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Abstract

We study the mixed-integer rounding (MIR) closures of polyhedral sets. The MIR
closure of a polyhedral set is equal to its split closure and the associated separation
problem is NP-hard. We describe a mixed-integer programming (MIP) model with
linear constraints and a non-linear objective for separating an arbitrary point from the
MIR closure of a given mixed-integer set. We linearize the objective using additional
variables to produce a linear MIP model that solves the separation problem exactly.
Using a subset of these additional variables yields an MIP model which solves the
separation problem approximately, with an accuracy that depends on the number of
additional variables used. Our analysis yields an alternative proof of the result of
Cook, Kannan and Schrijver (1990) that the split closure of a polyhedral set is again a
polyhedron. We also discuss a heuristic to obtain MIR cuts based on our approximate
separation model, and present some computational results.

1 Introduction

In this paper we study the mixed-integer rounding (MIR) closure of a given mixed-integer
set
P={v eRVI, zezMl . Cov+ Az >b, v,z >0}

where all numerical data is rational. In other words, we are interested in the set of non-
negative points that satisfy all MIR inequalities

(AC)Tv + (=A)T(Cv + Az — b) + min{\A — | MA| 71}z + 7 [AA] 2 > 7 [A\D]

that can be generated by some X of appropriate dimension. Here r = \b—|Ab], (-)" denotes
max{0, -}, 1 is an all-ones vector, and all operators are applied to vectors component-wise.
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In Section 2, we discuss in detail how these inequalities are derived and why they are
called MIR inequalities.

The term mized-integer rounding was first used by Nemhauser and Wolsey [26, pp.244]
to denote valid inequalities that can be produced by what they call the MIR procedure.
These authors in [25] strengthen and redefine the MIR procedure and the resulting inequal-
ity. The same term was later used to denote seemingly simpler inequalities in Marchand
and Wolsey [24], and Wolsey [28]. In this paper we give a comprehensive review of the
different definitions of MIR inequalities and clarify the relationship between them. The
definition of the MIR inequality we use in this paper is equivalent to the one in [25], though
our presentation is based on [28].

Split cuts were defined by Cook, Kannan and Schrijver in [15], and are a special case
of the disjunctive cuts introduced by Balas [3]. In [25], Nemhauser and Wolsey show that
MIR cuts are equivalent to split cuts in the sense that, for a given polyhedral set described
by linear equations, every MIR cut is a split cut and vice-versa. In this paper, we show
that this does not hold for inequality systems unless slack variables are explicitly taken
into account. This has also been independently observed by Bonami and Cornuéjols [10]
recently. In [15], Cook, Kannan and Schrijver show that the split closure (the set of points
satisfying all split cuts) of a polyhedral set is again a polyhedron. Alternative proofs of
this result were given by Andersen, Cornuéjols and Li [1], and more recently by Vielma
[27]. In this paper, we present an alternative — in our view significantly simpler — short
proof of the same fact by analyzing MIR closures of polyhedral sets.

Caprara and Letchford [13] show that separating an arbitrary point from the split
closure of a polyhedral set is NP-hard. A similar property was shown by Eisenbrand [21] for
the Chvétal closure of a polyhedral set. Bonami and Minoux [12] approximately optimize
over the rank-1 lift-and-project closure of 0-1 mixed integer programs; in this setting,
the separation problem can be framed as a linear program. Independently, Fischetti
and Lodi [23] show that, in practice, it is possible to separate points from the Chvatal
closure in a reasonable amount of time. Their approach involves formulating the separation
problem as an MIP, and solving it with a general MIP solver. By repeatedly applying their
separation algorithm, they are able to approximately optimize over the Chvatal closures
of MIPLIB instances and obtain very tight bounds on the value of optimal solutions.
Motivated by the above work, and the fact that the MIR closure is contained (usually
strictly) in the Chvétal closure or lift-and-project closure (for 0-1 problems), we describe
an MIP model for separating from the MIR closure of a polyhedral set exactly. Our
exact MIP model is unlikely to be a practical tool because of its size; we also describe an
MIP model (by dropping some of the variables in the previous model) for approximate
separation. We present computational results on approximately optimizing over the MIR
closure for problems in the MIPLIB 3.0 test set. Our computational work is different
in spirit from that of Fischetti and Lodi [23]; we use our approximate MIR separation
model in conjunction with other heuristics to find violated MIR cuts. Our work is related
to the paper of Balas and Saxena [7] (written independently) who solve MIPs to obtain
violated split cuts and approximately optimize over the split closure of a polyhedral set.
They obtain strong bounds on the optimal values of many MIPLIB 3.0 instances in this
manner. In Section 3.3 we discuss their model in detail.



The paper is organized as follows. In Section 2, we define MIR inequalities and
discuss how our definition is related to earlier definitions. In Section 3, we present a non-
linear integer program for separating MIR inequalities. We establish the equivalance of
this model with the (non-linear) separation models for split cuts presented by Caprara
and Letchford [13] and Balas and Saxena [7]. We also present a linear mixed-integer
programming model that approximately separates an arbitrary point from the MIR closure
of a given polyhedral set. In Section 4, we present a simple proof that the MIR (or,
split) closure of a polyhedral set is again a polyhedron. Further, we present an MIP
model for exact MIR separation. In Sections 5 and 6 we discuss computational issues and
present a summary of our computational experiments with a heuristic which combines our
approximate separation model with other MIR separation heuristics.

2 Mixed-integer rounding inequalities

In this section we discuss MIR. inequalities and define the MIR closure of a polyhedral set.
We also present a basic result that shows that the MIR closure is invariant under simple
variable transformations.

2.1 The Basic Mixed-Integer Inequality

In [28], Wolsey develops the MIR inequality as the only non-trivial facet of the following
simple mixed-integer set:

Qoz{vER, c€Z :v+z > b, v>0}
where b ¢ Z. It is easy to see that
v > b([b] — ), (1)
where b = b— |b] is the fractional part of b, is valid and facet defining for Q. In [28], this

inequality is called the basic mized-integer inequality.

To apply this idea to more general sets defined by a single inequality, one needs to
combine variables to get a structure resembling Q. More precisely, given a set

Q' = {v € R“”, z ezl ZCj’Uj —i—Zaixi > b, v, x> 0}
jeg icl
the defining inequality is relaxed to obtain
(Zmax{o, cjtvj + Z&imi) + ( Z T; + Z lai] xl) > b
JeJ iel’ iel\I' i€l

where @; = a; — |a;| and I' C I. As the first part of the left hand side of this inequality
is non-negative, and the second part is integral, the MIR inequality

Zmax{o, cjtvj + Zdixi > l;([b-| — Z i — Z lai] $z)

jedJ iel’ ieI\I' el



is valid for Q!. Notice that I' = {i € I : a; < b} gives the strongest inequality of this
form and therefore the MIR inequality can also be written as

> (ej)Tv;+ > minfa;, byz + b ag) z; > b[b] (2)

jed el 1€l

where ()T denotes max{0, -} as defined earlier.

2.2 Aggregating constraints

For sets defined by m > 1 inequalities, one can combine the m inequalities to obtain a
single base inequality and then apply inequality (2) to the base inequality. Let

P:{UERZ, xeZ" : Cv+ Az > b, v,a:z()}

be a mixed-integer set where C, A and b are vectors of appropriate dimension. To obtain
the base inequality, one possibility is to use a vector A € R™, A > 0 to combine the
inequalities defining P. This approach leads to the base inequality

ACv+ NAz > N
and the corresponding MIR inequality
AC) o +min{ A — [MA] 71}z +7 | AA|z > r [Ab], (3)

where operators (-)T, |-| and min{-,-} are applied to vectors component-wise, and r =
Ab— | Ab].

Alternatively, one can first convert the inequalities defining P into equations by in-
troducing slack variables, and then combine the equations using a vector A which is not
necessarily non-negative. This leads to the base inequality

ACv+AAz — As = Ab
and the corresponding MIR inequality
AC) o+ (=A)Ts +min{\A — | AA| 71}z +7 [AA] 2 > r [Ab], (4)

where s denotes the (non-negative) slack variables. Finally, substituting out the slack
variables gives the following MIR inequality in the original space of P:

(AC) v+ (=A)T(Cv + Az — b) + min{\A — |AA| 71}z +7 [MA]z > 7 [\b]. (5)
These inequalities are what we call MIR inequalities in this paper.

