RC 18777 (82115) 3/16/93
Mathematics

Research Report

COMPUTING IMPLICITLY DEFINED SURFACES: TWO PARAMETER
CONTINUATION

Michael E. Henderson

IBM Research Division
T. J. Watson Research Center
Yorktown Heights, NY 10598

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication.
It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the
outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g.,
payment of royalties).

Research Division
Yorktown Heights, New York e San Jose, California ¢ Zurich, Switzerland

COMPUTING IMPLICITLY DEFINED SURFACES: TWO PARAMETER
CONTINUATION

Michael E. Henderson

IBM Research Division

T. J. Watson Research Center
Yorktown Heights, NY 10598
e-mail: mhender@watson.ibm.com

ABSTRACT: Implicitly defined surface arise in many different contexts, from physical
simulation to CAD and visualization. We describe a continuation algorithm for computing
implitily defined surfaces. It is similar to analytic continuation, without the drawbacks
of that algorithm. It is well suited to surfaces embedded in high dimensional spaces, has
a natural step-size selection, and has no difficulties with global topologies which are not
planar (i.e. spheres, tori etc.).

Keywords: Surface Continuation, Continuation Methods, Implicitly Defined Surfaces

1. Introduction

Let S ¢ R™"? be an implicitly defined surface embedded in R™. That is, each point
u € § satisfies an equation
g(u) =0
g: R 5 R™

Definition 1. A regular point is a point ug € S at which the Jacobian g,(ug) : R**% — R"
is of full rank. That is,

dim (A (g4 (uo)) = 2

dim(R(gu(uwo))) =n

This paper describes an algorithm for computing implicitly defined surfaces which have no
non-regular (singular) points.

This problem appears in many different contexts. In Computer Graphics and Computer
Aided Design, for example, there are two broad categories of surfaces which are used; param-
eteric surfaces, and implicitly defined surfaces (e.g. Bloomenthal [4] and Hall and Warren
[8]). In Scientific Visualization isosurfaces are used to visualize three dimensional scalar
fields, such as temperature distributions, or stress in mechanical structure (e.g. Lorensen
and Cline [11]). Finally, in physical simulations there are often many more than two pa-
rameters. The state of the physical system is therefore an implicitly defined surface (or
a higher-dimensional object whose sections are surfaces), embedded in a space of very
large dimension. For example, the distribution of surface elevation near a moving boat is
parameterized by Reynolds number (boat speed) and Froud number (the size of the boat
relative to free surface waves). The main difference between surfaces occuring in physical
simulation and those in CAD and visualization is the size of the embedding space n. In the
latter case n = 3, while the physical problems live in infinite dimensional spaces (Banach
spaces) which are approximated by spaces of dimension 1,000, 000 or larger.

The corresponding problem in one lower dimension, computing implicitly defined curves,
has been successfully dealt with by conventional continuation methods (for example, [9], [16],
[1], and [12]). Codes exist for large classes of problems, for example AUTO [7], PITCON [16],
PLTMG [3], etc. The literature on computing surfaces is not as well developed. Allgower [2]
proposed an algorithm based on simplicial continuation, which describes the basic algorithm
used in CAD and visualization (e.g. “Marching Cubes” [11]). Rheinbolt [15] proposes using
a smoothly varying projection of the tangent space onto the surface (“Moving Frame”) to
“wrap” a grid onto the surface.

The algorithms based on simplicial continuation work well when n is small, and are
particularly simple to implement when no adaptive refinement is used. Algorithms based
on the algorithm proposed by Rheinboldt are well suited to large n, but it is difficult to
implement adaptive step size selection, and to deal with global connections, such as tori and
spheres. The surface continuation algorithm presented here is most closely related to Rhein-
boldt’s algorithm, but includes adaptive step sizes in a natural way, and can handle global

connections. However, Rheinboldt’s algorithm extends to higher dimensional manifolds,
while ours does not.

