Q-Thread: A New Execution Model for Dynamic QOS Control
of Continuous-Media Processing*

Kiyokuni KAWACHIYA

IBM Research,

Tokyo Research Laboratory
1623-14, Shimotsuruma, Yamato,
Kanagawa 242, Japan
<kawatiya@trl.ibm.co.jp>

Abstract

One characteristic of continuous media is that they
should be processed both continuously and periodically.
Although “periodic execution models” are suitable for
such processing, most existing periodic models do not
take account of resource reservation and adaptation
(QOS control) in themselves, and such resource man-
agement must be performed through some external
mechanism. In this paper, we propose a new process-
execution model, named “Q-Thread,” that incorpo-
rates such continuous-media support. By using a Q-
Thread, a user can specify the tolerable ranges of the
period and computation time for periodic invocations,
and can easily write a continuous-media session that
controls the QOS dynamically. The @Q-Thread execu-
tion model has been implemented on RT-Mach, and
dynamic QOS-control experiments have been carried
out with this prototype.

Keywords: Process-execution model, dynamic QOS
control, continuous media, resource management

1 Introduction

In the Keio-MMP (MultiMedia Platform) project
[1], we have been extending Real-Time Mach 3.0 (RT-
Mach) [2] and constructing a software platform for
multimedia processing on our extension [3, 4, 5]. One
research topic related to such a multimedia platform
is an execution model suitable for continuous-media
processing.

Basically, “periodic execution models” seem to be
effective for processing continuous media in a com-
puter. However, most existing periodic models focus
on real-time processing such as machine control, and
do not take account of resource reservation and adap-
tation (QOS control) for continuous media. Such re-
source management has to be achieved through some
other mechanism outside of the execution model.

*This research is conducted under the Open Fundamental
Software Technology Project of Information-technology Promo-
tion Agency, Japan (IPA).

Hideyuki TOKUDA

Faculty of Environmental Information,
Keio University
5322 Endo, Fujisawa,
Kanagawa 252, Japan
<hxt0@sfc.kelo.ac.jp>

In this paper, we propose a new execution
model, named “Q-Thread,” that incorporates such
continuous-media support. Section 2 examines the
basic structure and required features of continuous-
media processing. Section 3 proposes the Q-Thread
execution model, which satisfies the requirements, and
Section 4 reports dynamic QOS-control experiments
using a prototype implementation of the Q-Thread.
After a discussion of related work on multimedia exe-
cution models in Section 5, Section 6 offers some con-
clusions and topics for future work.

2 Execution Model for Continuous-

Media Processing

As the name indicates, one characteristic of con-
tinuous media is that they are processed continuously
and periodically. Therefore, the “periodic execution
model,” in which an entry point is called periodically,
is suitable for continuous-media processing [6]. In
RT-Mach, which is our base software, a periodic real-
time thread (RT-Thread) is provided and can be used
to perform continuous-media processing, as shown in
Fig. 1 [7]. In this example, a media data unit (MDU),
such as a frame of video data, is processed on every
invocation of work_entry().

However, the periodic RT-Thread was originally de-
signed for real-time processing, and is not entirely suit-
able for continuous-media processing. Unlike in static
real-time processing, for example, where some task set
is predefined, it is normal in continuous-media pro-
cessing for the system environment to be dynamically
changed by user interaction and so on. To guaran-
tee the real-time nature of the processing in such an
environment, some resource reservation mechanism is
necessary. The periodic RT-Thread model does have
the deadline-miss detection mechanism, but does not
guarantee the execution. Such guaranteeing must be
managed outside of the execution model by, for exam-
ple, a CPU reservation mechanism [8, 9].