Notice that when A > 0, inequality (5) reduces to inequality (3). When A % 0,
however, there are inequalities (5) which cannot be written in the form (3). We present
an example to emphasize this point.



Example 1 Consider the following simple mized-integer set
T={veR, z€Z: —v—4zx>—-4, —v+4zx >0, v,z >0}
and the base inequality generated by A = [—1/8,1/8]
T+ 51/8—s2/8>1/2

where s1 and sy denote the slack variables for the first and second constraint, respectively.
The corresponding MIR inequality is 1/2x + s1/8 > 1/2, which after substituting out sy,
becomes —v /8 > 0 or simply v < 0. This inequality defines the only non-trivial facet of T

It is not possible to generate this inequality if slacks are not used, and (thereby) the
multipliers are restricted to be non-negative. A base inequality generated by A1, As > 0 has
the form

(—)\1 — )\2)1) + (—4>\1 + 4)\2).’1) > —4).
with v having a non-positive coefficient. Therefore, the MIR inequality (3) generated by

this base inequality would have a coefficient of zero for v, establishing that v < 0 cannot
be generated as an MIR.

We note that a similar example is also independently developed in [10]. Also see Cornuéjols[16]
for a discussion of various valid inequalities for integer programs including MIR inequali-
ties.

2.3 Basic properties of MIR inequalities

Let PLP denote the continuous relaxation of P. A linear inequality hv + gz > d is called
a split cut for P if it is valid for both P“* N {az < B} and P*Y' n{az > f+ 1}, where &
and f are integral. The inequality hv + gz > d is said to be derived from the disjunction
azr < B and @z > B + 1. Obviously all points in P satisfy any split cut for P. Note that
multiple split cuts can be derived from the same disjunction.

The basic MIR inequality (1) is a split cut for Q° derived from the disjunction z < |b|
and z > |b] + 1. Therefore, the MIR inequality (5) is also a split cut for P derived from
the disjunction az < 8 and az > S+ 1 where § = |Ab] and

a = 4 TAA)] i (AA); = [(AA)i] = Ab — [AD]
! |(AA);] otherwise.

This observation also implies that if a point (v*,z%) € PLF violates the MIR inequality (5)
then 84+ 1 > az* > .

Nemhauser and Wolsey [25] showed that every split cut for P can be derived as an MIR
cut for P. As we show later, what we call MIR inequalities in this paper are equivalent
to the MIR inequalities defined in [25]. We next formally define the MIR closure of a
polyhedral set.

Definition 2 The MIR closure of P is the set of points in PLY which satisfy all MIR
inequalities (5) that can be generated by some multiplier vector X € R™.

Thus, the split closure of a polyhedral set is the same as its MIR closure.



2.4 Original MIR procedure of Nemhauser and Wolsey

In their book [26, Section I1.1.6], Nemhauser and Wolsey develop the MIR inequalities for
mixed-integer sets. Both the inequalities that define these sets and the MIR inequalities
derived for them are given in the “<” form. To compare their inequality with what we
call the MIR inequality in this paper, we present their results in the “>” form.

Let P={v€ER, v€ 2" : Cv+ Az > b, v,z > 0} as before. The MIR procedure
of Nemhauser and Wolsey starts with two vectors A', \> > 0 of appropriate dimension to
generate two implied inequalities

AMCv+ MAz > A% and A2Cuv + N2 Az > \%b.

Using these two base inequalities, the procedure then generates the following valid MIR
inequality:

MAz 4+ r[N2A — A Alz + max{\'C, \2C}v > r[A%b — A'b] + \b
where r = \?b — \1b — [)\Qb — )\le. This inequality can also be written as follows:
(A2 = AHO) o + M (Co + Az — b) + r[(A2 = AN Az > r[(A — A1), (6)

Notice that, given a vector A and the associated MIR inequality (5), it is possible to
construct two non-negative vectors A2 = (A\)* and \' = (=) and produce the corre-
sponding inequality (6). The two inequalities would look identical, except some of the
coefficients of the integer variables would be stronger in inequality (5) due to the term
min{\A — [AA] ,r1}z. Similarly, given two vectors AL, A2 > 0, it is possible to show that
MIR inequality (5) generated by A = A2 — A\! dominates inequality (6).

2.5 Revised MIR procedure of Nemhauser and Wolsey

Later in [25], Nemhauser and Wolsey extend their earlier result to produce valid inequal-
ities for P' = {v € RVI, z € ZI'l . C'v+ A’z > b/} where the variables are not explicitly
required to be non-negative. More precisely, they show that given two multiplier vectors
ph, p? > 0 that satisfy (i) p'C’' = p2C" and (ii)(p? — p')A’ € Z, the MIR inequality (6)
generated by these vectors is valid for P'. In this case, inequality (6) becomes

pH(Clo+ Alw =) + 7' (= ph)Alw > o' [(? = p')'] (7)

where r' = (p? — p')b' — | (u? — p')b'|. Notice that if both p} and p? are strictly positive
for some index 4, inequality (7) can be strengthened by decreasing both multipliers. It is
therefore possible to let = p? — p! and write (a strengthening of) inequality (7) as

(—p)T(C'v+ Az =) +r'uA'z > ' [ubd] (8)
where the vector p is not restricted in sign and it satisfies (i) uC’ = 0 and (ii) pA’ is
integral.

We next show that inequality (8) and the MIR inequality (5) are equivalent when
applied to the set P in the sense that for any A it is possible to construct an appropriate



v that would give the same inequality and vice-versa. Notice that the non-negativity
requirements are not explicitly present in the definition of P’. It is possible to represent
the set P in this form by defining

C A b
cC'=|11|, A=|0|, bt=]0
0 I 0

where I and O respectively denote the identity and zero matrix of appropriate dimension.

Let X be given and counsider p = [A\, —AC,~y| where

o —Q; ifa; <r
Y=Y 1-4d; otherwise ’

and @ = MA — |\A]. Note that uC’" = 0 and pA’ is integral. Also notice that ud’ = \b
and therefore 7' = r. Inequality (8) for this choice of u is

(=N (Cv + Az —b) + AC) v+ (—y) Tz + r(AA + )z > 7[ D]
where the coefficient of  can also be written as
(=) T +r| M| +r@@+y) = r[MA] + min{a,r1}.

Therefore, inequality (8) generated by p is identical to inequality (5) generated by .

Conversely, given u = [p9, [y, i) > 0 consider the corresponding inequality (8)

(—10) T (Cv + Az = b) + (—p) "0 + (—pz) & + 7' (po Az + py) > 7' [10b]

and notice that yC’ = 0 implies that poC = —pu, and therefore (—u,)* = (uoC)™.
In addition, ' = pgb — |pob]. As pA’ is integral, (uoA + pz) is integral and therefore
fy = —a+1t where t is an integral vector. Clearly inequality (8) can be strengthened unless

t; =0if a; < r and t; = 1 , otherwise. It is therefore clear that the MIR inequality (5)
generated by pg is identical to inequality (8) generated by pu.

We next give a basic property of MIR inequalities (8) for the set P’. This property is
known to hold for the Chvétal closure [21] and can easily be extended to MIR cuts.

Proposition 3 The MIR closure of P' is invariant under the operation y = Uz +1 where
[ is an integer vector and U is a unimodular matriz.

Proof Let clo(-) denote the MIR closure of a set. We will show that a given point
(,) € clo(P') if and only if (7,7) € clo(T) where § = Uz + 1 and T = {v € RVI, y ¢
ZU O+ AU Yy >0 4+ AU

Assume that (7,7) € clo(P') and (7,%) & clo(T). Then there exists a p such that

(=) (C'o+ AU Gt = AU + (AU g < r [u(¥ + AU )]



where r denotes the fractional part of u(b'+A'U 1), and uC’' = 0 and pA'U ! is integral.
This implies that pA'U~!1 is integral and therefore r is also equal to the fractional part
of pb’. As § = UZ + [, the above inequality can also be written as

(—m)(Co+ Az = V) +r(pA)z +rpA'UN <r[pb + pA'UT].
Furthermore, as pA'U~! is integral, (—p)T(C'v + A’z — b') + r(uA")z < r[ub']. This,
however, cannot be true as £ must satisfy the MIR inequality generated by the same p.

