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Abstract
We study the mixed-integer rounding (MIR) closures of polyhedral sets. The MIRclosure of a polyhedral set is equal to its split closure and the associated separationproblem is NP-hard. We describe a mixed-integer programming (MIP) model withlinear constraints and a non-linear objective for separating an arbitrary point from theMIR closure of a given mixed-integer set. We linearize the objective using additionalvariables to produce a linear MIP model that solves the separation problem exactly.Using a subset of these additional variables yields an MIP model which solves theseparation problem approximately, with an accuracy that depends on the number ofadditional variables used. Our analysis yields an alternative proof of the result ofCook, Kannan and Schrijver (1990) that the split closure of a polyhedral set is again apolyhedron. We also discuss a heuristic to obtain MIR cuts based on our approximateseparation model, and present some computational results.

1 Introduction
In this paper we study the mixed-integer rounding (MIR) closure of a given mixed-integerset P = fv 2 RjJ j; x 2 Z jIj : Cv +Ax � b; v; x � 0g
where all numerical data is rational. In other words, we are interested in the set of non-negative points that satisfy all MIR inequalities

(�C)+v + (��)+(Cv +Ax� b) + minf�A� b�Ac ; r1gx+ r b�Acx � r d�be
that can be generated by some � of appropriate dimension. Here r = �b�b�bc, (�)+ denotesmaxf0; �g, 1 is an all-ones vector, and all operators are applied to vectors component-wise.�IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 sanjeebd@us.ibm.comyIBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 gunluk@us.ibm.comzDEIS, University of Bologna, viale Risorgimento 2, 40136 Bologna, Italy Supported in part by theEU projects ADONET (contract n. MRTN-CT-2003-504438) and ARRIVAL (contract n. FP6-021235-2).andrea.lodi@unibo.it
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In Section 2, we discuss in detail how these inequalities are derived and why they arecalled MIR inequalities.
The term mixed-integer rounding was �rst used by Nemhauser and Wolsey [26, pp.244]to denote valid inequalities that can be produced by what they call the MIR procedure.These authors in [25] strengthen and rede�ne the MIR procedure and the resulting inequal-ity. The same term was later used to denote seemingly simpler inequalities in Marchandand Wolsey [24], and Wolsey [28]. In this paper we give a comprehensive review of thedi�erent de�nitions of MIR inequalities and clarify the relationship between them. Thede�nition of the MIR inequality we use in this paper is equivalent to the one in [25], thoughour presentation is based on [28].
Split cuts were de�ned by Cook, Kannan and Schrijver in [15], and are a special caseof the disjunctive cuts introduced by Balas [3]. In [25], Nemhauser and Wolsey show thatMIR cuts are equivalent to split cuts in the sense that, for a given polyhedral set describedby linear equations, every MIR cut is a split cut and vice-versa. In this paper, we showthat this does not hold for inequality systems unless slack variables are explicitly takeninto account. This has also been independently observed by Bonami and Cornu�ejols [10]recently. In [15], Cook, Kannan and Schrijver show that the split closure (the set of pointssatisfying all split cuts) of a polyhedral set is again a polyhedron. Alternative proofs ofthis result were given by Andersen, Cornu�ejols and Li [1], and more recently by Vielma[27]. In this paper, we present an alternative { in our view signi�cantly simpler { shortproof of the same fact by analyzing MIR closures of polyhedral sets.
Caprara and Letchford [13] show that separating an arbitrary point from the splitclosure of a polyhedral set is NP-hard. A similar property was shown by Eisenbrand [21] forthe Chv�atal closure of a polyhedral set. Bonami and Minoux [12] approximately optimizeover the rank-1 lift-and-project closure of 0-1 mixed integer programs; in this setting,the separation problem can be framed as a linear program. Independently, Fischettiand Lodi [23] show that, in practice, it is possible to separate points from the Chv�atalclosure in a reasonable amount of time. Their approach involves formulating the separationproblem as an MIP, and solving it with a general MIP solver. By repeatedly applying theirseparation algorithm, they are able to approximately optimize over the Chv�atal closuresof MIPLIB instances and obtain very tight bounds on the value of optimal solutions.Motivated by the above work, and the fact that the MIR closure is contained (usuallystrictly) in the Chv�atal closure or lift-and-project closure (for 0-1 problems), we describean MIP model for separating from the MIR closure of a polyhedral set exactly. Ourexact MIP model is unlikely to be a practical tool because of its size; we also describe anMIP model (by dropping some of the variables in the previous model) for approximateseparation. We present computational results on approximately optimizing over the MIRclosure for problems in the MIPLIB 3.0 test set. Our computational work is di�erentin spirit from that of Fischetti and Lodi [23]; we use our approximate MIR separationmodel in conjunction with other heuristics to �nd violated MIR cuts. Our work is relatedto the paper of Balas and Saxena [7] (written independently) who solve MIPs to obtainviolated split cuts and approximately optimize over the split closure of a polyhedral set.They obtain strong bounds on the optimal values of many MIPLIB 3.0 instances in thismanner. In Section 3.3 we discuss their model in detail.
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The paper is organized as follows. In Section 2, we de�ne MIR inequalities anddiscuss how our de�nition is related to earlier de�nitions. In Section 3, we present a non-linear integer program for separating MIR inequalities. We establish the equivalance ofthis model with the (non-linear) separation models for split cuts presented by Capraraand Letchford [13] and Balas and Saxena [7]. We also present a linear mixed-integerprogramming model that approximately separates an arbitrary point from the MIR closureof a given polyhedral set. In Section 4, we present a simple proof that the MIR (or,split) closure of a polyhedral set is again a polyhedron. Further, we present an MIPmodel for exact MIR separation. In Sections 5 and 6 we discuss computational issues andpresent a summary of our computational experiments with a heuristic which combines ourapproximate separation model with other MIR separation heuristics.
2 Mixed-integer rounding inequalities
In this section we discuss MIR inequalities and de�ne the MIR closure of a polyhedral set.We also present a basic result that shows that the MIR closure is invariant under simplevariable transformations.
2.1 The Basic Mixed-Integer Inequality
In [28], Wolsey develops the MIR inequality as the only non-trivial facet of the followingsimple mixed-integer set:

Q0 = nv 2 R; x 2 Z : v + x � b; v � 0o
where b 62 Z. It is easy to see that

v � b̂(dbe � x); (1)
where b̂ = b�bbc is the fractional part of b, is valid and facet de�ning for Q0. In [28], thisinequality is called the basic mixed-integer inequality.

To apply this idea to more general sets de�ned by a single inequality, one needs tocombine variables to get a structure resembling Q0. More precisely, given a set
Q1 = nv 2 RjJ j; x 2 Z jIj : Xj2J cjvj +

X
i2I aixi � b; v; x � 0o

the de�ning inequality is relaxed to obtain�X
j2J maxf0; cjgvj +

X
i2I0 âixi

�+ � Xi2InI0 xi +
X
i2I baicxi

� � b
where âi = ai � baic and I 0 � I. As the �rst part of the left hand side of this inequalityis non-negative, and the second part is integral, the MIR inequalityX

j2J maxf0; cjgvj +
X
i2I0 âixi � b̂�dbe � X

i2InI0 xi �
X
i2I baicxi

�
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is valid for Q1. Notice that I 0 = fi 2 I : âi < b̂g gives the strongest inequality of thisform and therefore the MIR inequality can also be written asX
j2J(cj)

+vj +Xi2I minfâi; b̂gxi + b̂Xi2I baicxi � b̂dbe (2)
where (�)+ denotes maxf0; �g as de�ned earlier.
2.2 Aggregating constraints
For sets de�ned by m > 1 inequalities, one can combine the m inequalities to obtain asingle base inequality and then apply inequality (2) to the base inequality. Let

P = nv 2 Rl; x 2 Zn : Cv +Ax � b; v; x � 0o
be a mixed-integer set where C;A and b are vectors of appropriate dimension. To obtainthe base inequality, one possibility is to use a vector � 2 Rm, � � 0 to combine theinequalities de�ning P . This approach leads to the base inequality

�Cv + �Ax � �b
and the corresponding MIR inequality

(�C)+v +minf�A� b�Ac ; r1gx+ r b�Acx � r d�be ; (3)
where operators (�)+, b�c and minf�; �g are applied to vectors component-wise, and r =�b� b�bc.

