor variables as
features to the LSTM network. In practice, there might be
a large number of features to consider and a pre-processing
mechanism would need to be applied to filter the feature
subsets that will be used for further analysis. This pre-
processing mechanism can be based on existing techniques
e.g., clustering the features based on some criteria, or reduced
number of features using autoencoders, which will be as used
as input to the LSTM network.

Continuous discovery and incremental updates of the de-
pendency model: our proposed method for service component
analysis makes use of the learning process of the training phase
of an LSTM network. This is somewhat static, in the sense
that, to detect changes in the service component dependency
graph, a new (re)training would need to be initiated. Since the
training phase is computationally intensive and, depending on
the available compute infrastructure, potentially time consum-
ing, it would be worth exploring online learning techniques
for LSTMs [18], which incrementally adapt the model as new
input data (i.e., new measurements of performance metrics in
our case) is collected and made available to the monitoring
system. As future work, we plan to conduct such experiments
and evaluate the ability of the model to track changes in
the dependency structure of the cloud application that is
being monitored. Further, domain knowledge of the cloud
application’s operating environment can be used to trigger full
re-training, in the case of significant changes in the operating
conditions, such as large-scale outages and hardware failures.

VI. RELATED WORK

The cloud services dependency discovery has become a
recent interest to research communities. Our work takes a
novel RNN based log analysis and mining approach to mine
such dependencies. It is thus orthogonal to manual annota-

tion, code injection [19] [20], and network packet inference
approaches [21] [22] [23].

Along the log mining line, [6], [7] and [24] adopted the
pair-wise correlations of monitor metrics to calculate the
distance between service components. [5] utilized Granger
causality for modeling, while [8] uses clustering to calculate
the service components distance. [25] categorized Google
cluster hosts according to their similarity for CPU usage. Our
work differs from all of them for two reasons; first, we take
the recurrent neural network approach for its effectiveness in
modeling non-linear relationships, simple data pre-processing
and insensitivity to outliers. Second, our approach does not
require a prior knowledge on service structure nor does it
requires specific metric. It is fine-grained at micro service-
level, thus differs from the component-level [24] or network-
specific like Microsoft Service Map [26].

Our new LSTM-based approach is very effective and out-
performs traditional statistical models in all experimental tasks
that we conducted. These include Granger causality [27],
[28], [29], autoregressive models such as ARIMA [30], [31],
BATS and Holt-Winters method [17]. Our approach further
differs from existing works that use neural networks for time
series data analysis. [9] uses RNN but is focused on handling
data with missing values. [32] forecasts multivariate data
using artificial neural network, but the data is stationary and
homogenous in their type, and it uses fee-forward network.
Our work is not limited to using RNN to perform time series
forecasting only [33] [34]; on the contrary, the modified neural
network provides dependency for various cloud monitoring
and analysis tasks.

VII. CONCLUSION

In this paper, we presented a new method that makes use of
Long-Short Term Memory (LSTM), a popular variant of recur-
rent neural networks, to analyze dependencies in performance
metrics obtained from monitoring of service components
used by modern, cloud-native applications. By appropriately
engineering the input features and looking into the learned
parameters of the LSTM network once its training phase is
completed, dependencies among metrics from across the cloud
software stack are identified. We demonstrate the versatility
of the technique by applying it in three use cases, namely
the identification of early indicators for a given performance
metric, analysis of lagged & temporal dependencies, as well
as improvements in the forecasting accuracy. We evaluated
our proposed method both through controlled experiments in a
cloud application testbed deployed in AWS, as well as through
analysis of real, operational monitoring data obtained from a
major, public cloud service provider. Our results show that,
by incorporating the dependency information in LSTM-based
forecasting models, accuracy of forecasting improves by 3-10
times. In our on-going work, we are investigating techniques
that can detect changes in the dependency graph over time in
an online fashion that minimizes the need for full re-training,
as well as reduce the number of features that are required as



input to the LSTM network, in order to discover dependencies
amongst performance metrics.
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