Similarly, it is possible to show that T & clo(P') and 7 € clo(T) leads to a contradic-
tion. ]

3 The Separation Problem

In this section, we study the problem of separating an arbitrary point from the MIR closure
of the polyhedral set P = {v € R', 2 € Z" : Cv+ Az > b, v,z > 0}. In other words, for
a given point, we are interested in either finding violated inequalities or concluding that
none exists. For convenience of notation, we first argue that without loss of generality we
can assume P is given in equality form.

Counsider the MIR inequality (4) for P,
AC) o+ (=A)Ts +min{\A — | AA| ,r1}z + 7 [AA] 2 > r [Ab],

where s denotes the slack expression (Cv + Az —b). If we explicitly define the slack
variables, by letting C' = (C, —I) and © = (v, s), then the constraints defining P become
Cio+ Az =b, 9 >0, £ >0, and the MIR inequality can be written as

(AC)T5 + min{ A — |MA| , 71}z + 7 [NA| z > r [\b]. (9)

In other words, all continuous variables, whether slack or structural, can be treated uni-
formly. In the remainder of this paper we assume that P is given in the equality form

P={veR zeZ":Cv+ Az = b,v,z > 0}.

We denote the continuous relaxation of P by PP,

3.1 Relaxed MIR inequalities

Let
m = {(A,c*,d,@,B,B) ER" xR XxXR'"Xx Z"x Rx Z

ct > \C
a+a > N
B+B < Xb

ct > 0
1>a > 0
1 >4 > 0}



Note that for any (A, ¢, &, & 8,3) € 11,
o+ (a+a)e> B+ (10)
is valid for PL?" as it is a relaxation of (AC)v + (AA)z = Ab. Furthermore, using the basic
mixed-integer inequality (1), we infer that
ctv+ éz + Baz > BB+ 1) (11)

is a valid inequality for P. We call inequality (11) where (\,c¢™, &, @, B, B) € 11 a relazed
MIR inequality derived using the base inequality (10). We next show some basic properties
of relaxed MIR inequalities.

Lemma 4 A relazed MIR inequality (11) violated by (v*,z*) € PLY satisfies
(i) 1>p>0,
(1) 1>A>0,
(791)  the violation of the inequality is at most B(l — B) < 1/4,

where A = +1—az* and violation is defined to be the right hand side of inequality (11)
minus its left hand side.

Proof If § = 0, then the relaxed MIR cut is trivially satisfied by all points in PLE,
Furthermore, if § = 1, then inequality (11) is identical to its base inequality (10) which
again is satisfied by all points in PLF. Therefore, a non-trivial relaxed MIR cut satisfies
1>p5>0.

For part (ii) of the Lemma, note that if @z* > 3 + 1 then inequality (11) is satisfied,
as ¢, &, > 0 and (v*,z*) > 0. Furthermore, if (v*,z*) satisfies inequality (10) and
ar* < f3, then so is inequality (11) as B < 1. Therefore, as the cut is violated, 1 > A > 0.
It is also possible to show this by observing that inequality (11) is a split cut for P derived
from the disjunction A > 1 and A < 0.

For the last part, let w = c¢Tv* + @z* so that the base inequality (10) becomes
w > f+ A —1 and the relaxed MIR inequality (11) becomes w > BA. Clearly

PA—w < Pw+1-p)—w=pH(1-pF)—(1-Pw < B(1-p).
The last inequality follows from the fact that w > 0 and B <1 .

Next, we relate MIR inequalities to relaxed MIR inequalities.
Lemma 5 For any A € R™, the MIR inequality (9) is a relazed MIR inequality.

Proof For a given multiplier vector A, define « to denote AA. Further, set ct = (\O)T,
B =1[Ab] and B = Xb— | Ab]. Also, define & and @ as follows:

d__{az'—LOKiJ if ; — |oy) < B ._{ L) if @i — lag] < B
i = 0 , ;=

otherwise [a;] otherwise ’



Clearly, (A, c", &, a, B, B) € II and the corresponding relaxed MIR inequality (11) is the
same as the MIR inequality (9). .

Lemma 6 MIR inequalities dominate relaxed MIR inequalities.

Proof Let (v*,z*) € PP violate a relaxed MIR inequality Z generated with (\, cT, &, @, B, p) €
II. We will show that (v*,z*) also violates the MIR inequality (9).

Due to Lemma 4, we have 8+ 1 — az* > 0 and therefore increasing B only increases
the violation of the relaxed MIR inequality. Assuming Z is the most violated relaxed
MIR inequality, 8 = min{\b — 3,1}. By Lemma 4, we know that f < 1, and therefore
B=Ab—pf and 8 = |\b].

In addition, due to the definition of IT we have ¢t > (AC)t and & + fa > min{\A —
M|, B1Y 4+ B|MA]. As (v*,2*) > 0, the violation of the MIR inequality is at least as
much as the violation of Z. .

Combining Lemmas 5 and 6, we observe that a point in P*? satisfies all MIR inequal-
ities, if and only if it satisfies all relaxed MIR inequalities. In other words we have shown
the following:

Corollary 7 The MIR closure of P is the set of points in PP which satisfy all relazed
MIR inequalities (11) that can be generated by some (A, c*, &, @, (3, B) € II.

Therefore, it is posible to define the MIR, closure of a polyhedral set without using operators
that take minimums, maximums or extract fractional parts of numbers. Let II be the
projection of II in the space of ¢cT, &, a, B and (3 variables. In other words, II is obtained
by projecting out the A variables. We now describe the MIR closure of P as follows:

pMIE — {(v,:z:) e PP . cto+ ax + Baxz > B(B+1) for all (¢, d,a,53,8) € fl}.

We would like to emphasize that IT is not the polar of PM/% and therefore even though
IT is a polyhedral set (with a finite number of extreme points and extreme directions), we
have not yet shown that the polar of PM!E ig polyhedral. The polar of a polyhedral set
is defined to be the set of points that yield valid inequalities for the original set. If the
original set is defined in R", its polar is defined in R™*! and the first n coordinates of any
point in the polar give the coefficients of a valid inequality for the original set, and the last
coordinate gives the right hand side of the valid inequality. Therefore, the polar of PMIE
is the collection of points (¢t,& + Ba, B(6 + 1)) € R*"t! where (¢t, &, a,8,6) € II. A
set is polyhedral if and only if its polar is polyhedral.

For a given point (v*, z*) € PLP | testing if (v*, z*) € PMIE

the following non-linear integer program (MIR-SEP):

can be achieved by solving

max BB +1) — (ctv* + az* + Paz”)
s.t.
(A e q,a,6,0) € IL

10



If the optimal value of this program is non-positive, then (v*,z*) € PMIE On the other
hand, if the optimal value is positive, the optimal solution gives a most violated MIR
inequality.

3.2 An Approximate separation model

We next (approximately) linearize the nonlinear terms that appear in the objective func-
tion of MIR-SEP. To this end, we first define a new variable A that stands for the term
(B+ 1 — az). We then approximate B by a number B < B representable over some
& = {ey : k € K}. We say that a number ¢ is representable over £ if § = Y, _ x € for some
K C K. We can therefore write B as Y i €kTk using binary variables 7 and approxi-
mate SA by BA which can now be written as Y kex k™A, Finally, we linearize terms
A using standard techniques as 7, is binary and A € (0, 1) for any violated inequality.

An approximate MIP model Appx-MIR-Sep for the separation of the most violated
MIR inequality reads as follows:

max d ey — (¢t +ax”) (12)
keK
s.t. A\t a,aB,8) e 10 (13)
B> Zekﬂ'k (14)
keK

A = (B+1)—az* (15)

A, < A Vk e K (16)

Ay < om Vk € K (17)

r e {0,1}/Xl (18)

Let 2P and z®?~%%P denote the optimal value of MIR-SEP and Appx—MI_R—Sep,
respectively. For any integral solution of Appx-MIR-Sep, we have (A, c", &, a,3,8) € 11

and
Z e < Z eLAT

kcK kcK

establishing that 2% > z%%=%P_ In other words, Appx-MIR-Sep is a restriction of MIR-
SEP and if the approximate separation problem finds a solution with objective function
value 2%P*~%¢P > (), the corresponding MIR cut is violated by at least as much.

In our computational experiments, we use £ = {2*]‘7 k=1,..., 15} for some small
number k. We next show that with this choice of £, Appx-MIR-Sep yields a violated MIR
cut provided that there is an MIR cut with a “large enough” violation. Notice that for
any B there exists a /3 representable over & such that 2% > B —B>0.