Alternatively, one can �rst convert the inequalities de�ning P into equations by in-troducing slack variables, and then combine the equations using a vector � which is notnecessarily non-negative. This leads to the base inequality
�Cv + �Ax� �s = �b

and the corresponding MIR inequality
(�C)+v + (��)+s+minf�A� b�Ac ; r1gx+ r b�Acx � r d�be ; (4)

where s denotes the (non-negative) slack variables. Finally, substituting out the slackvariables gives the following MIR inequality in the original space of P :
(�C)+v + (��)+(Cv +Ax� b) + minf�A� b�Ac ; r1gx+ r b�Acx � r d�be : (5)

These inequalities are what we call MIR inequalities in this paper.
Notice that when � � 0, inequality (5) reduces to inequality (3). When � 6� 0,however, there are inequalities (5) which cannot be written in the form (3). We presentan example to emphasize this point.

4



Example 1 Consider the following simple mixed-integer set
T = fv 2 R; x 2 Z : �v � 4x � �4; � v + 4x � 0; v; x � 0g

and the base inequality generated by � = [�1=8; 1=8]
x+ s1=8� s2=8 � 1=2

where s1 and s2 denote the slack variables for the �rst and second constraint, respectively.The corresponding MIR inequality is 1=2x + s1=8 � 1=2, which after substituting out s1,becomes �v=8 � 0 or simply v � 0. This inequality de�nes the only non-trivial facet of T .
It is not possible to generate this inequality if slacks are not used, and (thereby) themultipliers are restricted to be non-negative. A base inequality generated by �1; �2 � 0 hasthe form (��1 � �2)v + (�4�1 + 4�2)x � �4�1:with v having a non-positive coe�cient. Therefore, the MIR inequality (3) generated bythis base inequality would have a coe�cient of zero for v, establishing that v � 0 cannotbe generated as an MIR.

We note that a similar example is also independently developed in [10]. Also see Cornu�ejols[16]for a discussion of various valid inequalities for integer programs including MIR inequali-ties.
2.3 Basic properties of MIR inequalities
Let PLP denote the continuous relaxation of P . A linear inequality hv + gx � d is calleda split cut for P if it is valid for both PLP \ f��x � ��g and PLP \ f��x � �� + 1g, where ��and �� are integral. The inequality hv + gx � d is said to be derived from the disjunction��x � �� and ��x � �� + 1. Obviously all points in P satisfy any split cut for P . Note thatmultiple split cuts can be derived from the same disjunction.

The basic MIR inequality (1) is a split cut for Q0 derived from the disjunction x � bbcand x � bbc+ 1. Therefore, the MIR inequality (5) is also a split cut for P derived fromthe disjunction ��x � �� and ��x � �� + 1 where �� = b�bc and
��i = � d(�A)ie if (�A)i � b(�A)ic � �b� b�bcb(�A)ic otherwise.

This observation also implies that if a point (v�; x�) 2 PLP violates the MIR inequality (5)then �� + 1 > ��x� > ��.
Nemhauser and Wolsey [25] showed that every split cut for P can be derived as an MIRcut for P . As we show later, what we call MIR inequalities in this paper are equivalentto the MIR inequalities de�ned in [25]. We next formally de�ne the MIR closure of apolyhedral set.

De�nition 2 The MIR closure of P is the set of points in PLP which satisfy all MIRinequalities (5) that can be generated by some multiplier vector � 2 Rm.
Thus, the split closure of a polyhedral set is the same as its MIR closure.
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2.4 Original MIR procedure of Nemhauser and Wolsey
In their book [26, Section II.1.6], Nemhauser and Wolsey develop the MIR inequalities formixed-integer sets. Both the inequalities that de�ne these sets and the MIR inequalitiesderived for them are given in the \�" form. To compare their inequality with what wecall the MIR inequality in this paper, we present their results in the \�" form.

Let P = fv 2 Rl; x 2 Zn : Cv + Ax � b; v; x � 0g as before. The MIR procedureof Nemhauser and Wolsey starts with two vectors �1; �2 � 0 of appropriate dimension togenerate two implied inequalities
�1Cv + �1Ax � �1b and �2Cv + �2Ax � �2b:

Using these two base inequalities, the procedure then generates the following valid MIRinequality:
�1Ax+ rd�2A� �1Aex+maxf�1C; �2Cgv � rd�2b� �1be+ �1b

where r = �2b� �1b� ��2b� �1b�. This inequality can also be written as follows:�(�2 � �1)C�+v + �1(Cv +Ax� b) + rd(�2 � �1)Aex � rd(�2 � �1)be: (6)
Notice that, given a vector � and the associated MIR inequality (5), it is possible toconstruct two non-negative vectors �2 = (�)+ and �1 = (��)+ and produce the corre-sponding inequality (6). The two inequalities would look identical, except some of thecoe�cients of the integer variables would be stronger in inequality (5) due to the termminf�A� b�Ac ; r1gx. Similarly, given two vectors �1; �2 � 0, it is possible to show thatMIR inequality (5) generated by � = �2 � �1 dominates inequality (6).
2.5 Revised MIR procedure of Nemhauser and Wolsey
Later in [25], Nemhauser and Wolsey extend their earlier result to produce valid inequal-ities for P 0 = fv 2 RjJ j; x 2 Z jIj : C 0v +A0x � b0g where the variables are not explicitlyrequired to be non-negative. More precisely, they show that given two multiplier vectors�1; �2 � 0 that satisfy (i) �1C 0 = �2C 0 and (ii)(�2 � �1)A0 2 Z, the MIR inequality (6)generated by these vectors is valid for P 0. In this case, inequality (6) becomes

�1(C 0v +A0x� b0) + r0(�2 � �1)A0x � r0d(�2 � �1)b0e (7)
where r0 = (�2 � �1)b0 � �(�2 � �1)b0�. Notice that if both �1i and �2i are strictly positivefor some index i, inequality (7) can be strengthened by decreasing both multipliers. It istherefore possible to let � = �2 � �1 and write (a strengthening of) inequality (7) as

(��)+(C 0v +A0x� b0) + r0�A0x � r0d�b0e (8)
where the vector � is not restricted in sign and it satis�es (i) �C 0 = 0 and (ii) �A0 isintegral.

We next show that inequality (8) and the MIR inequality (5) are equivalent whenapplied to the set P in the sense that for any � it is possible to construct an appropriate
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� that would give the same inequality and vice-versa. Notice that the non-negativityrequirements are not explicitly present in the de�nition of P 0. It is possible to representthe set P in this form by de�ning
C 0 =

2
4 CI0

3
5 ; A0 =

2
4 A0I

3
5 ; b0 =

2
4 b00

3
5

where I and 0 respectively denote the identity and zero matrix of appropriate dimension.
Let � be given and consider � = [�;��C; 
] where


i = � �âi if âi < r1� âi otherwise ;
and â = �A � b�Ac. Note that �C 0 = 0 and �A0 is integral. Also notice that �b0 = �band therefore r0 = r. Inequality (8) for this choice of � is

(��)+(Cv +Ax� b) + (�C)+v + (�
)+x+ r(�A+ 
)x � rd�be
where the coe�cient of x can also be written as

(�
)+ + rb�Ac+ r(â+ 
) = rb�Ac+minfâ; r1g:
Therefore, inequality (8) generated by � is identical to inequality (5) generated by �.