The surface continuation algorithm is loosely patterned after analytic continuation in
complex analysis (e.g. [5]). This constructs an analytic mapping f : C — C, given the value
of f at an initial point zy. First f is constructed in a neighborhood of the initial point.
This can be done provided f is analytic at zg, by constructing a power series for f about
zp. The series converges in some circle Up, centered at zg. A point different from zg is then
chosen from this circle, and a new circle Uj is constructed. At each step f is approximated
by a list of circles {U;}. One step of the continuation is to choose a point z;11 near the
boundary of some circle U;, compute a new circle U;;; and add it to the list. (Figure 1.)

One of the problems with analytic continuation, which prevents it from being a pratical
proceedure, is the power series expansion of the function. Analytic continuation is similar
to an initial value problem, in that the function is only defined local to the center of a circle.
Small errors in the continuation grow, and limit the accuracy of the computation. Since
points on implicit surfaces satisfy an equation, the Implicit Function Theorem can be used
instead of the power series expansion. So unlike analytic continuation, any point in circle
U; can be projected onto the surface, to a given tolerance. This eliminates the growth of
round-off errors, and allows the surface to be computed to a global tolerance.

Another motivation for the algorithm comes from viewing the surface as a manifold. A
two dimensional manifold M, embedded in R", is an atlas of mappings {¢;}

W U; — R

from neighborhoods of the origin (0,0) € U;, onto the surface, with the constraint that
the mappings agree on the overlap of adjacent neighborhoods. A regular implicitly defined
surface is a two dimensional manifold. Given a set of points {u;} € &, the mappings ¥,
are the mappings from the tangent space onto the surface. These mappings exists in some
neighborhood U; of the origin of the tangent space, by the Implicit Function Theorem. Any
given set of points therefore determines some subset of the surface. Our algorithm computes
a set of points on the surface, and a set of mappings from the tangent spaces which cover
the surface.

2. The Geometry of Implicitly Defined Surfaces
We begin by presenting several properties of implicity defined surfaces which be used in
the algorithm. These are not new results, for example, see Rheinboldt [14].

2.1. Regularity of a Basic Linear System

One linear system occurs frequently in the algorithm. For large n its solution will
dominate the computation.

Lemma 1. Let u, and u; be an orthonormal basis for N'(g,(up)) at a regular point ug on
a surface S. That is

g(uwo) =

gu(UO)us

gu(UO)ut

Ushs =

Il
(R i = I)

usuy =

uluy #
If u? and v} are any two vectors which have non-zero projections onto the null space of
gu(u0), and whose projections on the nullspace span the nullspace, then the linear system

is non-singular.

Proof 1. Consider the system

gu(wo)w = a

(v = b

(uf)'w = ¢
Since the range of g, is all of R"™, all solutions of g,w = a can be expressed as w =
wp + ous + Buy, where wy, is the unique solution of g,w, = a with no component in the null

space of g,,. o and § are determined by

which is invertible given the assumptions on u$ and ug.

2.2. Computing a basis for the Tangent Space of the Surface

There is some freedom in choosing a basis for the null space of g,, which can be resolved
by specifying two approximate basis functions (u2, ug). A basis can be computed by solving
the non-singular systems

gu(UO)us =0 gu(UO)ut =0
(u2)*, = 1 ()" = 1
(u@)*us =0 (us)*us =0

and then normalizing u, and wus. The choice of basis is not critical to the algorithm, and
there is no constraint of continuity of basis between neighborhoods.

2.3. Mapping the Tangent Space onto the Surface

Now that we have a basis for the tangent space, we can construct the mapping from the
tangent space onto the surface.

Lemma 2. For each regular point of a surface S ,there is a neighborhood of (0,0) € R? in
the tangent space, and a unique mapping a(s,t), from the R2 — R"™"2, such that

u(s,t) = ug + sus + tus + a(s,t) € S.

Proof 2. The Implicit Function Theorem applied to the system

g(uo + sus +tug +a) =0
ura =
uja =0,

with u, and u; a basis for the tangent space, gives the result.

A Taylor series for the map a(s,t) can be computed. The lowest order terms are

1
a(s,t) = §(asss2 + 2a8t 4 aut?) + O(s3, 8%, st?, %),

where
gu(UO)ass = _guu(UO)usus gu(UO)ast = _guu(UO)usut
urass =0 urase =0
ufass =0 ufasy =0
gu(uo)att = _guu(uo)utut
u:att =0
ujass =0

The third and higher order terms may be found by solving similar systems.