11



Theorem 8 Let £ ={27%:k=1,... k} for some positive integer k, then

zsep 2 Zap:t—sep > zsep _2—k (19)

where z*P and z*P*5¢P denote the optimal values of MIR-SEP and Appz-MIR-Sep, re-
spectively.

Proof The first inequality holds as Appx-MIR-Sep is a restriction of MIR-SEP. For the
second inequality, note that z*P*~%P > () as we can get a feasible solution of Appx-MIR-Sep
with objective 0 by setting A to 1, and the remaining variables to 0. Therefore the second
inequality in (19) holds if z°% < 0. Assume that z°¢* > 0. Let (A, ¢t &, a,3,5) € II
be an optimal solution of MIR-SEP. For the variables in Appx-MIR-Sep common with
MIR-SEP, set their values to the above optimal solution of MIR- SEP. Let 3 be the largest
number representable over £ less than or equal to ﬁ Clearly, k> B — B > 0. Choose
7 € {0,1}* such that B = Y okck €kTr- Set A = B+1—az*. Set A, =0 if 7, = 0, and
A=A if 1, = 1. Then Ay = A for all k € K, and ﬁA Zk:eK €. Therefore,

278 > 27FA > BA-BA=BA =Y el
keK

The second inequality in (19) follows. .

In the next section (Theorem 15) we show that Appx-MIR-Sep becomes an exact model
for finding violated MIR cuts when £ is chosen as {¢, = 2¥/®,Vk = {1,..., [log®]}} where
® is the least common multiple of all subdeterminants of A|C|b.

3.3 Other separation models

Caprara and Letchford [13], and, more recently, Balas and Saxena [7] presented optimiza-
tion models for finding a violated split cut for P. In both papers, the authors use two sets
of multipliers that guarantee that the split cut is valid for both sides of the disjunction;
see equations (8)-(13) in [13] and system (SP) in [7]. Caprara and Letchford (resp. Balas
and Saxena) denote the split cut by az + Sy < v (resp. az > ) and the corresponding
disjunction by cx < d and cx > d+ 1 (resp. 7wz < mp and 7z > w9 + 1). In addition,
both papers use a “normalization” condition restricting the sum of the multipliers for the
inequalities in the disjunction to be a constant. In the case of Balas and Saxena, the sum
of the multipliers ug and vg for the inequalities 7z < g and wx > mg + 1, respectively, is
restricted to be 1, whereas the corresponding sum in [13] is restricted to be 2.

It is possible to show that the separation models in the above papers — equations (8)-
(13) in [13], and system (2.1) or (PMILP) in [7] — actually find the MIR cut (7) that has the
largest violation (left hand side minus right hand side). To see this for the model in [13],
let [A, G] in [13] stand for [~ A’, —C"], and b, u”, u, A\E in [13] stand for —¥', 22, 2u", 2¢",
respectively. With these transformations, the objective function (equation (8) in [13]) of
the Caprara-Letchford model equals 4*(left hand side - right hand side of (7)).

Similarly, for the Balas-Saxena model, let A in [7] stand for [A’, C'], and b, u, v, ug
in [7] stand for ', u2, u', 1 — 7/, respectively. Then the objective function in (PMILP) is
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simply the left hand side of (7) minus its right hand side. Therefore, we have the following
result.

Lemma 9 The following three models have the same set of optimal solutions: (i) the
Caprara-Letchford model given by equations (8)-(13) in [13], (ii) the Balas-Sazena model
given by system (2.1) or (PMILP) in [7], and, (iii) MIR-SEP.

It is interesting to note that the normalization used in [13] and [7] is implicitly built into
the definition of the MIR cut.

Caprara and Letchford do not perform any computational tests with their model. As
for Balas and Saxena, instead of linearizing the product BA as we do, they fix the term
ug (corresponding to 1 — f3) in their model to a small set of values from [0,0.5], and solve
an MIP for each value. Their linearization approach is very similar to ours except our
model imposes a lower bound on B from a small set of values. To highlight this difference,
consider the following example where P={v € R, x € Z : v+ > 0.31, v > 0} and the
point to be separated is (v*,z*) = (0,0.31). Clearly, the convex hull is given by adding
the simple MIR cut v + 0.31z > 0.31 which is violated by (v*,z*), with a violation of
0.31(1 — 0.31). Using our linearized separation model with k£ = 2, i.e., ¢; = 0.5, €9 = 0.25,
there exists a solution to our model with A = 1 that gives the simple MIR cut above. For
this solution, the objective value of the model is 0.25% (1 —0.31) which is an underestimate
of the cut violation. (Using k& > 2 gives a better aproximation.) The Balas/Saxena model
PMILP (or, system (2.1)) for this example (or more precisely, the deparametrized model
MILP(#)) is infeasible unless the parameter 6 (or, ug) is chosen to be exactly 0.31.

One other difference between the Balas-Saxena model and ours is that in MIR-SEP
we use only one set of multipliers corresponding to the inequalities defining P.

4 A simple proof that the MIR closure is a polyhedron

In this section we give a short proof that the MIR closure of a polyhedral set is a polyhe-
dron. As MIR cuts are equivalent to split cuts, this result obviously follows from the work
of Cook, Kannan and Schrijver (1990) on split cuts. Andersen, Cornuéjols and Li (2005),
and Vielma (2006) give alternative proofs that the split closure of a polyhedral set is a
polyhedron. We believe our proof is simpler than the previous proofs; further it is framed
in the language of MIR cuts and not split cuts.

The main tool in the proof is a finite bound on the multipliers A needed for non-
redundant MIR cuts given in Lemma 12. The bounds on A can be tightened if the MIP
is a pure integer program, and we give these tighter bounds first, in the next lemma. In
this section we assume that the coefficients in Cv + Az = b are integers. Denote the ith
equation of Cv + Ax = b by ¢;v 4+ a;x = b;. An equation c¢;v 4+ a;x = b; is a pure integer
equation if ¢; = 0.

Lemma 10 If some MIR inequality is violated by the point (v*,z*), then there is another
MIR inequality violated by (v*,z*) derived using A; € [0,1) for every pure integer equation.
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Proof: (sketch) Let (A, (\C)", &, &, B,B) € II define an MIR inequality where A; ¢ [0, 1)
for a pure integer equation ¢;v + a;z = b; where ¢; = 0. It is possible to show that the
MIR inequality defined by

(A= il ei, AO) Y, da — [N @i, B, B — [Ai) b) €T
has precisely the same violation. .

We note that it is possible to obtain a slightly weaker bound on the multipliers,
(namely, A; € (—1,1) for every pure integer equation) by combining Lemma 1 in [13] with
the transformations described in Section 3.3.

Definition 11 We define ¥ to be the largest absolute value of subdeterminants of C, and
1/m if C =0, where m is the number of rows in Az + Cv = b.

Lemma 12 If there is an MIR inequality violated by the point (v*,z*), then there is
another MIR inequality violated by (v*,z*) with A\; € (—m¥, m¥), where m is the number
of rows in Az + Cv = b.

Proof: Let the MIR cut
(AC)Tv 4 éz + Paz > B(B+1) (20)

be violated by (v*,z*). Then (A, (A\C)T, &, 07,,3,6) eIl with 0 < 8 < 1. Let C; stand for
the jth column of C. Let S1 = {j : A\C; > 0} and S = {j : A\C; < 0}.

Counsider the following cone:
C={veR":vC; <0 VieS, vC;>0 Vie Sy}

Obviously X belongs to C. We will find a vector )’ in C, such that A = A — ) is integral and
belongs to C. C is a polyhedral cone, and is generated by a finite set of vectors p1, ..., p,
for some ¢ > 0. (Observe that if C = 0, then C = R™, and p1, ..., can be chosen to be
the unit vectors times +1.) We can assume these vectors are integral (by scaling); we can

also assume the coefficients of u1, ..., u: have absolute value at most W. Further, we can
assume that pq,...,u; (here k < m) are linearly independent vectors such that
k
A= wvju;, withv; € R, v; > 0.
=1

Ifv; <1forj=1,...,k, then each coefficient of A has absolute value less than mW¥, and
there is nothing to prove. If v; > 1 for any j € {1,...,k}, then let

k k

N= b= A= N = lojlug,
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where 9; = v; — |v;]. Clearly X' belongs to C, and has coefficients with absolute value at
most mW. Also, X' # 0 as A =0 = \is integral = 8 = 0. Let A = X\ — \'; obviously A
belongs to C and is integral. Further,

(AC)F — (Vo) = (AO)".