Conversely, given � = [�0; �v; �x] � 0 consider the corresponding inequality (8)
(��0)+(Cv +Ax� b) + (��v)+v + (��x)+x+ r0(�0Ax+ �xx) � r0d�0be

and notice that �C 0 = 0 implies that �0C = ��v and therefore (��v)+ = (�0C)+.In addition, r0 = �0b � b�0bc. As �A0 is integral, (�0A + �x) is integral and therefore�x = �â+t where t is an integral vector. Clearly inequality (8) can be strengthened unlessti = 0 if âi < r and ti = 1 , otherwise. It is therefore clear that the MIR inequality (5)generated by �0 is identical to inequality (8) generated by �.
We next give a basic property of MIR inequalities (8) for the set P 0. This property isknown to hold for the Chv�atal closure [21] and can easily be extended to MIR cuts.

Proposition 3 The MIR closure of P 0 is invariant under the operation y = Ux+ l wherel is an integer vector and U is a unimodular matrix.
Proof Let clo(�) denote the MIR closure of a set. We will show that a given point(�v; �x) 2 clo(P 0) if and only if (�v; �y) 2 clo(T ) where �y = U �x + l and T = fv 2 RjJ j; y 2Z jIj : C 0v +A0U�1y � b0 +A0U�1lg.

Assume that (�v; �x) 2 clo(P 0) and (�v; �y) 62 clo(T ). Then there exists a � such that
(��)+(C 0�v +A0U�1�y � b0 �A0U�1l) + r(�A0U�1)�y < r ��(b0 +A0U�1l)�
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where r denotes the fractional part of �(b0+A0U�1l), and �C 0 = 0 and �A0U�1 is integral.This implies that �A0U�1l is integral and therefore r is also equal to the fractional partof �b0. As �y = U �x+ l, the above inequality can also be written as
(��)+(C 0�v +A0�x� b0) + r(�A0)�x+ r�A0U�1l < r ��b0 + �A0U�1l� :

Furthermore, as �A0U�1l is integral, (��)+(C 0�v + A0�x � b0) + r(�A0)�x < r d�b0e : This,however, cannot be true as �x must satisfy the MIR inequality generated by the same �.
Similarly, it is possible to show that �x 62 clo(P 0) and �y 2 clo(T ) leads to a contradic-tion.

3 The Separation Problem
In this section, we study the problem of separating an arbitrary point from the MIR closureof the polyhedral set P = fv 2 Rl; x 2 Zn : Cv +Ax � b; v; x � 0g. In other words, fora given point, we are interested in either �nding violated inequalities or concluding thatnone exists. For convenience of notation, we �rst argue that without loss of generality wecan assume P is given in equality form.

Consider the MIR inequality (4) for P ,
(�C)+v + (��)+s+minf�A� b�Ac ; r1gx+ r b�Acx � r d�be ;

where s denotes the slack expression (Cv + Ax � b). If we explicitly de�ne the slackvariables, by letting ~C = (C; �I) and ~v = (v; s), then the constraints de�ning P become~C~v +Ax = b; ~v � 0; x � 0, and the MIR inequality can be written as
(� ~C)+~v +minf�A� b�Ac ; r1gx+ r b�Acx � r d�be : (9)

In other words, all continuous variables, whether slack or structural, can be treated uni-formly. In the remainder of this paper we assume that P is given in the equality form
P = fv 2 Rl; x 2 Zn : Cv +Ax = b; v; x � 0g:

We denote the continuous relaxation of P by PLP .
3.1 Relaxed MIR inequalities
Let

� = n(�; c+; �̂; ��; �̂; ��) 2 Rm �Rl �Rn � Zn �R� Z :
c+ � �C�̂+ �� � �A

�̂ + �� � �b
c+ � 0

1 � �̂ � 0
1 � �̂ � 0g:
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Note that for any (�; c+; �̂; ��; �̂; ��) 2 �,
c+v + (�̂+ ��)x � �̂ + �� (10)

is valid for PLP as it is a relaxation of (�C)v+ (�A)x = �b. Furthermore, using the basicmixed-integer inequality (1), we infer that
c+v + �̂x+ �̂ ��x � �̂( �� + 1) (11)

is a valid inequality for P . We call inequality (11) where (�; c+; �̂; ��; �̂; ��) 2 � a relaxedMIR inequality derived using the base inequality (10). We next show some basic propertiesof relaxed MIR inequalities.
Lemma 4 A relaxed MIR inequality (11) violated by (v�; x�) 2 PLP satis�es

(i) 1 > �̂ > 0,
(ii) 1 > � > 0,
(iii) the violation of the inequality is at most �̂(1� �̂) � 1=4,

where � = ��+1� ��x� and violation is de�ned to be the right hand side of inequality (11)minus its left hand side.
Proof If �̂ = 0, then the relaxed MIR cut is trivially satis�ed by all points in PLP .Furthermore, if �̂ = 1, then inequality (11) is identical to its base inequality (10) whichagain is satis�ed by all points in PLP . Therefore, a non-trivial relaxed MIR cut satis�es1 > �̂ > 0.

For part (ii) of the Lemma, note that if ��x� � �� + 1 then inequality (11) is satis�ed,as c+; �̂; �̂ � 0 and (v�; x�) � 0. Furthermore, if (v�; x�) satis�es inequality (10) and��x� � ��, then so is inequality (11) as �̂ � 1. Therefore, as the cut is violated, 1 > � > 0.It is also possible to show this by observing that inequality (11) is a split cut for P derivedfrom the disjunction � � 1 and � � 0.
For the last part, let w = c+v� + �̂x� so that the base inequality (10) becomesw � �̂ +�� 1 and the relaxed MIR inequality (11) becomes w � �̂�. Clearly

�̂�� w � �̂(w + 1� �̂)� w = �̂(1� �̂)� (1� �̂)w � �̂(1� �̂):
The last inequality follows from the fact that w � 0 and �̂ � 1.

Next, we relate MIR inequalities to relaxed MIR inequalities.
Lemma 5 For any � 2 Rm, the MIR inequality (9) is a relaxed MIR inequality.
Proof For a given multiplier vector �, de�ne � to denote �A. Further, set c+ = (�C)+,�� = d�be and �̂ = �b� b�bc. Also, de�ne �̂ and �� as follows:

�̂i = � �i � b�ic if �i � b�ic < �̂0 otherwise ; ��i = � b�ic if �i � b�ic < �̂d�ie otherwise ;
9



Clearly, (�; c+; �̂; ��; �̂; ��) 2 � and the corresponding relaxed MIR inequality (11) is thesame as the MIR inequality (9).
Lemma 6 MIR inequalities dominate relaxed MIR inequalities.
Proof Let (v�; x�) 2 PLP violate a relaxed MIR inequality I generated with (�; c+; �̂; ��; �̂; ��) 2�. We will show that (v�; x�) also violates the MIR inequality (9).