2.4. Estimating the Region in which the Mapping is valid

The Implicit Function Theorem guarentees that a exists in some neighborhood of the
origin. There are various ways to estimate the size of this ball. Some of these have been
used to determine stepsize in continuation algorithms [6], [17], [10]. An estimate of the size
in terms of local quantites is given in [10], pages 23—-24. This is basically an estimate of the
condition number of g,, or the distance to the nearest singular point.

Lemma 3. Let
Gu(uo + sus + tus + a)
G(u)=| ula

*
u;a

and

Mo 2| Gu(uo) ||

Ko > max(|| Gs(uo) ||, | Ge(wo) [[)
K1 2| Guu(uo) |

K2 > max(|| Gus(uo) [|; || Gue(uo) 1)
B = MyK,

A= MEK\K,+ B

then a(s,t) exists and is unique inside a ball approximately of size

ST T
By1- &

This estimate often underestimates the size of the region. There is a second constraint,
that the distance between the tangent space and the surface be small, which is more prac-
tical.

In what follows, U; will always be an ellipse centered at the origin of the tangent space,
with axes r; and r;. To compute the surface to a given accuracy, we will require that
a(s,t) < € inside U;. One way to do this, which is similar in spirit to the stepsize selection
for one parameter continuation of [6], is to choose 7, and r; so that

|%ass7’f| =¢

1 21 _
|§attrt| =€
or,
_ 2e
s = A/ Tassl
Py = 2e

lass]
In principle, one could do better by chosing an arbitrary basis for the tangent space, say
iy = cos O,us + sin O,uy
Ty = cos O,us + sin Oyuy
and choosing #,, 6;, s and r; so that
g—es|a(rs cos s, 7s8inbs)| =0
la(rscosbs,rssinbs)| =€
g—et |a(recos O, resin)| =0
|a(recos O, resin b)) = €

however, this is more involved, and the benefit is not clear.

2.5. Estimating variations between neighborhoods

These conditions on the size of the U, impose a restriction on how much the tangent space
can change from neighborhood to neighborhood. We have (without orthonormalization)

u(s, t) = up + su? + tud + a(s, t)

ug(s,t) = ud + a, (s, t)

ut(sa t) = u? + at(sa t)
S0,

(ug) us(s,t) = 1+ (u3)*as(s, 1)

(uf)*ue(s,t) = 1+ (uf)*au(s, 1)
In choosing the size of the neighborhood U we have bounded the size of the second deriva-
tives of @, so we can estimate the first derivatives of a. We have

a(s,t) ~ 3a55(0,0)s% + a,:(0,0)st + Sas(0,0)t2 + O(s3, 5%, st?, %)

as(8,t) ~ as5(0,0)s + as(0,0)t + O(s?, st, t?)

as(s,t) ~ as:(0,0)s + az(0,0)t + O(s%, st, 7).
Let & bound the second derivatives of a(s,t) in U. If (s,t) are the coordinates of the center
of the nearby neighborhood, and the center lies within U, then s and t are O(\/%) in U.
This gives

and

3. Data Structures

In order to describe the algorithm we first introduce some fundemental data structures.
The syntax is that of the C language, but any language which can represent doubly linked
lists might be used just as well. For each data structure routines exist for creating, deleting,
and modifying it.

3.1. DomainPoint

An element of R™*? will be called a DomainPoint,

struct DomainPoint
float coordinates[n+ 2J;

};

3.2. RangePoint

An element of R™ will be called a RangePoint,

struct RangePoint {
float coordinatesn];

}
3.3. TangentVector

An element of the tangent space of S will be called a TangentVector.

struct TangentVector <
float coordinates[n+ 2J;

b
3.4. TangentPlanePoint

A point in the tangent space of the surface will be called a TangentPlanePoint. The
coordinates of the point are stored, as well as a pointer to the piece of the surface to which
the tangent space belongs (a Disk is defined below).

struct TangentPlanePoint {
float S;
float t;
struct Disk =xdisk;

};
3.5. Disk

A Disk is the projection of an elliptical neighborhood U of the origin of the tangent
space onto S. (See Figure 2.)

struct Disk {

struct DomainPoint *Ug;

float Tg;

struct TangentVector #uq;

float Ty

struct TangentVector #uy;

struct Disk *nextDisk;
struct Disk xpreviousDisk;
struct Arc * % arcList;

};

The Disk is the set
Disk = {u | v =ug + sus + tuy + a(s,t), u € S, 32/rs2 —|—t2/rt2 < 1} ,
and the projection of the Disk onto the tangent space of § at ug, is the elliptical region
_ _ 2,2 | 4272
U_{u | = up + sus + tuy, §°/re“ +1t°/r” < 1}.