Therefore (X, (NC)T, &, & — AA, 8, 8 — Ab) € II. It follows that the multipliers )’ lead to
the MIR R i
NC)Y v+ éaz + Bla—AA)z > B(B— b+ 1). (21)

The rhs of the old MIR minus the rhs of the new MIR equals

BXb = BA(Az* + Cv*) = PAAz* + BACY*
< BIAz* + BAC)Tv*. (22)

The lhs of the old MIR (with v*, z* substituted) minus the lhs of the new MIR equals the
last term in (22). Therefore the new MIR is violated by at least as much as the old MIR
and the lemma follows. ]

B As the multipliers A are bounded, there are only a finite number of choices for @ and
B for non-redundant MIR cuts, see (23).

Theorem 13 If there is an MIR inequality violated by the point (v*,x*), then there is
another MIR inequality violated by (v*, x*) for which B and the components of A\, & are ra-
tional numbers with denominator equal to a subdeterminant of A|C|b, and each component
of A is contained in the interval [-m¥, m7].

Proof Let (v*,z”) be a point in PP which violates an MIR cut. Let this MIR cut be
defined by (o, ¢f, &, @, Bo, Bo) € II. By Lemma 12, we can assume each component of
Ao lies in the range (—m¥, m¥). Define A, = 5, + 1 — &@l'z*. Then

Bolo — cFv* — Gox™ > 0.

Consider the following LP:

Note that the objective is a linear function as A, is fixed. Further, we have fixed the
variables @ and f3 in the constraints defining II. The bounds on A come from Lemma 12,
except that we weaken them to non-strict inequalities. This LP has at least one solution
for (A, ¢, &, B) with positive objective value, namely (Ao, ¢, &, 3,). Therefore a basic
optimal solution of this LP has positive objective value. Consider the MIR cut defined by
an optimal solution along with &, and f3,. It is obviously an MIR cut with violation at
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least the violation of the original MIR cut. Therefore, 0 < B < 1. Further, it is easy to
see that the LP constraints (other than the bounds on the variables) can be written as

AT T 4 < Qo
cr —1 N R
" -1 B > Bo
The theorem follows. "

By Theorem 13, each non-redundant MIR inequality is defined by multipliers A = ()\;)
where ); is a rational number between —mV¥ and mV¥ with a denominator equal to a
subdeterminant of A|C|b. Therefore the number of non-redundant MIR inequalities is
finite.

Corollary 14 The MIR closure of a polyhedral set P is a polyhedron.

As the MIR closure equals the split closure, it follows that the split closure of a
polyhedral set is again a polyhedron. Let the split closure of P be denoted by Pg =
Neezn dez Ple,a), where for ¢ € Z™ and d € Z,

Pieq) = conv{(PN{cr <d})U(PN{cz>d+1})}.

Lemma 12 gives a characterization of the useful disjunctions in the definition of the split
closure. Define the vector y € R™ by

[ mU ife£0
Fi= 1 ife=0

Define
D={(c;d) € 2" x Z: —plA| < ¢ < plAl, |-plpl) < d < Lulbl]}- (23)
D is clearly a finite set, and

Pg = ﬂ Pragy = ﬂ Peay-
ceZn deZ (e,d)eD

To see this, let * be a point in P but not in Ps. Then some split cut, which is also an
MIR cut, is violated by z*. By Lemma 12 , there is an MIR cut with —pu < A < g which
is violated by z*. This MIR cut has the form (AC)*v + éz + Baz > B(B + 1), where
(@, ) € D. Thus z* does not belong to P(@,B)' This implies that

N Per S [ Pl

(e,d)eD ceZn deZ

and the two sets in the expression above are equal as the reverse inclusion is true by
definition.
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Theorem 15 Let ® be the least common multiple of all subdeterminants of A|C|b, K =
{1,...,1log®}, and £ = {e, = 2¥/®,Vk € K}. Then Appaz-MIR-Sep is an exact model for
finding violated MIR cuts.

Proof By Theorem 13, § in a violated MIR cut can be assumed to be a rational number
with a denominator equal to a subdeterminant of A|C|b and therefore of ®. But such a /3
is representable over £. .

5 Computational Issues

We next discus some practical issues that we encountered during our computational ex-
periments.

5.1 Numerical Issues

Assume that the point (v*,z*) to be separated from the MIR closure of P is obtained
by optimizing a linear function over P using a practical LP solver. Then (v*,z*) will
only be approximately feasible for P*" | i.e., some of the inequalities defining P*" will be
violated by small amounts (usually at most 10~%). MIR-SEP can then return cuts which
are not useful. For example, if v < 0 for some index 4, then the objective function of
MIR-SEP, A — ¢t v* — az*, can be made positive by setting A to 0, and c;" to a large
positive number. Clearly, such a A does not yield a violated MIR. cut. Moreover, if some
equation in Cv+ Ax = b is violated — let ¢;v + a;x = b; be the ith equation in Cv+ Az = b
and let ¢;v* + a;2* < b; — then MIR-SEP would choose a large positive value for ;. The
resulting base inequality ¢tv + (& + @)z > B + B would be violated by (v*,2*), and so
would the associated MIR cut; the MIR cut would not necessarily be violated if we moved
to another approximately feasible solution (v', z') of Cv + Az = b with ¢;v' + a;2’ > b;.

We deal with such issues by modifying (v*,z*) and b to get a truly feasible solution
of a modified set of constraints. We let v = max{v*,0}, and z’ = max{z*, 0}, for non-
negative variables and then define o' as Cv' + Az’. We use Appx-MIR-Sep to separate
(v, ") from the MIR closure of Cv + Az = b',v,z > 0,2 € Z. We use the multipliers X in
the solution of Appx-MIR-Sep to compute an MIR cut for P. In some cases this cut is not
violated by (v*,z*), but this happens infrequently as (v, z') is usually close to (v*, z*).

5.2 Reducing the size of the separation problem

The number of integer variables in Appx-MIR-Sep equals the number of integer variables
in P plus the number of variables m; used in linearizing the objective; thus solving Appx-
MIR-Sep could be as hard as solving the original MIP. However, violated MIR cuts can
often be found by solving an MIP with fewer integer variables. Cook, Kannan and Schrijver
[15] showed that the split closure of a face F' of P equals the intersection of F' with the
split closure of P. Therefore, if (v*, z*) lies on a face F', then (v*,z*) violates a split cut
for F', if and only if it violates a split cut for P. A specific approach to choosing F', and
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then obtaining a violated split cut for P is given in [4] and [5]. Given the point (v*,z*),
they solve a separation problem in the space of variables which lie strictly between their
bounds.

To see how the above approach works in our context, note that in Appx-MIR-Sep, the
variables cj, aj, a; corresponding to v; = 0 and z; = 0 do not contribute to the objective.
One can remove them and the corresponding constraints from Appx-MIR-Sep, solve the
reduced Appx-MIR-Sep, and then compute their values from the multipliers A in a solution
to the reduced model. The resulting cut would have the same violation as the cut in the
reduced set of variables. Further, if 2 = 0 for an index j, and P has an upper bound for
xj, say uj > 0, then the component of A corresponding to z; < u; can be assumed to be
0. Finally, if a:;‘ = u; and z; < u; for points in P, we can replace x; by u; — :v"y where
0< .CE; < u;, derive an MIR cut for the modified system of constraints (here (v*,z*) maps

to a point with x; = 0) and get an MIR cut for P by replacing w; by u; — x;.

For many problems in MIPLIB 3.0, Appx-MIR-Sep cannot be solved without adopting
the above approach, e.g., nw04, which has 36 constraints and over 87000 0-1 variables.
With this approach when k = 5, the first separation MIP would have at most 36+5 integer
variables, instead of 87000+5.

5.3 Finding good MIR cuts

Given a point (v*,z*) € PLP | the separation model MIR-SEP is guaranteed to produce
the most violated MIR inequality, if there is one. Similarly, based on Theorem 8, the
approximate model is guaranteed to produce an MIR inequality with violation slightly
less than the most violated inequality. In both cases violation of a cut defined by kK =
(¢t, &, a, B, B) € I is defined to be

n(k) = BA —cto* — az*
where A = 3+1—axz*. Unfortunately, there is no guarantee that MIR cuts with maximum
values of 77(x) would actually be the most effective MIR cuts in practice.
Example 16 Consider separating (z*,y*) = (0.001,0.5) from the MIR closure of
P={z,ye Z : 100z —y > —0.4, 100z +y > 0.6}.