In continuous-media processing, moreover, the pro-
cessing amount can be adjusted without violating the
timing constraints by changing the quality of service

(QOS). For such QOS adjustment, it is desirable that

Periodic main() .
RT-Thread /* Create aperiodic RT-Thread */
rt_thread_attribute_init(
LO—/—:S]: ..., period, work_entry, ...);
= rt_thread_create(...);
}
work_entry() /* invoked periodically */
/* Process aframe*/
}

Extend the period
(QOS decrease)

Figure 1: Continuous-media processing using the pe-

riodic RT-Thread

some resource-use adaptation mechanism based on ac-
tually available resources be provided. Such a mecha-
nism is not included in the periodic RT-Thread model
of RT-Mach. Therefore, a user program must explic-
itly implement the dynamic QOS control by itself, us-
ing some mechanism outside of the execution model
[10]. As an example of this, the lower part of Fig. 1
shows how the QOS (frame rate) is degraded by ex-
plicitly extending the period of the RT-Thread.

To solve these resource-management problems for
continuous-media processing, we have developed a
new process-execution model, named “Q-Thread.”
The Q-Thread includes resource reservation and adap-
tation, and supports a user program for controlling the

QOS.

3 A New Process-Execution Model,
“Q-Thread”

There are various ways of changing the QOS of con-
tinuous media on the basis of the available resources.
Two typical ways are adjusting the temporal resolu-
tion (e.g., the frame rate) and adjusting the spatial
resolution (e.g., the frame quality) [11]. For example,
the graph n Fig. 2 illustrates the relations between
these resolutions for specific levels of resource con-
sumption, and arrows in the figure show various ways
of reducing the QOS when the available resources are
decreased from 30 to 20.

In the periodic execution model, these ways of ad-
justing the QOS correspond to changing the period
(invocation interval) of the processing and the amount
of computation for each processing unit, respectively.
The Q-Thread is an execution model that incorporates
this adjustment of period and computation time.

3.1 Overview of the Q-Thread

The Q-Thread can be considered as an extension
of the periodic RT-Thread for continuous-media pro-
cessing with dynamic QOS control. In the periodic
RT-Thread, a fixed invocation period is specified as

Spatial resolution

Ad] ust the \\
temporal resolution

Adjust the

spatial resolution
\40
30

=5

Resour ce consumpti

Temporal resolution

Figure 2: Various ways of changing the QOS

a thread’s attribute,! but in the Q-Thread, the tol-
erable ranges of the period and computation time
(CPU time) for invocations can be specified. The
user-specified entry point is called periodically, but the
period (invocation interval) is changed automatically
and dynamically within the specified range in accor-
dance with the available CPU resource. In addition
to this adjustment of the period, information on the
available computation time is passed to a user program
at each invocation as a hint for workload adaptation.
Table 1 gives a comparative summary of the periodic
RT-Thread and the Q-Thread.

So long as the user program observes the
computation-time indication in the hint, its execution
is guaranteed by the CPU reservation mechanism of
RT-Mach [8, 9]. This mechanism enables a thread (or
a group of threads) for reserving a specific part of the
CPU resource in the form of “requires C' seconds every
T seconds (i.e. % of the CPU).”

The CPU-resource allocation among multiple Q-
Threads is dynamically managed by a “QOS-Control
Server” in accordance with the “QOS-Ticket model”
proposed in our previous work [12, 13, 14]. This
server calculates the CPU-resource assignment for
each continuous-media session in accordance with
“QOS factors” registered by the sessions, and “issues”
a CPU reserve to each session.

3.2 Implementation of the Q-Thread

Currently, the Q-Thread is implemented on RT-
Mach as a user-level library by means of the peri-
odic RT-Thread. Figure 3 shows the structure of the
current implementation, consisting of a QOS-Control
Server and a Q-Thread library [15]. Both programs
are written in C; the QOS-Control Server contains
about 1500 lines and the Q-Thread library about 1000
lines.

When a user program indicates the creation of a
Q-Thread, the library first translates the ranges of

11t is possible to change the period of RT-Thread by re-
specifying the thread’s attribute. The Q-Thread is implemented
by using this function.

