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Abstract

This paper presents a new model for, or rather a new way
of thinking about adaptive, risk—based access control. Our
basic premise is that there is always inherent uncertainty
and risk in access control decisions that is best addressed
in an explicit way. We illustrate this concept by showing
how the rationale of the well-known, Bell-Lapadula model
based, Multi—Level Security (MLS) access control model
could be used to develop a risk-adaptive access control
model. This new model is more like a Fuzzy Logic control
system [9] than a traditional access control system and
hence the name “Fuzzy MLS”. The long version of this
paper is published as an IBM Research Report [3].

1. Introduction

Our work is motivated by the fact that many organiza-
tions, especially those in the national security and intelli-
gence arena, are unable to rapidly process, share and dis-
seminate large amounts of sensitive information in order to
support informed decision making to rapidly respond to ex-
ternal events. A major inhibitor is the inflexibility of current
access control models to deal with such dynamic environ-
ments and needs. Understanding the significance of iso-
lated events and formulating an effective response may re-
quire pooling together of information available within mul-
tiple departments and systems (i.e., to connect the dots).
Clearly, the information that needs to be pooled together
would depend on the external events and the analysis ap-
proach adopted, and this cannot be predicted in advance.
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Traditional access control policies based on roles aligned
with the organizational boundaries are too rigid to allow
for such information pooling. This view is reinforced by
the JASON Report [8] that investigated barriers to infor-
mation sharing. The report also paints a disturbing picture
of the over-reaction within organizations implicated in fail-
ing to “connect the dots”. Such organizations have resorted
to various ad-hoc means to share information: users have
been granted near-blanket access rights or “temporary” au-
thorizations that are never revoked; data have been made
more available by understating its sensitivity; a culture has
developed along the line of the old saying “it is better to
ask for forgiveness rather than for permission” [8]. This has
resulted in an unaccountable risk of information leakage.

Our work is geared towards creating and validating a
novel, risk based access control model that can revolution-
ize the way work is conducted in such organizations. The
problem is that access control is essentially about balancing
risk vs. benefit tradeoffs and existing access control policies
specify these tradeoffs statically rather than being adaptive
to the dynamic environments and the needs to which the
policies are applied. Thus the ideal case where an organiza-
tion continually optimizes access control based on risk vs.
benefit tradeoffs while capping overall risk cannot be real-
ized. We show how the scenario above can be addressed
by making access control much more dynamic and flexible,
using a risk management approach based on quantified risk
estimates. Essentially, our Fuzzy MLS model quantifies the
risk associated with an access; it can even allow risky in-
formation flows needed by a user, provided the risk can be
accounted for and controlled. The eventual goal is to create
a system that encourages information sharing and prudent
risk-taking behavior among its users to maximize the bene-
fit to the organization while keeping users accountable for
their actions and capping the expected damage an organiza-
tion could suffer due to sensitive information disclosure. In
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addition, the organization will be able to dynamically con-
trol risky information flows based on its current operational
needs, risk tolerance and environment.

This paper is organized in the following way: section 2
discusses the general idea of quantified risk—adaptive access
control, section 3 discusses risk vs. benefit tradeoff, section
4 discusses related work, section 5 presents the Fuzzy MLS
model, section 6 discusses on—going and future research.

2. Quantified Risk—Adaptive Access Control

This section discusses Quantified Risk—Adaptive Access
Control (QRAAC). We will first discuss our intuitive inter-
pretation of risk and its relationship to access control, and
then expand the discussion into QRAAC.

2.1. Risk in Access Control Decisions

The Merriam—Webster dictionary defines the word risk
as “the possibility of loss or injury”. Essentially risk is about
some incident that may occur in the future and cause dam-
age. One such risk is the leakage of sensitive information by
human users. Access control is one of the mechanisms used
to manage this risk, i.e., to balance the information needs
of the users in order to perform their jobs with the need of
the organization to protect its sensitive information. Since,
fundamentally, the future needs and behaviors of users are
unpredictable, the access control policy is essentially an
educated guess that tries to balance future risks with fu-
ture needs. For example, in national defense settings, ac-
cess rights are commensurate with the level of background
investigation undergone by a user, yet these investigations
are no guarantee for future behaviors; in fact most leaks of
classified information are done by people with high secu-
rity clearance. Educated guesses encoded in the policy will
always be imprecise and incomplete in dynamic environ-
ments, even if the policy had provisions for pre—specified
exceptions, since not all risk vs. need tradeoffs could have
been foreseen by the policy author. It would be important
to bring these unforseen tradeoffs into the access control
model so that exceptions can be granted in a timely man-
ner and their associated risk is accounted for. This would
require a computer system to know when to bend the pol-
icy to grant an exception, and the system has to know how
much the rule would be bent. QRAAC is meant to answer
this “how much bending” question; it goes even further and
enables the system to take proportional risk mitigation mea-
sures [3] to account for and reduce the risk.