Due to Lemma 4, we have �� + 1� ��x� > 0 and therefore increasing �̂ only increasesthe violation of the relaxed MIR inequality. Assuming I is the most violated relaxedMIR inequality, �̂ = minf�b � ��; 1g. By Lemma 4, we know that �̂ < 1, and therefore�̂ = �b� �� and �� = b�bc.
In addition, due to the de�nition of � we have c+ � (�C)+ and �̂+ �̂ �� � minf�A�b�Ac ; �̂1g + �̂ b�Ac. As (v�; x�) � 0, the violation of the MIR inequality is at least asmuch as the violation of I.
Combining Lemmas 5 and 6, we observe that a point in PLP satis�es all MIR inequal-ities, if and only if it satis�es all relaxed MIR inequalities. In other words we have shownthe following:

Corollary 7 The MIR closure of P is the set of points in PLP which satisfy all relaxedMIR inequalities (11) that can be generated by some (�; c+; �̂; ��; �̂; ��) 2 �.
Therefore, it is posible to de�ne the MIR closure of a polyhedral set without using operatorsthat take minimums, maximums or extract fractional parts of numbers. Let �� be theprojection of � in the space of c+; �̂; ��; �̂ and �� variables. In other words, �� is obtainedby projecting out the � variables. We now describe the MIR closure of P as follows:

PMIR = n(v; x) 2 PLP : c+v + �̂x+ �̂ ��x � �̂( �� + 1) for all (c+; �̂; ��; �̂; ��) 2 ��o:
We would like to emphasize that �� is not the polar of PMIR and therefore even though�� is a polyhedral set (with a �nite number of extreme points and extreme directions), wehave not yet shown that the polar of PMIR is polyhedral. The polar of a polyhedral setis de�ned to be the set of points that yield valid inequalities for the original set. If theoriginal set is de�ned in Rn, its polar is de�ned in Rn+1 and the �rst n coordinates of anypoint in the polar give the coe�cients of a valid inequality for the original set, and the lastcoordinate gives the right hand side of the valid inequality. Therefore, the polar of PMIR

is the collection of points (c+; �̂ + �̂ ��; �̂( �� + 1)) 2 Rl+n+1 where (c+; �̂; ��; �̂; ��) 2 ��. Aset is polyhedral if and only if its polar is polyhedral.
For a given point (v�; x�) 2 PLP , testing if (v�; x�) 2 PMIR can be achieved by solvingthe following non-linear integer program (MIR-SEP):

max �̂( �� + 1)� (c+v� + �̂x� + �̂ ��x�)s.t. (�; c+; �̂; ��; �̂; ��) 2 �:
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If the optimal value of this program is non-positive, then (v�; x�) 2 PMIR. On the otherhand, if the optimal value is positive, the optimal solution gives a most violated MIRinequality.
3.2 An Approximate separation model
We next (approximately) linearize the nonlinear terms that appear in the objective func-tion of MIR-SEP. To this end, we �rst de�ne a new variable � that stands for the term(�� + 1 � ��x). We then approximate �̂ by a number ~� � �̂ representable over someE = f�k : k 2 Kg. We say that a number � is representable over E if � =Pk2 �K �k for some�K � K. We can therefore write ~� as Pk2K �k�k using binary variables �k and approxi-mate �̂� by ~�� which can now be written as Pk2K �k�k�. Finally, we linearize terms�k� using standard techniques as �k is binary and � 2 (0; 1) for any violated inequality.

An approximate MIP model Appx-MIR-Sep for the separation of the most violatedMIR inequality reads as follows:
max X

k2K �k�k � (c+v� + �̂x�) (12)
s.t. (�; c+; �̂; ��; �̂; ��) 2 � (13)

�̂ � X
k2K �k�k (14)

� = (�� + 1)� ��x� (15)
�k � � 8k 2 K (16)
�k � �k 8k 2 K (17)
� 2 f0; 1gjKj (18)

Let zsep and zapx�sep denote the optimal value of MIR-SEP and Appx-MIR-Sep,respectively. For any integral solution of Appx-MIR-Sep, we have (�; c+; �̂; ��; �̂; ��) 2 �and X
k2K �k�k � X

k2K �k��k
establishing that zsep � zapx�sep. In other words, Appx-MIR-Sep is a restriction of MIR-SEP and if the approximate separation problem �nds a solution with objective functionvalue zapx�sep > 0, the corresponding MIR cut is violated by at least as much.

In our computational experiments, we use E = f2�k : k = 1; : : : ; �kg for some smallnumber �k. We next show that with this choice of E , Appx-MIR-Sep yields a violated MIRcut provided that there is an MIR cut with a \large enough" violation. Notice that forany �̂ there exists a ~� representable over E such that 2��k � �̂ � ~� � 0.
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Theorem 8 Let E = f2�k : k = 1; : : : ; �kg for some positive integer �k, then
zsep � zapx�sep > zsep � 2��k (19)

where zsep and zapx�sep denote the optimal values of MIR-SEP and Appx-MIR-Sep, re-spectively.
Proof The �rst inequality holds as Appx-MIR-Sep is a restriction of MIR-SEP. For thesecond inequality, note that zapx�sep � 0 as we can get a feasible solution of Appx-MIR-Sepwith objective 0 by setting � to 1, and the remaining variables to 0. Therefore the secondinequality in (19) holds if zsep � 0. Assume that zsep > 0. Let (�; c+; �̂; ��; �̂; ��) 2 �be an optimal solution of MIR-SEP. For the variables in Appx-MIR-Sep common withMIR-SEP, set their values to the above optimal solution of MIR-SEP. Let ~� be the largestnumber representable over E less than or equal to �̂. Clearly, 2��k � �̂ � ~� � 0. Choose� 2 f0; 1g�k such that ~� = Pk2K �k�k. Set � = �� + 1 � ��x�. Set �k = 0 if �k = 0, and�k = � if �k = 1. Then �k = �k� for all k 2 K, and ~�� =Pk2K �k�k. Therefore,

2��k > 2��k� � �̂�� ~�� = �̂��X
k2K �k�k:

The second inequality in (19) follows.
In the next section (Theorem 15) we show that Appx-MIR-Sep becomes an exact modelfor �nding violated MIR cuts when E is chosen as f�k = 2k=�;8k = f1; : : : ; dlog�egg where� is the least common multiple of all subdeterminants of AjCjb.

3.3 Other separation models
Caprara and Letchford [13], and, more recently, Balas and Saxena [7] presented optimiza-tion models for �nding a violated split cut for P . In both papers, the authors use two setsof multipliers that guarantee that the split cut is valid for both sides of the disjunction;see equations (8)-(13) in [13] and system (SP) in [7]. Caprara and Letchford (resp. Balasand Saxena) denote the split cut by �x + �y � 
 (resp. �x � �) and the correspondingdisjunction by cx � d and cx � d + 1 (resp. �x � �0 and �x � �0 + 1). In addition,both papers use a \normalization" condition restricting the sum of the multipliers for theinequalities in the disjunction to be a constant. In the case of Balas and Saxena, the sumof the multipliers u0 and v0 for the inequalities �x � �0 and �x � �0 + 1, respectively, isrestricted to be 1, whereas the corresponding sum in [13] is restricted to be 2.