Table 1: Comparison of the periodic RT-Thread and the Q-Thread

Periodic RT-Thread Q-Thread
Function User-specified entry point
is called periodically.
Thread’s (Fixed) invocation | Ranges of the period and computation
attribute period, etc. time, QOS-control policy, etc.
Invocation Fixed Dynamically changed within the range
period (can be re-specified) based on the QOS-control policy
Arguments passed User-specified Same, plus a QOS-control hint
to the entry point argument (available computation time, etc.)
Guarantee of None (possible with Guaranteed, within the
execution CPU reservation) available computation time
Purpose (Soft/hard) Continuous-media processing
real-time processing (with dynamic QOS control)

Continuous-media sessions

QOS-Control Server

User

(" Thread list

1

2

3

Create
CPU reserv |ssuelchange

N

CPU reserve
Real-Time Mach

Figure 3: The QOS-Control Server and the Q-Thread
library

the period and computation time in the Q-Thread at-
tribute into the range of the required CPU-resource al-
location (QOS factor), and registers it with the QOS-
Control Server. On the basis of this information, the
server allocates and reserves a part of the CPU re-
source and 1ssues a CPU reserve to the Q-Thread.
The available CPU-resource amount indicated in the
reserve 18 reverse-translated into some possible com-
bination of period and computation time, and a user-
specified entry point is called with this period. The
result is also passed to the user program as a hint on
QOS control.

Note that this translation process is not a static one
when the Q-Thread is created, but is performed dy-
namically in accordance with the system environment.
For example, when a Q-Thread is newly created or
finished, or some Q-Thread’s attribute is changed, the
CPU-resource assignment to the existing Q-Threads
is recalculated by the QOS-Control Server, and the
period and/or computation time of these threads are
changed.

3.3 QOS-Control Policies of the Q-
Thread

Several policies can be considered for reverse-
translating the CPU reserve into a possible period and
computation time. In the current implementation, the
following four “QOS-control policies” are provided:

DEGRADE_PERIOD_FIRST: This policy tries to preserve
the maximum computation time, and degrades
(extends) the period first in a CPU-resource
shortage. This corresponds to preserving the
maximum possible spatial resolution.

DEGRADE_COMPUT_FIRST: This policy tries to preserve
the minimum invocation period, and degrades
(reduces) the computation time first in a CPU-
resource shortage. This corresponds to preserving
the maximum possible temporal resolution.

DEGRADE BOTH: This policy degrades the period and
computation time equally.

HINT_ONLY: In this policy, the QOS adjustment is to-
tally left up to the user program. The library does
nothing other than provide a QOS-control hint.

One of these policies is specified in the Q-Thread at-
tribute.

Figure 4 shows the relation of the range specifica-
tion and the QOS-control policies. In this example,
the range from 30 to 100 msec is specified as the tol-
erable invocation period, and the range from 10 to 20
msec is specified as the tolerable computation time for
invocations. Consequently, the inside of the rectangle
in the figure contains all the possible combinations
of the period and computation time. How a specific
combination should be chosen from the available CPU
resource is based on the QOS-control policy, as shown
by the three paths in the figure.

The QOS-control policy can be re-specified while
the thread is running. In this case, the period and
computation time are recalculated by the Q-Thread
library.

’g i The areainside the rectangle represents
2 the possible combinations of the period
- and computation time

DEGRADEiPERIODiFIRST\ ‘

& Comp. time

()
[
SE P
15 o4 3082
s g oﬁeg
g8
10 i : =
? DEGRADE COMPUT FIRST
5l - - >
Range of the period
1 I 1 Il 1 1 (mﬂ)
200 100 80 60 50 40 30 <- Period

Figure 4: The Q-Thread attribute and the QOS-

control policies

/*

* qthread_hint - Hint on QO0S adaptation

*/

typedef struct qthread_hint_data {
int iteration_count;/* Iteration count */
int time_from_start;/* Time from start (msec) */
int period; /* Current period (msec) */
int comput; /* Available comp. time (msec) */
int period_prev; /* Previous period (msec) */
int comput_prev; /* Previous actual comp. time */
int changed; /* Is the hint changed? */
int dl_miss_count; /#* Deadline miss count */

} qthread_hint_data_t, *qthread_hint_t;

Figure 5: Structure of the QOS-control hint

3.4 QOS-Control Hint

The period of a Q-Thread is automatically changed
by the library (unless the policy is HINT_ONLY). How-
ever, the amount of computation performed at each
invocation must be adjusted inside the user program.
To facilitate this adjustment, a “QOS-control hint” is
passed to the user program when the user-specified
entry point is called. Figure 5 shows the structure
of the QOS-control hint in the current implemen-
tation. So long as the user program observes the
computation-time indication in the hint (the member
comput in Fig. 5), its execution is guaranteed by the
CPU reserve.?