2.2. Risk—Adaptive Access Control

In this section we discuss adaptive access control using
quantified risk, defined as the expected value of damage.

quantified risk (probability of damage) x

(value of damage)

D
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Figure 1. QRAAC on a Risk Scale

The probability of damage is the chance that an event hap-
pens to incur the damage. The value of damage is a quan-
tified measurement of the damage. We do not define the
unit of “value” but consider it is the job of a policy writer
to determine the proper unit for his/her particular context.
Quantifying risk means determining the probability and the
value. Due to the unpredictability of the future, the prob-
ability and the value can at best be good enough estimates
to compute reasonable quantified risk estimates. Using such
estimates may seem dangerous, but as we argued above, tra-
ditional access control policy are also guesses and imprecise
as well. Also, with usage experience, such risk estimates
can be fine tuned over time, just as is done in other fields
such as the insurance business.

We propose that the existing static access control mod-
els with binary “allow/deny” decisions be replaced by a dy-
namic, multi—decision access control model based on quan-
tified risk estimates and risk tolerance. This model is shown
in Figure 1, where the risk scale represents the range of
quantified risk estimates that is further divided into multi-
ple bands of risk. The quantified risk estimate for any access
falls into one of these risk bands. Each band is associated
with a decision and an action; the decision, the action and
band boundaries are all determined according to risk toler-
ance and can be changed when risk tolerance changes. The
top band would be associated with the decision “deny” be-
cause the risk is too high; we call the lower bound of the
top band the hard boundary. The bottom band would be
associated with the decision “allow” because the risk is low
enough; we call the upper bound of the bottom band the soft
boundary. A band between the hard and the soft boundaries
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can be associated with the decision allow with risk mitiga-
tion measures, which are actions such as increased auditing,
application sandboxing, charging the risk to the user, etc.

Section 5 will first discuss the Fuzzy MLS model as an
example of computing quantified risk estimates in an MLS
context and then discuss how the model’s ideas may be gen-
eralized and applied in other contexts.

3. Risk vs. Benefit Trade—off

A primary cause of an access control policy being sub-
verted is that the policy conflicts with individual users’ le-
gitimate needs. The QRAAC model addresses this issue
by allowing some risk taking when the risk of an access
is between the hard and the soft boundaries. An organi-
zation’s optimal goal should be encouraging prudent, cal-
culated risk taking by users to achieve better results while
still keeping the overall risk within the organization’s risk
tolerance, without micro-managing the human users. Once
risk has been quantified, this optimal goal can be achieved
in different ways, based on how an organization chooses to
influence its user behaviors.

One such approach is similar to a credit card system.
Each human user will be given a risk budget as a line of
risk credit in some units of risk. If a user makes an access
whose risk is between the soft and the hard boundaries, then
the difference between the risk and the soft boundary (in
units of risk) will be charged against the user’s risk credit.
This charge can be considered the price paid for “purchas-
ing” exceptional access to information and the necessary
risk mitigation measures. Periodically, the user’s return on
investment (ROI) will be evaluated; the return is the evalua-
tion of the results delivered by the user, and the investment
is the amount of risk charged. Greater reward will be given
to those users with higher ROI. This process could be part of
performance evaluations that an organization already con-
ducts for its employees. A user’s line of risk credit could be
adjusted based on his/her ROI. The total risk for the orga-
nization is always below the sum of all lines of risk credit.
Also, each “purchase” will be logged so the users’ behav-
iors can be reviewed and the overall risk—based security pol-
icy can be regularly fine-tuned to be more aligned with the
actual needs. The lines of credit also provide a means for
users to tide over minor conflicts between their needs and
the current policy in real-time, i.e., provides flexibility in
the short term whereas the fine—tuning process which is to
be done off-line adjusts the policy for long—term trends.