It is possible to show that the separation models in the above papers { equations (8)-(13) in [13], and system (2.1) or (PMILP) in [7] { actually �nd the MIR cut (7) that has thelargest violation (left hand side minus right hand side). To see this for the model in [13],let [A;G] in [13] stand for [�A0;�C 0], and b; �L; �R; �R in [13] stand for �b0; 2�2; 2�1; 2r0,respectively. With these transformations, the objective function (equation (8) in [13]) ofthe Caprara-Letchford model equals 4*(left hand side - right hand side of (7)).
Similarly, for the Balas-Saxena model, let A in [7] stand for [A0; C 0], and b; u; v; u0in [7] stand for b0; �2; �1; 1 � r0, respectively. Then the objective function in (PMILP) is

12



simply the left hand side of (7) minus its right hand side. Therefore, we have the followingresult.
Lemma 9 The following three models have the same set of optimal solutions: (i) theCaprara-Letchford model given by equations (8)-(13) in [13], (ii) the Balas-Saxena modelgiven by system (2.1) or (PMILP) in [7], and, (iii) MIR-SEP.
It is interesting to note that the normalization used in [13] and [7] is implicitly built intothe de�nition of the MIR cut.

Caprara and Letchford do not perform any computational tests with their model. Asfor Balas and Saxena, instead of linearizing the product �̂� as we do, they �x the termu0 (corresponding to 1� �̂) in their model to a small set of values from [0,0.5], and solvean MIP for each value. Their linearization approach is very similar to ours except ourmodel imposes a lower bound on �̂ from a small set of values. To highlight this di�erence,consider the following example where P = fv 2 R; x 2 Z : v + x � 0:31; v � 0g and thepoint to be separated is (v�; x�) = (0; 0:31). Clearly, the convex hull is given by addingthe simple MIR cut v + 0:31x � 0:31 which is violated by (v�; x�), with a violation of0:31(1� 0:31). Using our linearized separation model with k = 2, i.e., �1 = 0:5; �2 = 0:25,there exists a solution to our model with � = 1 that gives the simple MIR cut above. Forthis solution, the objective value of the model is 0:25�(1�0:31) which is an underestimateof the cut violation. (Using k > 2 gives a better aproximation.) The Balas/Saxena modelPMILP (or, system (2.1)) for this example (or more precisely, the deparametrized modelMILP(�)) is infeasible unless the parameter � (or, u0) is chosen to be exactly 0:31.
One other di�erence between the Balas-Saxena model and ours is that in MIR-SEPwe use only one set of multipliers corresponding to the inequalities de�ning P .

4 A simple proof that the MIR closure is a polyhedron
In this section we give a short proof that the MIR closure of a polyhedral set is a polyhe-dron. As MIR cuts are equivalent to split cuts, this result obviously follows from the workof Cook, Kannan and Schrijver (1990) on split cuts. Andersen, Cornu�ejols and Li (2005),and Vielma (2006) give alternative proofs that the split closure of a polyhedral set is apolyhedron. We believe our proof is simpler than the previous proofs; further it is framedin the language of MIR cuts and not split cuts.

The main tool in the proof is a �nite bound on the multipliers � needed for non-redundant MIR cuts given in Lemma 12. The bounds on � can be tightened if the MIPis a pure integer program, and we give these tighter bounds �rst, in the next lemma. Inthis section we assume that the coe�cients in Cv + Ax = b are integers. Denote the ithequation of Cv + Ax = b by civ + aix = bi. An equation civ + aix = bi is a pure integerequation if ci = 0.
Lemma 10 If some MIR inequality is violated by the point (v�; x�), then there is anotherMIR inequality violated by (v�; x�) derived using �i 2 [0; 1) for every pure integer equation.
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Proof: (sketch) Let (�; (�C)+; �̂; ��; �̂; ��) 2 � de�ne an MIR inequality where �i 62 [0; 1)for a pure integer equation civ + aix = bi where ci = 0. It is possible to show that theMIR inequality de�ned by
(�� b�ic ei; (�C)+; �̂; ��� b�ic ai; �̂; �� � b�ic bi) 2 �

has precisely the same violation.
We note that it is possible to obtain a slightly weaker bound on the multipliers,(namely, �i 2 (�1; 1) for every pure integer equation) by combining Lemma 1 in [13] withthe transformations described in Section 3.3.

De�nition 11 We de�ne 	 to be the largest absolute value of subdeterminants of C, and1=m if C = 0, where m is the number of rows in Ax+ Cv = b.
Lemma 12 If there is an MIR inequality violated by the point (v�; x�), then there isanother MIR inequality violated by (v�; x�) with �i 2 (�m	;m	), where m is the numberof rows in Ax+ Cv = b.
Proof: Let the MIR cut

(�C)+v + �̂x+ �̂ ��x � �̂( �� + 1) (20)
be violated by (v�; x�). Then (�; (�C)+; �̂; ��; �̂; ��) 2 � with 0 < �̂ < 1. Let Cj stand forthe jth column of C. Let S1 = fj : �Cj > 0g and S2 = fj : �Cj � 0g.

Consider the following cone:
C = fv 2 Rm : vCi � 0 8i 2 S1; vCi � 0 8i 2 S2g:

Obviously � belongs to C. We will �nd a vector �0 in C, such that �� = ���0 is integral andbelongs to C. C is a polyhedral cone, and is generated by a �nite set of vectors �1; : : : ; �t,for some t > 0. (Observe that if C = 0, then C = Rm, and �1; : : : ; �t can be chosen to bethe unit vectors times �1.) We can assume these vectors are integral (by scaling); we canalso assume the coe�cients of �1; : : : ; �t have absolute value at most 	. Further, we canassume that �1; : : : ; �k (here k � m) are linearly independent vectors such that
� = kX

j=1 vj�j ; with vj 2 R; vj > 0:
If vj < 1 for j = 1; : : : ; k, then each coe�cient of � has absolute value less than m	, andthere is nothing to prove. If vj � 1 for any j 2 f1; : : : ; kg, then let

�0 = kX
j=1 v̂j�j ) �� �0 = kX

j=1bvjc�j ;
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where v̂j = vj � bvjc. Clearly �0 belongs to C, and has coe�cients with absolute value atmost m	. Also, �0 6= 0 as �0 = 0 ) � is integral ) �̂ = 0. Let �� = � � �0; obviously ��belongs to C and is integral. Further,
(�C)+ � (�0C)+ = (��C)+:

Therefore (�0; (�0C)+; �̂; ��� ��A; �̂; �� � ��b) 2 �. It follows that the multipliers �0 lead tothe MIR (�0C)+v + �̂x+ �̂(��� ��A)x � �̂( �� � ��b+ 1): (21)
The rhs of the old MIR minus the rhs of the new MIR equals

�̂��b = �̂��(Ax� + Cv�) = �̂��Ax� + �̂��Cv�� �̂��Ax� + �̂(��C)+v�: (22)
The lhs of the old MIR (with v�; x� substituted) minus the lhs of the new MIR equals thelast term in (22). Therefore the new MIR is violated by at least as much as the old MIRand the lemma follows.

As the multipliers � are bounded, there are only a �nite number of choices for �� and�� for non-redundant MIR cuts, see (23).
Theorem 13 If there is an MIR inequality violated by the point (v�; x�), then there isanother MIR inequality violated by (v�; x�) for which �̂ and the components of �; �̂ are ra-tional numbers with denominator equal to a subdeterminant of AjCjb, and each componentof � is contained in the interval [�m	;m	].
Proof Let (v�; x�) be a point in PLP which violates an MIR cut. Let this MIR cut bede�ned by (�o; c+o ; �̂o; ��o; �̂o; ��o) 2 �. By Lemma 12 , we can assume each component of�o lies in the range (�m	;m	). De�ne �o = ��o + 1� ��To x�. Then

�̂o�o � c+o v� � �̂ox� > 0:
Consider the following LP:

max �̂�o � c+v� � �̂x�
(�; c+; �̂; ��o; �̂; ��o) 2 �

�m	 � �i � m	
Note that the objective is a linear function as �o is �xed. Further, we have �xed thevariables �� and �� in the constraints de�ning �. The bounds on � come from Lemma 12,except that we weaken them to non-strict inequalities. This LP has at least one solutionfor (�; c+; �̂; �̂) with positive objective value, namely (�o; c+o ; �̂o; �̂o). Therefore a basicoptimal solution of this LP has positive objective value. Consider the MIR cut de�ned byan optimal solution along with ��o and ��o. It is obviously an MIR cut with violation at
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least the violation of the original MIR cut. Therefore, 0 < �̂ < 1. Further, it is easy tosee that the LP constraints (other than the bounds on the variables) can be written as
2
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The theorem follows.
By Theorem 13, each non-redundant MIR inequality is de�ned by multipliers � = (�i)where �i is a rational number between �m	 and m	 with a denominator equal to asubdeterminant of AjCjb. Therefore the number of non-redundant MIR inequalities is�nite.