The QOS-control hint also contains information
useful for workload adaptation, including the amount
of CPU time that was actually consumed at the last
invocation (the member comput_prev in Fig. 5). This
information is calculated by the Q-Thread library
from the accumulated CPU-time information in the
CPU reserve, and can be used by the user program to

2If the user program calls some server program, the CPU
reserve is temporarily passed to the server via RT-Mach IPC,
and its processing is also guaranteed.

User program

1. Q-Thread attribute :
g 7. QOS-control hint
olerable period: 30-100 ms : .
lerabl : Available comp.: 20 ms
-Il‘:'goerrity € comp. : %0_20 ms Previous comp. : 18 ms
@ . i :
o S QOS-ctrl. policy: D_P_1ST Current period : 40 ms
>
3; @ 3. QOSfactor
) CPU reg. : 10-66% .
S e_) Priority 3 2. Translation
ee 6. Reversetrandation
8 D — Based on the poli
b i) 5. CPU reserv — Change the period
0= CPU allocation : 50% Q-Thread library
o< CPU-timeinfo.
<

Figure 6: QOS translations by the Q-Thread library

adjust its workload to match the available computa-
tion time.

In addition, the user program can re-specify (mod-
ify) the Q-Thread attribute in accordance with the
QOS-control hint. In this case, the Q-Thread library
re-registers the QOS factor with the QOS-Control
Server. The CPU allocation is then recalculated, and
the period and computation time of the thread are
changed.

3.5 QOS Translations by the Q-Thread
Library

As already mentioned in Section 3.2, one major

role of the Q-Thread library is the following “QOS-

translation” process:

e Translation of the Q-Thread attribute into the
QOS factor, and negotiation with the QOS-

Control Server

o Reverse translation of the CPU reserve into a
QOS-control hint, and provision of a hint to the
user program.

Figure 6 shows an example of this QOS-translation
process:

1. A user program specifies tolerable ranges for the
period and computation time in its Q-Thread at-
tribute. In this example, 30 to 100 msec is spec-
ified for the period and 10 to 20 msec for the
computation time.

2. The Q-Thread library translates the Q-Thread
attribute into a QOS factor for the session, and
registers it with the QOS-Control Server.

3. The translated QOS factor indicates that the ses-
sion requires 10 (= %) to 66 (= %) percent of
the CPU resource.

4. The QOS-Control Server allocates the CPU re-
source on the basis of the QOS factors registered
by sessions, and issues a CPU reserve to the ses-
sion.

5. The CPU reserve indicates that 50% of the CPU
resource is assigned to the session. The reserve
also contains information on the CPU time used
through it.

6. The Q-Thread library reverse-translates the in-
formation into a possible period and computation
time, in accordance with the QOS-control policy.

7. In this example, the DEGRADE_PERIOD_FIRST pol-
icy is specified, and a 40 msec period and a 20
msec computation time are selected. On the basis
of the calculation, the user-specified entry point
is called periodically, with a QOS-control hint as
its argument.

3.6 A User Program with the Q-Thread

By using the Q-Thread, a user can easily write a
continuous-media session that controls the QOS dy-
namically. All exported functions of the Q-Thread
library are listed in Table 2.

Figure 7 shows a sample user program using the
Q-Thread. In this example, the user-specified en-
try point qt_entry() is called periodically with pe-
riods from 30 to 100 msec. The available compu-
tation time (CPU time) for each invocation is indi-
cated inside the second argument, qt_hint->comput,
and the user program must change the amount of
its work on the basis of this information. Although
not shown in the example, the user program can also
modify the range of tolerable computation time by
using the qthread_set_attribute() function, in ac-
cordance with the previous actual computation time
given by qt_hint->comput_prev.