The Disk is a part of a doubly linked list of Disk’s. The part of the boundary of the Disk
which is on the boundary of the computed piece of S is the union of the arcList. (Arc’s

are defined below.)

3.6. Arc

The boundary of the computed piece of & is stored as a list of Arc’s,

struct Arc
struct Disk xdisk;
float Bo;
float 0y;
struct Arc #nextArc;
struct Arc *previousArc;

H
The Arc is the set
Arc = {u | v = up + rscos(f)us + rysin(f)us + a(rscos b, rysinb), v € S, 0 € [6o,04] },

where the quantites ug, ry etc. are the values from the associated Disk disk. The projection
of an Arc onto the tangent space of S is the elliptical arc:

{u | w=uo+ rscos()us + rysin(Q)us, 0 € [6o,604]}.

3.7. Disk Intersection

One of the basic routines will compute the intersection between two Disk’s, and return
a list of the points where the boundaries of the two Disk’s intersect. A DiskIntersection
is the data structure which contains this list

struct DiskIntersection {

int n;

struct Disk x*diskl;
float xanglelListl;
struct Disk x*disk2;
float xanglelList2;

};

diskl and disk2 are the two Disk’s whose intersections are represented. n is the total
number of intersections, and *angleListl and *angleList2 are lists of the intersections
in the terms of the angles on Arc’s of the respective Disk’s.

3.8. Surface

A Surface (which is a subset of), is represented by a list of Disk’s, and a list of Arc’s.
The union of the Arc’s is the boundary of the union of the Disk’s.

struct Surface {
struct Disk =xfirstDisk;
struct Arc xfirstArc;

};

The data structure representing a surface is illustrated in Figure 3. Initially, no attempt is
made to record the connectivity of the boundary of the disks. This information is necessary
when constructing an interpolant for the surface, but is not needed to compute the surface.
Section 6 descrbes how a triangulation is obtained as the surface is computed.

4. Routines

As for the Data Structures, we describe the basic routines of the algorithm using C
syntax. Where this is much longer than the standard mathmatical notation we have substi-
tuted the mathematical notation. For example, dot products between DomainPoint’s have
been written as z*y.

4.1. Solving the Linear System — solvelS

struct TangentVector # solveLS(
struct DomainPoint *Ug,
struct TangentVector #*ug,
struct TangentVector #*ug,

struct RangePoint *V,
float o,
float T
struct DomainPoint *Wa,

int xFactor

);

Given a point up € S, a pair of TangentVector’s (us, uy) satisfying the assumptions of
Lemma 2.1, a RangePoint v, and two scalars ¢ € R and 7 € R, this routine solves the

10

non-singular system

Gu(io)w = v
u*w = o0
uw = 7

and returns a pointer to w. An approximate solution w, is provided for iterative solvers.

For each particular problem there is a best choice for solving this system. We make no
assumption about which method is used, rather consider it to be supplied by the imple-
mentation. By default the LINPACK routines DGEF and DGES might be used for small
systems. The flag Factor is used to save computation. If Factor=FACTOR, then an LU
decomposition must be done. Otherwise, if Factor=NO_FACTOR the previous factorization
may be re-used, and only a backsolve performed.

4.2. Solving the Non-Linear System — solveNLS

struct DomainPoint * solveNLS(
struct DomainPoint *Ug,
struct TangentVector #uq,
struct TangentVector #ug,

struct RangePoint *V,
float o,
float T
struct DomainPoint *Wa,
);
This routine solves the system

glw) = v

wrw = o

uwrw = T

and returns a pointer to w. An approximate solution w, is provided for iterative solvers. One
possible implementation is to use Newton’s method, which relies on the solveLS routine.