Another option would be to create a market-based mech-
anism for users to “trade” quantified risk as a commodity.
There will be a finite number of risk units in the market,
based on the cap on risk that the organization is willing to
accept. As before, exceptional accesses will need to be paid
for by the users based on the difference between the risk of
access and the soft boundary in risk units. A market could
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be set up so that users who see an opportunity that requires
risk taking could purchase risk units from the market with
the hope of realizing tangible rewards from the organization
if the opportunity is realized. Users who don’t foresee any
opportunities could sell their risk units into the market for
tangible benefits. Provided the market is set up properly,
this mechanism could potentially pool the information and
knowledge distributed over the users to optimally allocate
the risk to the most promising opportunities [12, 6].

One problem with this approach is that risks associated
with multiple actions may not add up linearly. The same
aggregation problem also exists with most existing access
control models, where the combined effect of multiple al-
lowed accesses could create a high risk situation. Chinese—
Wall [2] and other history dependent policies are one way
to address this problem in traditional models and this may
be the way to address the problem even in our model. If risk
calculations are made dependent on the history of accesses
by the user, such risks could be managed. For example,
Chinese—Wall-like constraints could be easily added to the
quantified risk model: a user’s request to access information
in a category would show up as having much higher risk if
this user has accessed information in another category that
is mutually exclusive with the requested category under the
Chinese—Wall policy.

The JASON report [8] also presents some ideas on mar-
ket mechanism; it discusses the notion of an access token
which grants access rights to certain kinds of access. The
report gives the following example: “I token = risk associ-
ated with one—day, soft—copy—only access to one document
by the average Secret—cleared individual. > A token associ-
ated with a specific kind of access is assigned a value using
some common denomination. This allows different tokens,
and therefore different access rights, to be traded. So it is
more like a barter system; and the report neither presents an
uniform way nor a mathematical model to quantify the risk
associated with information access or to compute the value
of a token.

4. Related Work

Research on risk in access control models, flexible ac-
cess control models, and risk management in general has
been done for many years. We highlight a few recent ones
that are related to our work. The JASON report [8] dis-
cusses the importance of a risk—based access control system
in which the risk is measurable. McDaniel [10] discusses
how the context of an access control decision can affect the
decision. Nissanke and Khayat [11] analyze the risk associ-
ated with permissions assigned to a role in a RBAC system
where the risk is assessed by an independent assessment
process. None of these works present a way to quantify
risk. Dimmoc et al. [4] discuss a computational approach
to estimate risk and uses the estimate to make optimal deci-
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sions. However, the subjects in their model are autonomous
agents, not humans; and it seems that the model requires a
prior knowledge of outcomes of all possible combinations
of states and actions when a decision is being made. We
doubt that such knowledge is obtainable in general.

5. Fuzzy MLS Model

We now discuss the Fuzzy MLS model in detail. Fuzzy
MLS was developed as the access control model for humans
to access information from IBM System S, an exploratory,
very high performance data analysis system, designed and
built to continuously analyze a huge amount of input data
flow. In particular, the Fuzzy MLS model was developed
for the “Brokerage of the Future” scenario, where System
S could be used to analyze information for use by stock an-
alysts in a brokerage. The brokerage needs to constantly
access, analyze and protect a large amount of sensitive and
privileged information and provide the best possible infor-
mation to its traders and fund managers while managing the
risk of sensitive information disclosure. More details of the
brokerage scenario and IBM System S are given in [3] and

[7].

5.1. Fuzzy MLS: Computing Risk

The rationale for the MLS model is essentially risk based
[5] but it suffers from a binary decision model based on risk
avoidance [8]. Fuzzy MLS utilizes and extends the under-
lying risk—based rationale of MLS but changes the access
model to be based on risk management. For a human user’s
read access, the risk is defined as the expected value of loss
due to unauthorized disclosure:

risk =

(value of information) x (probability of
2

The “value” of information is defined to be the damage sus-
tained if this information is disclosed in an unauthorized
manner, where units of damage would be organization spe-
cific. Estimating value may appear difficult, but any orga-
nization already practicing MLS is expected to assign sen-
sitivity levels to information based on a rough estimate of
its value, as prescribed by the principles in [S]. Typically,
sensitivity levels correspond to the order of magnitude of
loss and thus approximate “value” can be derived from a
traditional sensitivity level by an exponential function.
Determining the probability of unauthorized disclosure
requires more work. A precise determination is generally
impossible since that would require predicting future user
behaviors. Instead, the Fuzzy MLS model strives to de-
velop a way to assign such probabilities that is commen-
surate with common sense and intuition coming from prior
experience with the traditional MLS model. For example,
the probability should be very high when a person without

unauthorized disclosure)
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security clearance is given access to top secret information
but relatively low if the access is given to a person with top
secret clearance. The Bell-Lapadula MLS model [1] can be
viewed as estimating such a probability P from two inde-
pendent probabilities, P; and P», and combining them.