First we convert the inequalities defining P to equations by adding slacks:

100z —y—s; = —04, (4)

100z +y—s2 = 0.6, (B)
and construct the related point (z*,y*,s7, s5) = (0.001,0.5,0,0) to be separated.

The base inequality s1/2 41y > 1/2 can obtained by taking Ay = —1/2 and Ap = 1/2.
The corresponding cut s1/2 + y/2 > 1/2 has violation 0.25. This inequality can also be
written as x > 0.006 after substituting out si.

Another base inequality x > 0.001 can be obtained by taking A4 = Ap = 1/200. The
resulting MIR cut 0.001z > 0.001 (or z > 1) has violation less than 0.001. .
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Another possible measure of violation for MIR inequalities is
+ % AP
n(k) = A - w;
B
see [28]. In the previous example, ' of z > 118 0.999, whereas 7’ of z > 0.006 is only 0.006.
This suggests that n’ may be a more effective measure than . However, consider the base
inequality s; +z 42y > 1.001 obtained by taking Ay = (—1+1/200) and Ag = (1+1/200).
The resulting MIR cut s; + 0.001(z + 2y) > 0.002 has a violation of 0.999. However, this
inequality is even weaker than x > 0.006 after substituting out s;.

Another problem with both these measures is that adding integral multiples of tight
constraints without continuous variables to the original base inequality does not change the
violation of the resulting MIR cut (see the proof of Lemma 10). For example, if z* = 0.5,
the base inequalities z > .5 and 11z > 5.5 lead to MIR cuts with identical violation for
each measure. The first inequality leads to > 1 and the second one to 11z > 6 which
is clearly weaker than & > 1. It is possible to avoid this problem by normalizing the cut
violation using the norm of the cut; however it is hard to incorporate this idea into a linear
separation model.

6 Computational experiments

In this section we discuss our computational experiments with our approximate separation
model. We start off with the continuous relaxation of a given problem instance and
iteratively strengthen it with MIR cuts to (approximately) optimize over the MIR closure.
For any fixed precision, it is possible to approximately optimize over the MIR closure
using Appx-MIR-Sep. This, however, might not happen in a reasonable amount of time
and therefore, our approach should be considered as a heuristic.

After some initial testing, we realized that using Appx-MIR-Sep alone to find vio-
lated MIR inequalities improves the lower bound very slowly. To speed up this process we
implemented several heuristics to find solutions to Appx-MIR-Sep by focusing on certain
sub-classes of MIR cuts. These solutions might be sub-optimal with respect to the objec-
tive function of Appx-MIR-Sep, but they help increase the performance of the algorithm
significantly. As discussed in Section 5.3, the objective function used in Appx-MIR-Sep
does not necessarily help produce the most effective cuts.

We next discuss some practical issues and describe the heuristic ideas that we used to
speed up the algorithm. Finally, we present numerical results.

6.1 Modeling Issues

Practical MIPs, such as those in MIPLIB 3.0, do not necessarily have the same form as
P. Many of the variables have upper bounds in addition to the lower bounds of 0. We
simply treat the upper bound constraints as general linear constraints. Further, some of
the variables have negative lower bounds. For an integer variable z; bounded below by [;,
where /; is a negative integer, we “shift” it by performing the substitution z} = z; — I;.
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Finally, if an integer variable x; is free, we replace the constraint &; + &; > (AA); in
(10) by a; = (MA);. If a continuous variable v; is free, we replace the constraints cj >
(AC);, cj+ > 01in (10) by 0 = (AC);. See Section 2.5 for an explanation of why the above
modifications are either necessary (in the case of free variables) or do not change the MIR,
closure (in the case of shifted variables).

6.2 Separation Heuristics

We next present the final cutting plane algorithm that we have implemented and describe
its components.

* Strengthen bo_unds on variables: add MIR cuts of the form z; < 8 or z; > f for
some integer [

* Add Gomory mixed-integer cuts from the initial simplex tableau
* Repeat

- Add MIR cuts based on formulation rows

- Solve INT-SEP (a restriction of Appx-MIR-Sep) to find cuts based on pure
integer base inequalities

- Solve Appx-MIR-Sep with limits on the enumeration process

Until no violated cuts are found or time is up.

6.2.1 Bound Strengthening

We take a subset S of integer variables, and for every z; with i € S, we solve LPs to
maximize and minimize z; for z € PYY. If 81 < z; < Bo, then x; > [B1] and z; < |B2] are
Chviatal-Gomory cuts and therefore MIR cuts. This simple bound-strengthening procedure
seems to be useful in a few MIPLIB 3.0 instances, especially p0282.

6.2.2 Gomory mixed-integer cuts

Gomory mixed-integer cuts for the initial LP-relaxation of the MIP are known to be MIR
inequalities [24] where the multipliers used to aggregate the rows of the formulation are
obtained from the inverse of the optimal basis. The base inequalities for these cuts are
readily available after solving the initial relaxation and the resulting cuts are known to
be effective in reducing the integrality gap significantly [5]. We use these cuts only in the
first iteration of the cutting plane algorithm as the basis in the following iterations might
include cuts from earlier iterations and therefore the resulting Gomory mixed-integer cuts
would not necessarily be rank 1 MIR cuts, i.e., MIR cuts derived only from the constraints
defining P.

As suggested by a referee, we also experiment with lift-and-project cuts, though these
cuts are not generated in our default setting. In particular, we use the CglLandP cut gener-
ator [9],[2] from the COIN-OR library, which implements the Balas-Perregard [6] procedure
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and generates strengthened lift-and-project cuts from rows of the simplex tableau. As in
the case of GMI cuts, we only invoke this cut generator in the first iteration of the cutting
plane algorithm. These cuts are not used for Tables 1 and 2, but we discuss their effect
separately at the end of the paper.

6.2.3 Cuts based on the rows of the formulation

Another heuristic considers rows of the formulation, one at a time, and obtains base
inequalities by scaling them. Variables that have upper bounds are sometimes comple-
mented using the bound constraints. More precisely, for a given row of the formulation and
a given fractional solution, this procedure generates base inequalities by dividing the row
by the coefficient of an integer variable which is currently fractional. Variables with upper
bounds are complemented if their current value is closer to their upper bound than the
lower bound. After writing the MIR cut, complemented variables are un-complemented
to obtain a cut in the original space. This procedure was used in [20] and the authors
observed that it produces effective MIR cuts.

We also note that in [24] Marchand and Wolsey describe a more sophisticated proce-
dure that produces violated MIR inequalities by combining several rows as well as comple-
menting variables. They observe that base inequalities obtained by combining only a few
rows of the formulation can lead to effective MIR cuts. The procedure we use is motivated
by their work and can be considered as a simplification of their algorithm. We noticed
that even using a single row of the formulation leads to MIR inequalities that reduce the
integrality gap significantly for some instances.

6.2.4 Cuts based on pure integer base inequalities

One way to generate effective MIR cuts is to concentrate on base inequalities that only
contain integer variables. To obtain such base inequalities, the multiplier vector X, used
to aggregate the rows of the formulation, is required to satisfy A\C' < 0 so that (AC)* = 0.
This can be achieved by fixing ¢ to zero in Appx-MIR-Sep. Note that if the original
formulation has inequality constraints, the slack variables associated with these constraints
are also treated as continuous variables. Therefore, multipliers associated with these rows
are restricted to be non-negative for “>” constraints and non-positive for “<” constraints.

This heuristic in a way mimics the procedure to generate the so-called projected
Chvatal-Gomory (pro-CG) cuts which are shown to be effective for mixed integer programs
[11]. Given a multiplier vector X such that (AC)T = 0, if we denote the resulting base
inequality by ax = 3, where a = AA and 8 = Ab, the associated pro-CG cut is

> Jaile > [B]

el
and the associated MIR cut is

> (min{B, &} + plail)z; > I, (24)

i€l
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where &; and B denote the fractional part of a; and ( respectively. In other words, MIR
cuts that only contain integer variables can be seen as a strengthening of pro-CG cuts.