Corollary 14 The MIR closure of a polyhedral set P is a polyhedron.
As the MIR closure equals the split closure, it follows that the split closure of apolyhedral set is again a polyhedron. Let the split closure of P be denoted by PS =Tc2Zn;d2Z P(c;d); where for c 2 Zn and d 2 Z,

P(c;d) = convf(P \ fcx � dg) [ (P \ fcx � d+ 1g)g:
Lemma 12 gives a characterization of the useful disjunctions in the de�nition of the splitclosure. De�ne the vector � 2 Rm by

�i = � m	 if ci 6= 01 if ci = 0
De�ne D = f(c; d) 2 Zn � Z : ��jAj � c � �jAj; b��jbjc � d � b�jbjcg: (23)
D is clearly a �nite set, and

PS = \
c2Zn;d2Z P(c;d) =

\
(c;d)2DP(c;d):

To see this, let x� be a point in P but not in PS . Then some split cut, which is also anMIR cut, is violated by x�. By Lemma 12 , there is an MIR cut with �� < � < � whichis violated by x�. This MIR cut has the form (�C)+v + �̂x + �̂ ��x � �̂( �� + 1), where(��; ��) 2 D. Thus x� does not belong to P(��;��). This implies that\
(c;d)2DP(c;d) � \

c2Zn;d2Z P(c;d);
and the two sets in the expression above are equal as the reverse inclusion is true byde�nition.
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Theorem 15 Let � be the least common multiple of all subdeterminants of AjCjb, K =f1; : : : ; log�g, and E = f�k = 2k=�; 8k 2 Kg. Then Appx-MIR-Sep is an exact model for�nding violated MIR cuts.
Proof By Theorem 13, �̂ in a violated MIR cut can be assumed to be a rational numberwith a denominator equal to a subdeterminant of AjCjb and therefore of �. But such a �̂is representable over E .
5 Computational Issues
We next discus some practical issues that we encountered during our computational ex-periments.
5.1 Numerical Issues
Assume that the point (v�; x�) to be separated from the MIR closure of P is obtainedby optimizing a linear function over PLP using a practical LP solver. Then (v�; x�) willonly be approximately feasible for PLP , i.e., some of the inequalities de�ning PLP will beviolated by small amounts (usually at most 10�6). MIR-SEP can then return cuts whichare not useful. For example, if v�i < 0 for some index i, then the objective function ofMIR-SEP, �̂� � c+v� � �̂x�, can be made positive by setting � to 0, and c+i to a largepositive number. Clearly, such a � does not yield a violated MIR cut. Moreover, if someequation in Cv+Ax = b is violated { let civ+aix = bi be the ith equation in Cv+Ax = band let civ� + aix� < bi { then MIR-SEP would choose a large positive value for �i. Theresulting base inequality c+v + (�̂ + ��)x � �̂ + �� would be violated by (v�; x�), and sowould the associated MIR cut; the MIR cut would not necessarily be violated if we movedto another approximately feasible solution (v0; x0) of Cv +Ax = b with civ0 + aix0 � bi.

We deal with such issues by modifying (v�; x�) and b to get a truly feasible solutionof a modi�ed set of constraints. We let v0 = maxfv�;0g, and x0 = maxfx�;0g, for non-negative variables and then de�ne b0 as Cv0 + Ax0. We use Appx-MIR-Sep to separate(v0; x0) from the MIR closure of Cv+Ax = b0; v; x � 0; x 2 Z. We use the multipliers � inthe solution of Appx-MIR-Sep to compute an MIR cut for P . In some cases this cut is notviolated by (v�; x�), but this happens infrequently as (v0; x0) is usually close to (v�; x�).
5.2 Reducing the size of the separation problem
The number of integer variables in Appx-MIR-Sep equals the number of integer variablesin P plus the number of variables �i used in linearizing the objective; thus solving Appx-MIR-Sep could be as hard as solving the original MIP. However, violated MIR cuts canoften be found by solving an MIP with fewer integer variables. Cook, Kannan and Schrijver[15] showed that the split closure of a face F of P equals the intersection of F with thesplit closure of P . Therefore, if (v�; x�) lies on a face F , then (v�; x�) violates a split cutfor F , if and only if it violates a split cut for P . A speci�c approach to choosing F , and
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then obtaining a violated split cut for P is given in [4] and [5]. Given the point (v�; x�),they solve a separation problem in the space of variables which lie strictly between theirbounds.
To see how the above approach works in our context, note that in Appx-MIR-Sep, thevariables c+i ; âj ; �aj corresponding to v�i = 0 and x�j = 0 do not contribute to the objective.One can remove them and the corresponding constraints from Appx-MIR-Sep, solve thereduced Appx-MIR-Sep, and then compute their values from the multipliers � in a solutionto the reduced model. The resulting cut would have the same violation as the cut in thereduced set of variables. Further, if x�j = 0 for an index j, and P has an upper bound forxj , say uj > 0, then the component of � corresponding to xj � uj can be assumed to be0. Finally, if x�j = uj and xj � uj for points in P , we can replace xj by uj � x0j where0 � x0j � uj , derive an MIR cut for the modi�ed system of constraints (here (v�; x�) mapsto a point with x0j = 0) and get an MIR cut for P by replacing x0j by uj � xj .
For many problems in MIPLIB 3.0, Appx-MIR-Sep cannot be solved without adoptingthe above approach, e.g., nw04, which has 36 constraints and over 87000 0-1 variables.With this approach when �k = 5, the �rst separation MIP would have at most 36+5 integervariables, instead of 87000+5.

5.3 Finding good MIR cuts
Given a point (v�; x�) 2 PLP , the separation model MIR-SEP is guaranteed to producethe most violated MIR inequality, if there is one. Similarly, based on Theorem 8, theapproximate model is guaranteed to produce an MIR inequality with violation slightlyless than the most violated inequality. In both cases violation of a cut de�ned by � =(c+; �̂; ��; �̂; ��) 2 �� is de�ned to be

�(�) = �̂�� c+v� � �̂x�
where � = ��+1� ��x�. Unfortunately, there is no guarantee that MIR cuts with maximumvalues of �(�) would actually be the most e�ective MIR cuts in practice.
Example 16 Consider separating (x�; y�) = (0:001; 0:5) from the MIR closure of

P = fx; y 2 Z : 100x� y � �0:4; 100x+ y � 0:6g:
First we convert the inequalities de�ning P to equations by adding slacks:

100x� y � s1 = �0:4; (A)100x+ y � s2 = 0:6; (B)
and construct the related point (x�; y�; s�1; s�2) = (0:001; 0:5; 0; 0) to be separated.