0 human subject clearance level >
P = object sensitivity level

1 otherwise

0 human subject category set 2
P, = object category set

1 otherwise

P=P +P—-PhF (3)

The Fuzzy MLS model considers P; to be the probabil-
ity that a human subject (a user) leaks the information by
succumbing to temptation and P to be the probability of
inadvertent disclosure, regardless of a subject’s intention.
The model estimates P; and P, but they are no longer bi-
nary. Thus, the Fuzzy MLS model quantifies the risk that
is the concern of the simple security property of the Bell—
LaPadula model; this property states that a subject can not
read up and is meant to prevent unauthorized disclosure of
information to human subjects. How IBM System S ad-
dresses the concern of the x—property' of the Bell-LaPadula
Model is discussed in [3].

5.1.1 Computing P;

A human subject’s temptation would be a function of the
subject’s clearance level (sl), which indicates the subject’s
trustworthiness, and object sensitivity level (ol), which indi-
cates the value of the object. Temptation should monotoni-
cally increase with respect to ol and monotonically decrease
with respect to sl. Traditional MLS takes a binary view
of temptation: no temptation when ol < sl and full temp-
tation otherwise. MLS also uses a step function to relate
temptation to the probability of disclosure P;: no disclosure
when there is no temptation and disclosure with probability
1 when there is temptation. We take a more nuanced view
that all accesses result in temptation, which we quantify by
a temptation index T'I that varies over a scale. T'I is then
converted to P;. There could be many ways to derive T'1,
which is a function of sl and ol, but we suggest that any
such function should have the following properties:

e Temptation increases as object sensitivity increases or
subject trustworthiness decreases.
oly > oly = T1(sl,oly) > T1(sl,ols)
sly > sl = T1(sly,ol) < TI(slz,0l)

e T'] is always greater than 0.

e T'] is biased toward more sensitive objects.

'No “write—down”.
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— The more sensitive an object is, the faster 7’1 in-
creases as s/ decreases.
oly > oly =
0 > 90TI(sl,o0ly)/0sl > OTI(sl,oly)/0sl

— For a constant difference (sl — ol), T'I increases
as ol increases.
TI(Sll, Oll) > TI(SlQ, Olg) Zf
oly > oly and (sly —oly) = (sla — ola)

As an example formulation for 71, we choose formula
4 below since it is simple, analytic and has all the above
properties. Let a be a real number that is greater than 1
and m be a real number that is greater than the maximum
allowed value of ol. We further assume that s/ and ol are
non—negative, then

TI(sl,0l) = (a=C1=)/(m — ol) 4)

Here a® corresponds to the estimate value of loss as ex-
plained in section 5.1; and a® corresponds to the trust-
worthiness of a human subject [1, 5] such as “John can
be trusted with information worthy of at most $10M”. In
this formulation 7' approaches infinity as ol approaches
m. The intuition behind m is that the temptation for a hu-
man subject is considered to be too great if an object is as
sensitive as m or more sensitive than m, implying that such
access control decisions should not be made by machines.

P, should monotonically increase with 7. While there
could be many different ways to relate 7'I to P;, we choose
a sigmoid function [9] in order to closely parallel the MLS
step function approach. P; is defined as

1

Po= 7 exp( (—=k) x (T1 —mid) )

)

where the parameter msd is the value of 7' when P is 0.5
and k determines the slope of the P; curve.