In our implementation, we also set & to zero in the separation model, and divide the
objective by B . In such a case, the objective is to maximize A alone. We do not then need
the variables m; or A;, as we do not need to model SA. After solving this simplified model
(we call this INT-SEP), we use the multipliers A to write the cut (24). In other words,
we find a violated Chvatal-Gomory (CG) cut (in the case of pure integer programs) or
pro-CG cuts (in the case of mixed-integer programs), and then write the corresponding
MIR cut, instead of directly finding the most violated MIR cut. The motivation for
this simplification is that the resulting model was shown to be effective for pure integer
programs in [23] and for mixed-integer programs in [11].

6.2.5 Cuts generated by Appx-MIR-Sep

The only parameter which must be specified for the definition and solution of Appx-MIR-
Sep is the value of k, i.e., the parameter responsible for the degree of approximation we
use for B . In our computational experiments, we use k = 5 which is a good compromise
between computational efficiency and precision. In such a way, as proved in Theorem 8,
our approximate model is guaranteed to find a cut violated by at least 1/32 = .03125.

6.3 Piloting the black-box MIP solver

A few tricks can be used to force the black-box MIP solver, in our experiments ILOG-Cplex
9.1, to return good heuristic solutions of both INT-SEP and Appx-MIR-Sep. Every integer
feasible solution to the separation problem that has positive objective value gives a violated
cut. Therefore we do not need to solve the separation problem to optimality unless we
wish to claim that no violated cut exists.

To find a number of MIR cuts quickly we activate the RINS heuristic [19] of ILOG-Cplex
after every 100 nodes. This approach is similar to [23] and [11]. In addition, to control the
runtime in each iteration, we impose the following node limits for the enumeration tree.

e For INT-SEP, the initial node limit is set to 10,000 if no MIR cuts have been found
by other heuristics, else, it is set to 1,000. After each integral solution, this limit is
reset to 1,000 if the violation is less than 0.2 and 100 nodes otherwise.

e For Appx-MIR-Sep, there is no initial node limit if no MIR cuts have been found
by other heuristics, else, it is set to 1,000. After each integral solution, this limit is
reset to 1,000 if the violation is less than 0.1 and 100 nodes otherwise.

6.4 Computational results
In the following tables, we give our bounds for problem instances in the MIPLIB 3.0

library [8] obtained by running our algorithm with a time limit of one hour. We ignore
three instances, namely dsbmip, enigma and noswot which do not have any integrality
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gap. In Table 1, we compare our bounds with bounds obtained for the Chvatal closure
after either three or twelve hours in [23], and with the bounds obtained by Balas and
Saxena, using their MIP model for split cut separation [7]. In Table 2, we compare our
bounds with those obtained by 20 minutes of projected CG cuts separation in [11], and
the split cut bounds from [7]. In both tables, the percentage gap closed refers to the
fraction of the integrality gap closed after adding MIR cuts. Note that in [7], the bound
for arki001 is obtained by first applying the CPLEX 9.0 presolver, and then generating
split cuts for the presolved problem. It is known that the CPLEX presolver can add MIR
cuts or split cuts to the original model; hence the bound for arki001 in [7] is potentially
larger than the bound obtainable from its split closure.

% gap time|% CG gap time|% gap  time
instance |I||# iter # cuts closed MIR closed  CG| split split
air03 10,757 1 36 100.00 1 100.0 1/100.00 3
air04 8,904 ) 294  9.18 3,600 30.4 43,200| 91.23 864,360
air0b 7,195 12 246 12.38 3,600 35.3 43,200| 61.98 24,156
cap6000 | 6,000 108 316 49.77 3,600 22.5 43,200| 65.17 1,260
fast0507 [ 63,009 8 318  1.66 3,600 5.3 43,200| 19.08 304,331
gt2 188 96 256 98.38 2,618 91.0 10,800| 98.37 599
harp2 2,993 59 523 58.48 108 49.5 43,200| 46.98 7,671
1152lav | 1,989 24 128  6.41 3,600 59.6 10,800| 95.20 496,652
Iseu 89 102 350 91.84 3,600 93.3 175| 93.75 32,281
mitre 10,724 16 1126 100.00 1,396 16.2 10,800(100.00 5,330
mod008 319 54 203 98.95 201 100.0 12 99.98 85
mod010 | 2,655 1 39 100.00 0 100.0 1/100.00 264
nw04 87,482 91 270  93.30 3,600 100.0 509 100.00 996
p0033 33 26 110 87.42 2,552 85.3 16| 87.42 429
p0201 201 254 990 74.31 3,600 60.6 10,800| 74.93 31,595
p0282 282 210 1419 99.55 3,600 99.9 10,800| 99.99 58,052
p0548 548 287 1317 96.11 3,600 62.4 10,800| 99.42 9,968
p2756 2,756 93 671 57.57 3,600 42.6 43,200 99.90 12,673
seymour | 1,372 1 559  8.35 3,600 33.0 43,200| 61.52 775,116
stein27 27 123 621  0.00 3,600 0.0 521 0.00 8,163
stein4b 45| 539 2186  0.00 3,600 0.0 10,800 0.00 27,624

Table 1: IPs of the MIPLIB 3.0.

For a number of problems, we terminate prematurely because of numerical issues. For
example, for harp2, after several iterations Appx-MIR-Sep returned a cut which was not
violated by the point to be separated while the other separation heuristics did not return
any cuts. For p0033, we terminate because Appx-MIR-Sep has no solution, and thus
there does not exist an MIR cut which is violated by more than 1/32.

Our computed bounds are clearly sensitive to the MIP solver used and its parameter
settings, e.g., if we turn off the RINS heuristic while solving Appx-MIR-Sep, for p2756,
we get a substantially better bound, 78.19% versus only 57.57% with RINS turned on.
The time saved by turning off the RINS heuristic allows our code to perform 316 iterations

23



% gap time|% CG gap time| % gap time
instance || |J| | # iter # cuts closed MIR closed CG| split split
10teams 1,800 225 378 3334 100.00 3,600 57.14 1,200 | 100.00 90
arkiO01 538 850 18 133  33.94 3,600 28.04 1,200 |83.05* 193,536
bell3a 71 62 107 404  99.60 3,600 48.10 65| 65.35 102
bell5 58 46 90 629 9295 3,600 91.73 41 91.03 2,233
blend2 264 89 510 2815 30.63 3,600 36.40 1,200 | 46.52 552
dano3mip 552 13,321 1 124 0.10 3,600 0.00 1,200 0.22 73,835
danoint 56 465 257 1044 1.73 3,600 0.01 1,200 8.20 147,427
demulti 75 473 594 3866 97.81 3,600 47.25 1,200 |100.00 2,154
egout 55 86 27 264 100.00 10 81.77 71100.00 18,179
fiber 1,254 44 105 329 94.70 3,600 4.83 1,200 | 99.68 163,802
fixnet6 378 500 881 4766  93.38 3,600 67.51 43| 99.75 19,577
flugpl 11 7 13 28 80.23 3,600 19.19 1,200 | 100.00 26
gen 150 720 28 115 100.00 825 86.60 1,200 | 100.00 46
gesa2 408 816 494 1378 99.70 3,600 94.84 1,200 99.02 22,808
gesa2_o 720 504 448 1640 96.05 3,600 94.93 1,200 | 99.97 8,861
gesa3 384 768 355 892 74.83 3,600 58.96 1,200| 95.81 30,591
gesa3_o 672 480 476 1382 70.82 3,600 64.53 1,200 | 95.20 6,530
khb05250 24 1,326 77 555 100.00 146 4.70 3{100.00 33
marksharel 50 12| 5117 95369 0.00 3,600 0.00 1,200 0.00 1,330
markshare2 60 14| 4580 85403 0.00 3,600 0.00 1,200 0.00 3,277
mas74 150 1 1 12 6.68 0 0.00 0| 14.02 1,661
mas76 150 1 1 11 6.45 0 0.00 0| 26.52 4,172
misc03 159 1 231 992 37.71 3,600 34.92 1,200| 51.70 18,359
misc06 112 1,696 297 2074 99.84 792 0.00 0]100.00 229
misc07 259 1 326 1678 11.25 3,600 3.86 1,200 | 20.11 41,453
mod011 96 10,862 244 1673 17.41 3,600 0.00 0| 72.44 86,385
modglob 98 324 | 1034 7060 80.04 1,677 0.00 0] 92.18 1,594
mkc 5,323 2 147 4259 13.42 3,600 1.27 1,200| 36.16 51,519
pk1l 55 31| 3988 21245 0.00 3,600 0.00 0 0.00 55
pp08a 64  176| 423 1687 95.76 3,600 432 1,200| 97.03 12,482
pp08aCUTS 64 176 611 2126  88.74 3,600 0.68 1,200 95.81 5,666
qiu 48 792 934 2142  29.19 3,600 10.71 1,200 | 77.51 200,354
qnetl 1,417 124 203 784 66.22 3,600 7.32 1,200 |100.00 21,498
qnetl_o 1,417 124 146 587 83.78 3,600 8.61 1,200 100.00 5,312
rentacar 55 9,502 79 265 23.40 3,600 0.00 5 0.00 0
rgn 100 80 391 1142  99.60 3,600 0.00 0]100.00 222
rout 315 241 1575 9393 22.60 3,600 0.03 1,200| 70.70 464,634
set1ch 240 472 179 694 76.47 3,600 51.41 34| 89.74 10,768
swath 6,724 81 152 1476 33.93 3,600 7.68 1,200 28.51 2,420
vpml 168 210 121 386 96.30 387 100.00 15|100.00 5,010
vpm2 168 210 126 427 T77.71 243 62.86 1,022| 81.05 6,012