4 Experiments on Dynamic QOS Con-

trol Using the Q-Thread
As mentioned in Section 3.2, the Q-Thread exe-
cution model has already been implemented on RT-
Mach, and experiments in dynamic QOS control have
been carried out to show the effectiveness of the model.

4.1 Experiment with Dummy Q-Threads

The first experiment was carried out to confirm the
basic efficiency of the Q-Thread. In this experiment,
three dummy threads written by using the Q-Thread
were used. The structure of the dummy thread 1s al-
most the same as that of the sample program shown in
Fig. 7. When the entry point is called, these dummy
threads use up the CPU resource for the amount of
the available computation time indicated in the QOS-
control hint.® The Q-Thread attributes of the dummy
threads are shown in Table 3. All threads specify the
same ranges of the period (30 to 100 msec) and of the
computation time (10 to 20 msec), but the priority (a
high value means high priority) and the QOS-control
policy are different.

Dummy thread 1 runs from 0 to 70 sec. DEGRADE_-
PERIOD_FIRST is initially specified as the QOS-control
policy, but this is changed to DEGRADE_COMPUT_FIRST

3In fact, this workload adjustment should be based on infor-
mation about the previous computation time and so on, but,
this mechanism is omitted in the experiment.

Table 2: Functions provided by the Q-Thread library

Name Description

Initializes the Q-Thread library
Initializes a Q-Thread attribute
Creates a Q-Thread

Gets the consumed CPU time
Retrieves a Q-Thread attribute
Re-specifies the attribute
Terminates a Q-Thread

qoslib_init ()
qthread_attribute_init ()
qthread_create()
qthread_get_comput ()
qthread_get_attribute()
qthread_set_attribute()
qthread_terminate()

/

#

/

v

)
{

}

/

i

{

*

* qthread_sample.c - Q-Thread Sample Program
*/

include ''qoslib.h"

*

* Periodic entry point

*/

0id qt_entry(

int *arg, /* User-specified argument */
qthread_hint_t qt_hint/* Q0S-control hint */

DO_SOME_WORK(qt_hint);
/* qt_hint->comput indicates the available

computation time (msec) */
/* qt_hint->comput_prev gives the actual
computation time at the last invocation */

*
* Main routine
*/

nt main(int ac, char **av)

qthread_t qthread;

qthread_attr_data_t qt_attr;

kern_return_t kr;

kr = qoslib_init(); /# Initialize the Q-Thread 1lib. */

kr = qthread_attribute_init(/* Set up a Q-Thread attr*/
qt_entry,NULL,/* Periodic entry point and arg.*/
30,100, /* Range of the period (msec) */
10,20, /* Range of the comp.time (msec)*/
3, /* Priority */
DEGRADE_PERIOD_FIRST,/* Q0S-control policy */
NULL ,NULL, /* Deadline handler and its arg.*/
&qt_attr);

kr = qthread_create(mach_task_self(),&qthread,&qt_attr);

/* Create a Q-Thread */
thread_terminate(mach_thread_self());

Figure 7: Sample user program using the Q-Thread

Table 3: Q-Thread attributes of the dummy threads

Exec. term Period Comp. Pri- QOS-ctl.
No. (sec) (msec) (msec) | ority policy
1 00 — 30 30 — 100 10 - 20 2 D_P_18T
30 — 70 D_C_18T
2 10 — 80 30 — 100 10 - 20 3 D_P_18T
3 20 — 40 30 — 100 10 - 20 3 D_BOTH
40 — 80 6
D 50 — 60 (Disturbing thread that exhausts
the CPU by looping infinitely)

after 30 sec. Dummy thread 2 runs from 10 to 80 sec,
and has a higher priority than thread 1. The QOS-
control policy of thread 2 is DEGRADE_PERIOD_FIRST
from start to end. Dummy thread 3 runs from 20 to
80 sec. It has the same priority as thread 2 initially,
but a different QOS-control policy, DEGRADE_BOTH, is
specified, and at 40 sec, the priority of thread 3 is up-
graded. In addition to these dummy threads, a “dis-
turbing” thread runs from 50 to 60 sec. This thread
tries to exhaust the CPU by looping infinitely.