4.3. Creating a Disk— createDisk

struct Disk * createDisk(
struct DomainPoint *Ug,

struct TangentVector xuf,
struct TangentVector xuf,

);

11

Given a point up € &, and the basis uZ and uf of a nearby Disk’s tangent space, this routine
computes the quantities stored in the Disk data structure and returns a pointer to the
newly created Disk.

First a basis for the tangent space is computed

w = solveLS(up,u?,u?, 0, 1.,0., FACTOR);

us = w/|w|
w = solveLS(ug,us,uf, 0,0.,1.,NOFACTOR);
up = w/|w]

Once a basis is known the radii can be computed (ass ans a;t are computed using an

additional call to solveLS).

ro = min(p(uo), /25)

2e

re = min(p(uo), 1/ 25))

In a practical implementation, the point ug is not assumed to lie exactly on the surface. It
is first projected onto the surface using the approximate tangents and solveNLS.

4.4. Computing a Point on a Disk— pointOnDisk

struct DomainPoint * pointOnDisk(

);

This routine computes the point « on § corresponding to the TangentPlanePoint by solving
the equations

struct TangentPlanePoint xtangentPt;

9(u)=0
us*(u —up) = s
u(u—up) =t
In other words

disk = (xtangentPt).disk;

s = (xtangentPt).s;

t = (xtangentPt).t;

uo = (*disk).uo;

us = (*disk).ug;

up = (*disk).ug;

0 =5+ ujug;

T =t 4 ufug;

Wa = Ug + SUs + Ly

u = solveNLS(ug, us, ut, 0, 0, 7, Wa);

12

4.5. Projecting points from S onto the tangent space — projectPoint

struct TangentPlanePoint * projectPoint(
struct DomainPoint =x*u,
struct Disk xdisk

);

The projection of u, (s,t) is given by

(s):(l us*ut)_l(us*(u—uo))
t ugfus 1 uy* (v — o)

where 1o, us and uy are the quantities associated with disk. The TangentPlanePoint which
is returned has coordinates (s,t), and a pointer to disk.

4.6. Intersecting two Disk’s — intersectDisks

struct DiskIntersection * intersectDisks(
struct Disk =xdiskl,
struct Disk xdisk2

);

This routine takes two Disk’s and returns a list of the intersections of thier boundaries.
Let

uo = (*diskl).uo vo = (*disk2).uo
ug = (*diskl).us v, = (xdisk2).ug
uy = (*diskl).u v, = (xdisk2).u;
rs = (xdiskl).rg ry, = (*disk2).rg
ry = (xdiskl).ry r, = (xdisk2).ry

The points © on § which are on the boundaries of both of the Disk’s satisfy the system

g(u)=0
(u — up) =rscosby
uf(u — ug) = resin G
vi(u—vg) = 71, cos by
7

*
us

vi(u —vg) = rysinf;

Using the bases for the tangent spaces, and projecting onto the surface with the map-
pings a(s,t) and a(o, 7), this is equivalent to solving the system

ug*(uo + sus + tuy + a(s, t)) = us*(vo + ovy + 7, + a0, 7))
ut*(uo + sus + tug + a(s, t)) = u*(vo + ovy + 7, + a0, 7))
(s/s)?+ (t/re)* =1
(0/ro)? + (/x2)* =1

13

with
s = rycosfy
t = r;sin fg
0 =rscost
T=17,8n6;.

The variables s and ¢t may be eliminated:

where,
-1
A (il ug*uy) (uS:va us*v,.)
ug*uy 1 u v, utv,
-1
- 1 ug*uy us*(vo — uo) + us*ar(o, 7)
T ugtuy 1 ug*(vo — uo) + uc*a(o, 7)
Let
1/r2 0
Rot (0 1/r?)
_ (1 0
(05
Substituting,

(c T)A*RstA(Z) 4+ 2b*R,A (‘7’_) L b*R,b =1

(M)Rﬁ(j)zl

The terms u}o(o,7) and ufa(o,) are 0(63/2), so, for an approximate solution, may be ne-
glected (section 1). The remaining, reduced equations are a pair of two quadratic equations
in two variables. One of these variables may be eliminated leaving a quartic. For example,
for the system

a10% +b1(1)o + c1(1,7%)
2

0
ay0? + ba(T)o + co(1,7%) =0

reduces to the quartic in 7

(bica — c1b2)(brag — a1by) + (ayco — c1a3)* =0

14

with
ajcy — axcy

azby — arbs

For each solution (¢, 7) we have

6y = arctan(t/s)
61 = arctan(r/o)

If more accuracy is needed these solutions provide an initial guess for an iteration.