The base inequality s1=2 + y � 1=2 can obtained by taking �A = �1=2 and �B = 1=2.The corresponding cut s1=2 + y=2 � 1=2 has violation 0:25. This inequality can also bewritten as x � 0:006 after substituting out s1.
Another base inequality x � 0:001 can be obtained by taking �A = �B = 1=200. Theresulting MIR cut 0:001x � 0:001 (or x � 1) has violation less than 0:001.
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Another possible measure of violation for MIR inequalities is
�0(�) = �� c+v� + �̂x��̂ ;

see [28]. In the previous example, �0 of x � 1 is 0.999, whereas �0 of x � 0:006 is only 0.006.This suggests that �0 may be a more e�ective measure than �. However, consider the baseinequality s1+x+2y � 1:001 obtained by taking �A = (�1+1=200) and �B = (1+1=200).The resulting MIR cut s1 + 0:001(x+ 2y) � 0:002 has a violation of 0.999. However, thisinequality is even weaker than x � 0:006 after substituting out s1.
Another problem with both these measures is that adding integral multiples of tightconstraints without continuous variables to the original base inequality does not change theviolation of the resulting MIR cut (see the proof of Lemma 10). For example, if x� = 0:5,the base inequalities x � :5 and 11x � 5:5 lead to MIR cuts with identical violation foreach measure. The �rst inequality leads to x � 1 and the second one to 11x � 6 whichis clearly weaker than x � 1. It is possible to avoid this problem by normalizing the cutviolation using the norm of the cut; however it is hard to incorporate this idea into a linearseparation model.

6 Computational experiments
In this section we discuss our computational experiments with our approximate separationmodel. We start o� with the continuous relaxation of a given problem instance anditeratively strengthen it with MIR cuts to (approximately) optimize over the MIR closure.For any �xed precision, it is possible to approximately optimize over the MIR closureusing Appx-MIR-Sep. This, however, might not happen in a reasonable amount of timeand therefore, our approach should be considered as a heuristic.

After some initial testing, we realized that using Appx-MIR-Sep alone to �nd vio-lated MIR inequalities improves the lower bound very slowly. To speed up this process weimplemented several heuristics to �nd solutions to Appx-MIR-Sep by focusing on certainsub-classes of MIR cuts. These solutions might be sub-optimal with respect to the objec-tive function of Appx-MIR-Sep, but they help increase the performance of the algorithmsigni�cantly. As discussed in Section 5.3, the objective function used in Appx-MIR-Sepdoes not necessarily help produce the most e�ective cuts.
We next discuss some practical issues and describe the heuristic ideas that we used tospeed up the algorithm. Finally, we present numerical results.

6.1 Modeling Issues
Practical MIPs, such as those in MIPLIB 3.0, do not necessarily have the same form asP . Many of the variables have upper bounds in addition to the lower bounds of 0. Wesimply treat the upper bound constraints as general linear constraints. Further, some ofthe variables have negative lower bounds. For an integer variable xi bounded below by li,where li is a negative integer, we \shift" it by performing the substitution x0i = xi � li.
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Finally, if an integer variable xi is free, we replace the constraint �̂i + ��i � (�A)i in(10) by ��i = (�A)i. If a continuous variable vj is free, we replace the constraints c+j �(�C)j ; c+j � 0 in (10) by 0 = (�C)j . See Section 2.5 for an explanation of why the abovemodi�cations are either necessary (in the case of free variables) or do not change the MIRclosure (in the case of shifted variables).
6.2 Separation Heuristics
We next present the �nal cutting plane algorithm that we have implemented and describeits components.

* Strengthen bounds on variables: add MIR cuts of the form xi � �� or xi � �� forsome integer ��
* Add Gomory mixed-integer cuts from the initial simplex tableau
* Repeat

- Add MIR cuts based on formulation rows- Solve INT-SEP (a restriction of Appx-MIR-Sep) to �nd cuts based on pureinteger base inequalities- Solve Appx-MIR-Sep with limits on the enumeration process
Until no violated cuts are found or time is up.

6.2.1 Bound Strengthening
We take a subset S of integer variables, and for every xi with i 2 S, we solve LPs tomaximize and minimize xi for x 2 PLP . If �1 � xi � �2, then xi � d�1e and xi � b�2c areChv�atal-Gomory cuts and therefore MIR cuts. This simple bound-strengthening procedureseems to be useful in a few MIPLIB 3.0 instances, especially p0282.
6.2.2 Gomory mixed-integer cuts
Gomory mixed-integer cuts for the initial LP-relaxation of the MIP are known to be MIRinequalities [24] where the multipliers used to aggregate the rows of the formulation areobtained from the inverse of the optimal basis. The base inequalities for these cuts arereadily available after solving the initial relaxation and the resulting cuts are known tobe e�ective in reducing the integrality gap signi�cantly [5]. We use these cuts only in the�rst iteration of the cutting plane algorithm as the basis in the following iterations mightinclude cuts from earlier iterations and therefore the resulting Gomory mixed-integer cutswould not necessarily be rank 1 MIR cuts, i.e., MIR cuts derived only from the constraintsde�ning P .

As suggested by a referee, we also experiment with lift-and-project cuts, though thesecuts are not generated in our default setting. In particular, we use the CglLandP cut gener-ator [9],[2] from the COIN-OR library, which implements the Balas-Perregard [6] procedure
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and generates strengthened lift-and-project cuts from rows of the simplex tableau. As inthe case of GMI cuts, we only invoke this cut generator in the �rst iteration of the cuttingplane algorithm. These cuts are not used for Tables 1 and 2, but we discuss their e�ectseparately at the end of the paper.
6.2.3 Cuts based on the rows of the formulation
Another heuristic considers rows of the formulation, one at a time, and obtains baseinequalities by scaling them. Variables that have upper bounds are sometimes comple-mented using the bound constraints. More precisely, for a given row of the formulation anda given fractional solution, this procedure generates base inequalities by dividing the rowby the coe�cient of an integer variable which is currently fractional. Variables with upperbounds are complemented if their current value is closer to their upper bound than thelower bound. After writing the MIR cut, complemented variables are un-complementedto obtain a cut in the original space. This procedure was used in [20] and the authorsobserved that it produces e�ective MIR cuts.

We also note that in [24] Marchand and Wolsey describe a more sophisticated proce-dure that produces violated MIR inequalities by combining several rows as well as comple-menting variables. They observe that base inequalities obtained by combining only a fewrows of the formulation can lead to e�ective MIR cuts. The procedure we use is motivatedby their work and can be considered as a simpli�cation of their algorithm. We noticedthat even using a single row of the formulation leads to MIR inequalities that reduce theintegrality gap signi�cantly for some instances.
6.2.4 Cuts based on pure integer base inequalities
One way to generate e�ective MIR cuts is to concentrate on base inequalities that onlycontain integer variables. To obtain such base inequalities, the multiplier vector �, usedto aggregate the rows of the formulation, is required to satisfy �C � 0 so that (�C)+ = 0.This can be achieved by �xing c+ to zero in Appx-MIR-Sep. Note that if the originalformulation has inequality constraints, the slack variables associated with these constraintsare also treated as continuous variables. Therefore, multipliers associated with these rowsare restricted to be non-negative for \�" constraints and non-positive for \�" constraints.