We observed the behavior of dynamic QOS con-
trol by executing these threads with the QOS-Control
Server. The experiment was carried out on an IBM

ThinkPad 755C (9545-L, IntelDX4-75MHz). The ver-

sion of RT-Mach was MK94* and the resolution of the
system clock was changed to 1 msec. Figure 8 shows
the results. The upper part of this figure shows the
actual period (i.e., the temporal QOS) of each dummy
thread, and the lower part shows the CPU utilization
and deadline misses during the experiment. The avail-
able computation time (1.e., the spatial QOS) indi-
cated by the Q-Thread library is also shown in the up-
per graph by expressions of the form “c=XX (msec).”

In the first 10 seconds, only thread 1 was running,
and the highest QOS (30 msec period and 20 msec
computation time) was achieved. But after higher-
priority threads 2 and 3 were started at 10 and 20
sec, the period of thread 1 was extended to about 90
msec. Threads 2 and 3 had the same priority, but
their QOS-control policies were different. Therefore,
thread 3 was able to run with a shorter period than
thread 2, but its available computation time was less
than that of thread 2.

After 30 sec, the QOS-control policy of thread 1
was changed to DEGRADE_COMPUT_FIRST (maximize
the temporal resolution). Consequently, the period
of thread 1 was reduced and the computation time
was decreased. In this case, the QOS factor was not
re-registered, so the change had no influence on other
threads. After 40 sec, the priority of thread 3 was
changed and its QOS factor was re-registered. Be-
cause of this re-registration, the QOS-Control Server
recalculated the CPU-resource assignment and set it
to the CPU reserves. As a result of the recalculation,
the period and computation time of the three dummy
threads were modified.

4RT-Mach MK94 is a version released in 1994 by our Keio-
MMP project [1], based on CMU’s MK83i with some extensions.

100 : : : : : : :

%)
o
o
g
3 80 g
n
é 60 b
el
ke
& 40 |
v
8 20t :
04 (Disturb)
< ; :
= ' '
I i i
O 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80
Time (sec)
T T T T T T T
g 100
c H h
i) i _— : :
‘ﬁ 50 [ICPU Utilization : :]
5 .
o (DL-Misg , REL 1 i ; .
0 10 20 30 40 50 60 70 80

Time (sec)

Figure 8: Result of dynamic QOS control with Q-
Threads

Even during the 50 to 60 sec that the disturbing
thread was running, the three dummy threads were
able to run without being affected, in spite of the 100%
CPU utilization shown in the lower graph. The behav-
ior of the dummy threads was very stable, and very few
deadline misses occurred, as the lower graph shows.’

In this experiment, most of the QOS adjustments
and the necessary resource management were han-
dled by the Q-Thread library (and the QOS-Control
Server), and users were easily able to write QOS-
controllable continuous-media sessions. We believe
that the experiment verifies the basic efficiency of the
Q-Thread execution model.

4.2 Experiment with a Real Application

As a “real” application, we are now developing a
QuickTime player that uses the Q-Thread. This pro-
gram processes and displays a corresponding frame of
uncompressed QuickTime video data in the memory
to X-Window, on every invocation. In the current ver-
sion, only the frame rate (period) can be controlled. A
fixed computation time (calibrated by using the previ-
ous actual computation time in the QOS-control hint)
and the range of period calculated from the range of
frame rate are specified as the Q-Thread attributes.

A second experiment is being carried out with this
real application. Different ranges for the frame rate

5In this experiment, 52 deadline misses occurred in about
4000 invocations of the three dummy threads. These were
caused by the consumption of more CPU resources than the
available computation time allowed, because of some mis-
evaluation of the workload.