4.7. Testing if a point is contained in a Disk — insideOf

Boolean * insideOf(
struct DomainPoint x*u,
struct Disk xdisk

);

This routine tests the DomainPoint u and returns TRUE if it lies inside the Disk. The
test is straightforward. First the DomainPoint is projected onto the tangent space of the
Disk (using projectPoint). Then, if the resulting coordinates (s,t) satisfy

s\?2 t\?2
2 (o) <1
Ts Tt

the test returns TRUE.

4.8. splitting an Arc — splitArc

struct Arc **splitArc(
struct Arc *arc,
struct DiskIntersection xdiskIntersection

);

This routine takes an Arc and the intersection of the Disk associated with the Arc and
some other Disk, and returns a list of Arc’s whose union is the original Arc, and no element
of the list crosses an intersection. (See Figure 4.)

The implementation of this routine is somewhat messy, so we will not give details. The
chief detail to note is that the original Arc is not deleted, and that the Arc’s which are
returned are linked through the data structure, but are not added to the Surface.

15

4.9. Removing Pieces of Arc’s underneath a Disk — removeArcsUnderDisk

removeArcsUnderDisk(
struct Disk *diskl,
struct Disk *disk2,
struct DiskIntersection *DI

);

The routine takes two disks and their intersections, and splits all the Arc’s on both
Disk’s. The pieces which lie inside the Disk’s are then removed from the lists. (See Figure

5.)
4.10. Adding a Disk to Surface — addDiskToSurface

struct Arc * addDiskToSurface(
struct Disk *disk,
struct Surface x*surface

);

This routine appends a Disk to the list of Disk’s and Arc’s of a Surface.

4.11. Getting the end point of an Arc on the surface — getArcEndPoint

struct DomainPoint * getArcEndPoint(
struct Surface xsurface
struct TangentVector # *ug
struct TangentVector # *ug

);

This routine walks down the list of Arc’s of a Surface and returns the endpoint of the
first Arc it finds. Since the Surface may not be finite, a box is specified, and the first
endpoint Arc not outside this box is used. The pointers to the TangentVectors are set to
the tangents of the Disk to which the Arc belongs.

4.12. Merging a new Disk with the surface — addDisk

addDisk(
struct Disk *disk,
struct Surface s#*surface

);

16

This is the main step of the continuation. A newly computed Disk and its boundary are
merged with an existing union of Disk’s and their boundary. This is simply a matter of
removing pieces of the boundaries which are interior to the union, and adding the Disk to
the list.

The process is

1. Create an arc list for the new disk

createWholeDiskBoundary(newDisk);

2. Loop over all disk’s on the surface

disk = (*surface).firstDisk;
While(disk!::NULL)
{
if((DI = intersectDisk(disk,newDisk))! = NULL)
{

3. Split the arcs and remove underlying pieces
removeArcsUnderDisk(newDisk, disk,DI);
freeDiskIntersection(DI);

};
disk = disk.nextDisk;
};

5. Add the new disk and it's arc’s to the surface

addDiskToSurface(newDisk, Surface);

This is a simplified algorithm for clarity. As is discussed below, the checking of each pair
of Disk’s is expensive, and can be avoided.

5. The Algorithm for Computing a Surface

With the above data structures and routines the algorithm is easy to state:

1. Obtain:
an initial point on the surface u_0.
approximate tangent vectors us and ut.
a box in which the surface is to be computed.