Table 2: MILPs of the MIPLIB 3.0.

and generate 1550 cuts as opposed to 93 iterations with 671 cuts in Table 2. Changing
the value of k also makes a difference; increasing it from 5 to 6 makes some instances of
Appx-MIR-Sep harder to solve, but yielding cuts not obtainable with k = 5.

Our results confirm what other authors have already noticed, i.e., that the MIR closure
provides a good approximation of the optimal solution of many problems in MIPLIB 3.0.
In many cases, we are able to compute bounds comparable with the ones already reported
in [7, 11, 23] in a shorter computing time. In a few cases, namely bell3a, bell5, harp2,
rentacar, swath and gesa2, we have been able to improve over the best bound known
so far. Of course, 1 hour of CPU time to strengthen the initial formulation can be too
much, but as shown in [7, 23], in a few cases such a preprocessing step allows the solution
of hard unsolved problems. We believe that speeding up the MIR separation procedure
would be a potentially valuable step.
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To quantify the usefulness of Appx-MIR-Sep we also ran our code on the MIPLIB
problems for an hour each with Appx-MIR-Sep turned off. In these runs, we used bound
strengthening, GMI cuts, MIR cuts based on formulation rows, and cuts based on pure
integer base inequalities returned by INT-SEP; we performed significantly more rounds
of separation as solving Appx-MIR-Sep is quite time-consuming (and more than all the
other methods above). In Table 3, we give the number of instances for which turning on
Appx-MIR-Sep improves (worsens) the bound by more than a fixed percentage, given in
the columns. For example, turning on Appx-MIR-Sep worsens the bound by more than
20% in one instance, but improves by the bound by more than 20% in 13 instances. In an
extreme example, for rgn, we get a bound of only 6.8% if we turn off Appx-MIR-Sep, and
99.6% otherwise. On the average, 51.6% of the optimality gap was closed in these runs
compared to 59.3% when Appx-MIR-Sep is activated. We also note that the average gap
closed in the experiments of Balas and Saxena was 71.5% (71.3% if arki001 is excluded),
though with significantly higher computing time expended.

percentage difference
1% 5% 10% 20% 50% 100%

Appx-MIR-Sep better| 25 20 15 13 8 5
Appx-MIR-Sep worse | 15 8 6 1 0 0

Table 3: Effect of Appx-MIR-Sep

Finally, as suggested by a referee we compare results obtained by our default setting
(and given in Tables 1 and 2) with results obtained by also generating strengthened lift-
and-project cuts. See Section 6.2.2. The effect of the strengthened lift-and-project cuts
returned by the CglLandP cut generator is minimal, and we close only 0.4% more of the
integrality gap on the average (exluding modglob, where we had numerical difficulties).

Acknowledgments

Part of this research was carried out when the third author was Herman Goldstine Fellow
of the IBM T.J. Watson Research Center, whose support is strongly acknowledged. We
would like to thank the two referees for useful comments.

References

[1] K. Andersen, G. Cornuejols and Y. Li, Split Closure and Intersection Cuts, Mathematical
Programming Series A 102 (2005), 457-493.

[2] E. Balas and P. Bonami, New variants of lift-and-project cut generation from the LP tableau:
open source implementation and testing, IPCO XII, 89-103.

[3] E. Balas, Disjunctive programming, Annals of Discrete Mathematics 5 (1979), 3-51.

[4] E. Balas, S. Ceria, G. Cornuéjols, Mixed 0-1 programming by lift-and-project in a branch-
and-cut framework, Management Science 42 (1996), 1229-1246.

25



[5]

[6]

E. Balas, S. Ceria, G. Cornuéjols, G. Natraj, Gomory cuts revisited, Operations Research
Letters 19 1-9 (1996).

E. Balas and M. Perregaard, A precise correspondence between lift-and-project cuts, simple
disjunctive cuts, and mixed integer Gomory cuts for 0-1 programming, Mathematical Pro-
gramming 94 221-245 (2003).

E. Balas and A. Saxena, Optimizing over the split closure, Mathematical Programming Series
A, to appear, doi:10.1007/s10107-006-0049-5.

R. E. Bixby, S. Ceria, C. M. McZeal, M. W. P. Savelsbergh. An updated mixed integer
programming library: MIPLIB 3.0.

CglLandP: https://projects.coin-or.org/Cgl/wiki/CglLandP.

P. Bonami, and G. Cornuéjols, A note on the MIR Closure, Operations Research Letters, to
appear, doi:10.1016/j.0r1.2007.03.011.

P. Bonami, G. Cornuéjols, S. Dash, M. Fischetti, and A. Lodi, Projected Chvatal-Gomory
cuts for mixed integer linear programs, Mathematical Programming Series A, to appear,
do0i:10.1007/s10107-006-0051-y.

P. Bonami and M. Minoux, Using rank-1 lift-and-project closures to generate cuts for 0-1
MIPs, a computational investigation, Discrete Optimization 2 (2005), 288-307.

A. Caprara and A. Letchford, On the separation of split cuts and related inequalities, Math-
ematical Programming Series B 94 (2003), 279-294.

V. Chvatal, Edmonds polytopes and a hierarchy of combinatorial problems, Discrete Mathe-
matics 4 (1973), 305-337.

W. J. Cook, R. Kannan, and A. Schrijver, Chvatal closures for mixed integer programming
problems Mathematical Programming Series A 47 (1990), 155-174.

G. Cornuéjols, Valid Inequalities for Mixed Integer Linear Programs, Mathematical Program-
ming Series B 112 (2008), 3-44.

G. Cornuéjols and Y. Li, Elementary closures for integer programs, Operations Research Let-
ters 28 (2001), 1-8.

G. Cornuéjols and Y. Li, On the Rank of Mixed 0,1 Polyhedra, Mathematical Programming
Series A 91 (2002), 391-397.

E. Danna, E. Rothberg, C. Le Paper, Exploring relaxation induced neighborhoods to improve
MIP solutions, Mathematical Programming Series A 102 (2005), 71-90.

S. Dash, O. Giinliik and M. Goycoolea. Two step MIR inequalities for mixed-integer programs.
Manuscript, 2005.

F. Eisenbrand, On the membership problem for the elementary closure of a polyhedron, Com-
binatorica 19 (1999), 297-300.

R. E. Gomory, An algorithm for the mixed integer problem, RM-2597, The Rand Corporation,
1960.

M. Fischetti and A. Lodi, Optimizing over the first Chvétal closure, Mathematical Program-
ming Series B 110 (2007), 3-20.

H. Marchand and L. A. Wolsey, Aggregation and Mixed Integer Rounding to solve MIPs,
Operations Research 49 (2001), 363-371.

G. Nemhauser and L. A. Wolsey, A recursive procedure to generate all cuts for 0-1 mixed
integer programs, Mathematical Programming Series A 46 (1990), 379-390.

26



[26] G. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization, Wiley, New York
(1988).

[27] J. P. Vielma, A Constructive Characterization of the Split Closure of a Mixed Integer Linear
Program, Operations Research Letters 35 (2007), 29-35.

[28] L. A. Wolsey, Integer Programming, Wiley, New York (1998).

27