Table 4: Attributes of the QuickTime players

Start time Frame rate Priority
No. (sec) (fps)
1 00 — 10 - 50 1 (Tow)
2 05 — 10 - 30 2 (medium)
3 10 - 10 - 100 3 (high)

and different priorities were specified for three Quick-
Time players, as shown in Table 4. Figure 9 shows
the preliminary results obtained by using these play-
ers. The upper graph shows the real frame rate of
each QuickTime player, and the lower graph shows
the CPU utilization and deadline misses during the
experiment.

5 Related Work

There have been several studies of execution mod-
els and processor scheduling for continuous-media pro-
cessing. The RBE (Rate-Based Execution) model,
proposed by researchers at the University of North
Carolina [16], also targets deterministic execution and
adaptive resource management for multimedia com-
puting, and uses (#,y, d) parameters to represent the
ezecution rate of a process. A group of researchers at
Stanford University and Sun Microsystems have pro-
posed a scheduling mechanism that tries to integrate
continuous-media computations with conventional ac-
tivities [17]. They also specify a minimum accept-
able rate of execution for multimedia applications, and
translate 1t into a series of deadlines at run time. An-
other rate-based scheduling mechanism, named RAP
(Rate-based Adjustable Priority Scheduling), has been
Fro]posed by a group at the University of Kentucky
18].

We think that the period specification in the Q-
Thread corresponds to the rate specification in these
studies. But in addition, the tolerable ranges of the
period and computation time can be specified in our
Q-Thread model. These parameters enable the sys-
tem to guarantee the CPU-resource allocation and to
change the QOS dynamically. In addition, as an un-
derlying resource-management mechanism for the Q-
Thread, we have proposed the QOS-Ticket model [15].
Our primary contribution, we believe, has been to in-
corporate the QOS-control mechanism into the exe-
cution model in such a way as to combine resource
reservation and adaptation.

6 Conclusions and Future Work
Because of the timing constraint in continuous-
media processing, the QOS should be changed dynam-
ically on the basis of available resources. In this pa-
per, we have proposed a new process-execution model
suitable for such dynamic QOS control, named “Q-
Thread.” The Q-Thread is an extension of the existing
periodic RT-Thread incorporating a resource reserva-
tion and adaptation mechanism. A Q-Thread allows
a user to specify tolerable ranges of the period and
computation time for invocations, and makes it easy
to write a continuous-media session that can control

80 T T T T T

60 4
=)
c
o
© QTplay.1
2 N £
@ 40 = |
% QTplay.3
[0}
o QTplay.2 !
L \

20 + 4

0 L L L L L

0 5 10 15 20 25 30
Time (sec)

g 100
c
K]
E 50 CPU Utilization
35

0 DL-Miss)) ‘ ‘

0 5 10 15 20 25 30

Time (sec)

Figure 9: Result with QuickTime players using the
Q-Thread

the QOS dynamically. We have also described some
dynamic QOS-control experiments that show the ef-
fectiveness of the Q-Thread execution model.

Using the Q-Thread, we are currently developing
real applications that can control its QOS dynami-
cally. The QuickTime player mentioned in this paper
is a prototype of such an application. In addition to
extending the execution model itself, we think that
the integration with other components (for example,
the enhanced X-window system [19] and storage server
[20]) are necessary for such real applications. A user-
level real-time thread package i1s being developed as a
part of our project [21]. We are also considering imple-
menting the Q-Thread model by using this package.

Acknowledgements

The authors would like to thank members of the
Keio-MMP project [1] and the Keio-IBM partnership
program [22] for their help and advice.

References
[1] Keio-MMP Project: WWW Home Page, URL:
<http://www.mmp.sfc.keio.ac.jp/>.

[2] H. Tokuda et al.: “Real-Time Mach: Towards a
Predictable Real-Time System,” Proc. USENIX
Mach Workshop, pp. 73-82 (1990).

[3] K. Kawachiya et al.: “Extending Real-Time
Mach for Continuous Media Applications,” Col-
lected Abstracts 4th. Intl. Workshop on Network
and Operating System Support for Digital Audio
and Video, pp. 55-58 (1993).