5.1.2 Computing P,

When a human subject has a very strong, legitimate need
for information in a category, the organization is more will-
ing to accept the probability of inadvertent disclosure as the
usual risk associated with conducting its business. When
the subject only has marginal or no need, the organization
is less willing to accept the probability. If a subject accesses
an object belonging to only one category, P is the differ-
ence between the probability of inadvertent disclosure and
the probability that the organization is willing to accept for
that subject; P is zero if the difference is negative. If the
object belongs to multiple categories, we make the simpli-
fying assumption that the object is a monolithic entity and
compute a difference for each category and use the maxi-
mum as P».
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More research is needed to determine the probability of
inadvertent disclosures for a category and an organization’s
willingness to accept such disclosures. We expect differ-
ent categories to have different considerations for specify-
ing the probability and willingness [3].  Many formula-
tions for P5 or even explicit table listings are possible. We
are currently experimenting with the following. For a cat-
egory ¢, a subject is given a fuzzy membership in [0, 1] that
indicates the subject’s need for information in the category;
an object is also given a fuzzy membership that indicates
the relevance of this object to the category. Thus the will-
ingness decreases as the subject membership decreases and
the object membership increases. The subject and object
memberships can be used to compute a willingness index
using formula 6 where b > 1, sm and om are subject and
object memberships, and M4, is the maximum category
membership.

(bi(omism»/(mmaac - (6)

Formula 6 is similar to 4, but its bias is on the subject mem-
bership so that the willingness decreases rapidly as the sub-
ject membership decreases. This index can be used in place
of T'I in formula 5 to compute w. =willingness to accept
for ¢, which is a number in [0, 1].

1
1 4+ exp( (—k) x (we; —mad') )

wic(sm, om) sm),

we = )
If P. denotes the probability of inadvertent disclosure for
category c,

P, = Maxzimum{ P.(1 —w,.) | cis a category } (8)

5.2. Computing Risk In General

This section discusses how the Fuzzy MLS ideas can be
generalized and applied in contexts other than MLS. Our re-
search has been focused on deriving the probability in for-
mula 1. We believe that any organization practicing risk
management or MLS has a procedure in place to assess, or
at least to classify the values of information [5].

While the true probabilities cannot be accurately derived,
it is feasible to estimate the probabilities using the following
two—step process, if qualitative comparison between two ac-
cesses can be made to determine which access is more likely
to result in misuse of the accessed resource.

1. Encoding the comparison using a formula that com-
putes indices, such that a larger index implies a higher
likelihood. Since the range of indices is not con-
strained, they could offer a high resolution to encode
the intuition behind the qualitative comparison. The
indices can be put on a scale, and the scale can be cal-
ibrated such that some points on the scale correspond
to real access scenarios. The calibrated scale provides
a frame of reference for step 2.
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2. Assigning probabilities of misuse to the indices in a
way that is commensurate with experience, intuition
and threat assessment. These probabilities should in-
crease with the indices. These assignments should be
fine tuned over time; but the indices can be kept fixed
to make the fine tuning easier. Such probability assign-
ments are guesses, but all access control policies and
decisions are guesses, as discussed in section 2.1.

Many factors contribute to risk and it may be difficult
to design one index formula covering all factors. Such a
formula will contain many tunable parameters and be diffi-
cult to maintain. We could first design the index and prob-
ability formulas for each factor and then divide these fac-
tors into smaller groups, such that the relationship among
members of a group can be understood or at least conjec-
tured. This will allow a group’s joint probability to be com-
puted. Then treat the groups as independent and compute
their joint probability. For example, Fuzzy MLS computes
the probability through P; and P; using formula 3.

6. On-Going and Future Research

Besides the “risk market” discussed in section 3, and the
fine tuning of the Fuzzy MLS parameters, we believe that
quantified risk—adaptive access control (QRAAC) may help
address issues that exist in current access control systems.
These will be the subjects of further research :

e Uncertainty in Security Labels: Security labels, such
as MLS labels are assumed to be exact and correct.
For example, most MLS systems include the notion of
perfect secrecy downgraders that sanitize data [13]. In
reality, label assignments are not exact and tend to ei-
ther err on the side of security and be too restrictive or
err on the side of convenience and be too loose. If the
uncertainty in label assignments could be expressed
explicitly, such as probability distribution functions or
fuzzy set memberships, labels could be more accurate
and QRAAC may be used to make better access con-
trol decisions as long as risk can be computed from
the “uncertain” labels. This approach also has the po-
tential to address some issues related to the classical
Aggregation Problem in MLS. The uncertain label of
a piece of aggregated information could be skewed to-
ward higher sensitivity than its components.

Loss variance based access decisions: Using proba-
bilistic security labels, both the expected loss and the
variance of loss may be computed and used to make
access decisions.

Risk Modulating Factors: Many factors other than se-
curity labels, such as usages of risk mitigation mea-
sures, security of the physical environments, history,
properties of information delivery channels can affect
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risk estimates. Taking these factors into account will
result in a more holistic and realistic model for dy-
namic environments found in mobile settings.
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