2. Compute the first Disk and its Boundary Arc
disk = createDisk(u_O,us,ut);

3. Create a surface with the initial Disk
surface = createSurface(disk);

Do until there are no more eligable points on the boundary:

17

4. Get a point on the boundary
while((newPoint=getArcEndPoint(surface),&us,&ut) !'= NULL)

{

5. Create a Disk for this new point and its boundary Arc.
newDisk=createDisk(newPoint,us,ut);

6. Merge the old surface with the new Disk and boundary.
addDisk(newDisk,surface);

};

6. Implementation

There are two main implementational issues. The first is reducing the work involved in
intersecting all pairs of Disk’s. The second is obtaining a triangulation of the surface from
the list of Disk’s and Arc’s.

6.1. Intersecting pairs of Disk’s

The complexity of updating the boundary of the Disk’s can be reduced by creating a
modified quadtree data structure for the Disk’s. The quadtree provides a fast way of getting
a list of the Disk’s which intersect a given region (the Disk being added). The standard
quadtree [13] is used for points in a plane. The modified quadtree stores the projection of
the centers of the Disk’s and a bounding box, which contains all of the Disk’s underneath
the node. In this way, large collections of Disk’s can be eliminated as being outside the
region of interest.

The algorithm as stated is O(N?), where N is the total number of Disk’s computed (for
each of the N Disk’s N — 1 other Disk’s must be checked). The modified quadtree reduces
the complexity of checking the old Disk’s to log N, and the total complexity to N log V.

The implementation of the modified quadtree is straightforward. It is created when a
surface is created, and when a Disk is added to the surface, it is also added to the modified
quadtree. Since Disk’s are not deleted, the only other quadtree routine necessary returns a
list of the Disk’s which overlap a region of the plane. In principle this procedure could be
extended to higher dimensional spaces, for example an octree and a projection into 3 space.

6.2. Triangulating the surface

The second refinement of the algorithm involves computing a triangulation of the surface.
This is obtained by adding a list of Disk’s to the Disk data structure. When Disk’s are
intersected against a newly created Disk in the routine addDisk, this list is created for the
new Disk. When a Disk intersects the new Disk it is added to the list. The list is then

18

sorted, by projecting the vectors between centers onto the tangent space and sorting so that
the Disk’s are in counterclockwise order. (Figure 6.)

7. Examples

As examples we compute a sphere and a torus (Figures 7 and 8). These cause dif-
ficulty for local continuation algorithms because they are finite and have no edges. The
continuation must therefore avoid travelling repeatedly around the surface. The algorithm
deletes Arc’s where the surface overlaps itself, so eventually there are no Arc’s left and the
algorithm stops.

8. Singular Surfaces

The algorithm as stated assumes that the surface is regular at all points. In practice
the only restriction is that no center of a disk generated by the continuation be a singular
point. If this happens the tangent space is not uniquely defined, and so no Disk can be
created. One approach to desingularizing a surface is to “lift” the surface by considering
the tangent space to be part of the surface. Instead of u € S, the lifted points are (u, us, ut),
and the defining equation of the lifted surface is

g(u) =
Gu (u)us
gu(u)ut

Il
N Y =E=E=)

Ug.Us
U U =

A singular surface whose only singularities are where regular sheets intersect transversally
will therefore become regular. Although this sounds like a major project, the lifting actually
only has to be done when two disks are intersected. If the dot product between the tangents
of the two Disk’s (after rotating to make the bases conform) are more than € away from
the values for constant tangent space, the Disk’s are declared to be non-intersecting, even
though the projections of the boundaries onto one tangent space or the other intersect.

9. Conclusion

We have described an algorithm for computing implicitly defined surfaces which is similar
in spirit to analytic continuation, but which does not have the practical limititions of that
algorithm. Step size control is implemented as a natural part of the algorithm, and the
algorithm is global, so that surfaces such as spheres and cylinders can be computed with a
minimum of coverage.

19

Step 1

Step 2

Step 3

Circle 1

Cirtcle 2

Circle 3 —

Figure 1: Analytic Continuation.

20

lillipse on Tangent Plane

Tangent Plane

Surlace &

Disk on Surlace

Figure 2: The Disk Data Structure.

Surface firstArc

firstDisk

Arc

Disk Arc

previcusire

nextDisk

ja=)
H
@
=
[
<
©
4] !
jue)
-
m
=

)
=3 ../
o ()

)

Arc
\

Arc

Figure 3: The Surface Data Structure.