[4]

N. Nishio et al.: “Conductor-Performer: A Mid-
dle Ware Architecture for Continuous Media Ap-
plications,” Proc. 1st Intl. Workshop on Real-
Time Computing Systems and Applications, pp.
122-131 (1994).

N. Nishio and H. Tokuda: “A Middle-Ware for
Continuous Media Processing in the Keio-MMP
Project,” Proc. Multimedia Japan '96, pp. 278—
284 (1996).

J. F. Koegel Buford et al.. Multimedia sys-
tems, Chapter 8, ACM Press SIGGRAPH Series,
Addison-Wesley (1994).

H. Tokuda et al.: “A Real-Time Thread Model
for Continuous Media Applications,” ART Group
Tech. Report, Carnegie Mellon University, May
1993 (1993).

C. W. Mercer et al.: “Processor Capacity Re-
serves: An Abstraction for Managing Processor
Usage,” Proc. 4th Workshop on Workstation Op-
erating Systems, pp. 129-134 (1993).

C. W. Mercer et al.: “Processor Capacity Re-
serves: Operating System Support for Multime-
dia Applications,” Proc. Ist Intl. Conf. on Multi-
media Computing and Systems, pp. 90-99 (1994).

H. Tokuda and T. Kitayama: “Dynamic QOS
Control based on Real-Time Threads,” Proc. 4th
Intl. Workshop on Network and Operating System
Support for Digital Audio and Video, pp. 113-122
(1993).

H. Tokuda et al.: “Continuous Media Communi-
cation with Dynamic QOS Control Using ARTS
with an FDDI Network,” Proc. ACM SIGCOMM
’92, pp. 88-98 (1992).

K. Kawachiya et al.: “QOS Control of Continuous
Media: Architecture and System Support,” IBM
Research Report, RT0108, IBM (1995).

K. Kawachiya et al.: “Evaluation of QOS-Control
Servers on Real-Time Mach,” Proc. 5th Intl
Workshop on Network and Operating System
Support for Digital Audio and Video, pp. 123-126
(1995).

K. Kawachiya and H. Tokuda: “QOS-Ticket: A
New Resource-Management Mechanism for Dy-
namic QOS Control of Multimedia,” Proc. Mul-
timedia Japan 96, pp. 14-21 (1996).

K. Kawachiya and H. Tokuda: “Dynamic QOS
Control Based on the QOS-Ticket Model,” 3rd
Intl. Conf. on Multimedia Computing and Sys-
tems, to appear (1996).

K. Jeffay and D. Bennett: “A Rate-Based Exe-
cution Abstraction for Multimedia Computing,”
Proc. 5th Intl. Workshop on Network and Operat-
g System Support for Digital Audio and Video,
pp. 67-78 (1995).

[17]

[18]

J. Nieh and M. S. Lam: “Integrated Proces-
sor Scheduling for Multimedia,” Proc. 5th Intl
Workshop on Network and Operating System
Support for Digital Audio and Video, pp. 215-218
(1995).

R. Yavatkar and K. Lakshman: “A CPU Schedul-
ing Algorithm for Continuous Media Applica-
tions,” Proc. th Intl. Workshop on Network and

Operating System Support for Digital Audio and
Video, pp. 223-226 (1995).

S. Tada: “Continuous Media Extension of X-
Window System for Interactive Multimedia Ap-
plications,” Proc. Multimedia Japan '96, pp. 285—
292 (1996).

H. Tezuka and T. Nakajima: “Design and Imple-
mentation of a Continuous Media Storage Sys-
tem on Real-Time Mach,” JAIST Research Re-
port, IS-RR-94-155, Japan Advanced Institute of
Science and Technology (1994).

S. Oikawa and H. Tokuda: “User-Level Real-
Time Threads,” Proc. 11th IEEE Workshop on

Real-Time Operating Systems and Software, pp.
7-11 (1994).

Keio-IBM Partnership Program: WWW Home
Page, URL: <http://ibmpp.sfc.wide.ad. jp/>.