21

Are

(*diskIntersection) .diskl _
(*diskIntersection).disk;

splita
splitarc[0] P reli]

splitArc[2)

Figure 4: SplitArc

22

diskl

split Lhe Ares.

—————
disk2
delete the Arcs inside Disk’s.
¥
N s

Figure b: removeArcsUnderDisk

23

Disk Being Added

Existing Surface

Figure 6: Incrementally Triangulating the Surface.

References

[1] E. L. ALLcowER AND K. GEORG, Simplicial and continuation methods for approzi-

mations, fized points and solutions to systems of equations, STAM Review, 22 (1980),
pp. 28-85.

[2] E. L. ALLGOWER AND P. H. SCHMIDT, An algorithm for piecewise-linear approzima-
tion of an implicitly defined manifold, SIAM J. Numer. Anal., 22 (1985), pp. 322-346.

[3] R. E. BanNk, PLTMG: A Software Package for Solving Elliptic Partial Differential

Equations, Frontiers in Applied Mathematics, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1990.

[4] J. BLOOMENTHAL, Polygonization of implicit surfaces, Computer Aided Geometric
Design, 5 (1988), pp. 341-355.

[6] G. F. CARRIER, M. KrRoOK, AND C. E. PEARSON, Functions of a Complex Variable,
Theory and Practice, McGraw-Hill, New York, 1966.

[6] C. pEN HEUER AND W. C. RHEINBOLDT, On steplength algorithms for a class of
continuation methods, SIAM J. Numer. Anal., 18 (1981), pp. 925-948.

24

' A'AVaY,
NSV

4" - v .. *\ \" \
SRR
KRN A

Cr 4l g Wi ra
! (’:’k’f‘:‘“”.‘i\’
Ny T

S A T
KOS

Figure 7: Continuation of a sphere. The centers of the Disk’s are shown

projected onto the bottom of the cube, along with the projection of the
boundary Arc’s.

25

Figure 8: Continuation of a torus. The centers of the Disk’s are shown
projected onto the bottom of the cube, along with the projection of the
boundary Arc’s.

26

[7] E. DOEDEL AND J. KERNEVEZ, Auto: Software for continuation and bifurcation prob-
lems in ordinary differential equations, applied mathematics report, California Institute
of Technology, 1986.

[8] M. HaLL AND J. WARREN, Adaptive polygonalization of implicitly defined surfaces,
IEEE Computer Graphics and Applications, (1990), pp. 33—42.

[9] H. B. KELLER, Numerical solutions of bifurcation and nonlinear eigenvalue problems,
in Applications of Bifurcation Theory, P. Rabinowitz, ed., New York, 1977, Academic
Press, pp. 359-384.

[10] H. B. KELLER, Lectures on Numerical Methods in Bifurcation Theory, Tata Institute
and Springer-Verlag, Berlin, 1987.

[11] W. LorENSEN AND H. CLINE, Marching cubes: a high resolution 8D surface construc-
tion algorithm, Computer Graphics, 21 (1987), pp. 163-170.

[12] A. MoRrcAN, Solving polynomial systems using continuation for engineering and sci-
entific problems, Prentice-Hall, Englewood Cliffs, N.J., 1987.

[13] F. P. PREPARATA AND M. I. SHAMOS, Computational Geometry, Springer-Verlag,
New York, 1985.

[14] W. C. RHEINBOLDT, On the computation of multi-dimensional solution manifolds of
parameterized equations, Numer. Math., 53 (7), pp. 165-181.

[15] ——, On a moving-frame algorithm and the triangulation of equilibrium manifolds,
in ISNM79: Bifurcation: Analysis, Algorithms, Applications, T. Kupper, R. Seydel,
and H. Troger, eds., Basel, 1987, The University of Dortmund, Birkhduser Verlag,
pp. 256-267.

[16] W. C. RHEINBOLDT AND J. V. BURKARDT, A program for a locally parameterized
continuation process, ACM Trans. Math. Software, 17 (1983), pp. 215-235.

[17] H. SCHWETLICK, On the choice of steplength in path following methods, Z. Angew.
Math. u. Mech., 9 (1984), pp. 391-396.

27