This heuristic in a way mimics the procedure to generate the so-called projectedChv�atal-Gomory (pro-CG) cuts which are shown to be e�ective for mixed integer programs[11]. Given a multiplier vector � such that (�C)+ = 0, if we denote the resulting baseinequality by �x = �, where � = �A and � = �b, the associated pro-CG cut isX
i2I d�iexi � d�e

and the associated MIR cut isX
i2I (minf�̂; �̂ig+ �̂b�ic)xi � �̂d�e; (24)
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where �̂i and �̂ denote the fractional part of �i and � respectively. In other words, MIRcuts that only contain integer variables can be seen as a strengthening of pro-CG cuts.
In our implementation, we also set �̂ to zero in the separation model, and divide theobjective by �̂. In such a case, the objective is to maximize � alone. We do not then needthe variables �i or �i, as we do not need to model �̂�. After solving this simpli�ed model(we call this INT-SEP), we use the multipliers � to write the cut (24). In other words,we �nd a violated Chv�atal-Gomory (CG) cut (in the case of pure integer programs) orpro-CG cuts (in the case of mixed-integer programs), and then write the correspondingMIR cut, instead of directly �nding the most violated MIR cut. The motivation forthis simpli�cation is that the resulting model was shown to be e�ective for pure integerprograms in [23] and for mixed-integer programs in [11].

6.2.5 Cuts generated by Appx-MIR-Sep
The only parameter which must be speci�ed for the de�nition and solution of Appx-MIR-Sep is the value of �k, i.e., the parameter responsible for the degree of approximation weuse for �̂. In our computational experiments, we use �k = 5 which is a good compromisebetween computational e�ciency and precision. In such a way, as proved in Theorem 8,our approximate model is guaranteed to �nd a cut violated by at least 1/32 = .03125.
6.3 Piloting the black-box MIP solver
A few tricks can be used to force the black-box MIP solver, in our experiments ILOG-Cplex9.1, to return good heuristic solutions of both INT-SEP and Appx-MIR-Sep. Every integerfeasible solution to the separation problem that has positive objective value gives a violatedcut. Therefore we do not need to solve the separation problem to optimality unless wewish to claim that no violated cut exists.

To �nd a number of MIR cuts quickly we activate the RINS heuristic [19] of ILOG-Cplexafter every 100 nodes. This approach is similar to [23] and [11]. In addition, to control theruntime in each iteration, we impose the following node limits for the enumeration tree.
� For INT-SEP, the initial node limit is set to 10,000 if no MIR cuts have been foundby other heuristics, else, it is set to 1,000. After each integral solution, this limit isreset to 1,000 if the violation is less than 0:2 and 100 nodes otherwise.
� For Appx-MIR-Sep, there is no initial node limit if no MIR cuts have been foundby other heuristics, else, it is set to 1,000. After each integral solution, this limit isreset to 1,000 if the violation is less than 0:1 and 100 nodes otherwise.

6.4 Computational results
In the following tables, we give our bounds for problem instances in the MIPLIB 3.0library [8] obtained by running our algorithm with a time limit of one hour. We ignorethree instances, namely dsbmip, enigma and noswot which do not have any integrality
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gap. In Table 1, we compare our bounds with bounds obtained for the Chv�atal closureafter either three or twelve hours in [23], and with the bounds obtained by Balas andSaxena, using their MIP model for split cut separation [7]. In Table 2, we compare ourbounds with those obtained by 20 minutes of projected CG cuts separation in [11], andthe split cut bounds from [7]. In both tables, the percentage gap closed refers to thefraction of the integrality gap closed after adding MIR cuts. Note that in [7], the boundfor arki001 is obtained by �rst applying the CPLEX 9.0 presolver, and then generatingsplit cuts for the presolved problem. It is known that the CPLEX presolver can add MIRcuts or split cuts to the original model; hence the bound for arki001 in [7] is potentiallylarger than the bound obtainable from its split closure.
% gap time % CG gap time % gap timeinstance jIj # iter # cuts closed MIR closed CG split splitair03 10,757 1 36 100.00 1 100.0 1 100.00 3air04 8,904 5 294 9.18 3,600 30.4 43,200 91.23 864,360air05 7,195 12 246 12.38 3,600 35.3 43,200 61.98 24,156cap6000 6,000 108 316 49.77 3,600 22.5 43,200 65.17 1,260fast0507 63,009 8 318 1.66 3,600 5.3 43,200 19.08 304,331gt2 188 96 256 98.38 2,618 91.0 10,800 98.37 599harp2 2,993 59 523 58.48 108 49.5 43,200 46.98 7,671l152lav 1,989 24 128 6.41 3,600 59.6 10,800 95.20 496,652lseu 89 102 350 91.84 3,600 93.3 175 93.75 32,281mitre 10,724 16 1126 100.00 1,396 16.2 10,800 100.00 5,330mod008 319 54 203 98.95 201 100.0 12 99.98 85mod010 2,655 1 39 100.00 0 100.0 1 100.00 264nw04 87,482 91 270 93.30 3,600 100.0 509 100.00 996p0033 33 26 110 87.42 2,552 85.3 16 87.42 429p0201 201 254 990 74.31 3,600 60.6 10,800 74.93 31,595p0282 282 210 1419 99.55 3,600 99.9 10,800 99.99 58,052p0548 548 287 1317 96.11 3,600 62.4 10,800 99.42 9,968p2756 2,756 93 671 57.57 3,600 42.6 43,200 99.90 12,673seymour 1,372 1 559 8.35 3,600 33.0 43,200 61.52 775,116stein27 27 123 621 0.00 3,600 0.0 521 0.00 8,163stein45 45 539 2186 0.00 3,600 0.0 10,800 0.00 27,624

Table 1: IPs of the MIPLIB 3.0.
For a number of problems, we terminate prematurely because of numerical issues. Forexample, for harp2, after several iterations Appx-MIR-Sep returned a cut which was notviolated by the point to be separated while the other separation heuristics did not returnany cuts. For p0033, we terminate because Appx-MIR-Sep has no solution, and thusthere does not exist an MIR cut which is violated by more than 1/32.
Our computed bounds are clearly sensitive to the MIP solver used and its parametersettings, e.g., if we turn o� the RINS heuristic while solving Appx-MIR-Sep, for p2756,we get a substantially better bound, 78.19% versus only 57.57% with RINS turned on.The time saved by turning o� the RINS heuristic allows our code to perform 316 iterations
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% gap time % CG gap time % gap timeinstance jIj jJ j # iter # cuts closed MIR closed CG split split10teams 1,800 225 378 3334 100.00 3,600 57.14 1,200 100.00 90arki001 538 850 18 133 33.94 3,600 28.04 1,200 83.05* 193,536bell3a 71 62 107 404 99.60 3,600 48.10 65 65.35 102bell5 58 46 90 629 92.95 3,600 91.73 4 91.03 2,233blend2 264 89 510 2815 30.63 3,600 36.40 1,200 46.52 552dano3mip 552 13,321 1 124 0.10 3,600 0.00 1,200 0.22 73,835danoint 56 465 257 1044 1.73 3,600 0.01 1,200 8.20 147,427dcmulti 75 473 594 3866 97.81 3,600 47.25 1,200 100.00 2,154egout 55 86 27 264 100.00 10 81.77 7 100.00 18,179�ber 1,254 44 105 329 94.70 3,600 4.83 1,200 99.68 163,802�xnet6 378 500 881 4766 93.38 3,600 67.51 43 99.75 19,577
ugpl 11 7 13 28 80.23 3,600 19.19 1,200 100.00 26gen 150 720 28 115 100.00 825 86.60 1,200 100.00 46gesa2 408 816 494 1378 99.70 3,600 94.84 1,200 99.02 22,808gesa2 o 720 504 448 1640 96.05 3,600 94.93 1,200 99.97 8,861gesa3 384 768 355 892 74.83 3,600 58.96 1,200 95.81 30,591gesa3 o 672 480 476 1382 70.82 3,600 64.53 1,200 95.20 6,530khb05250 24 1,326 77 555 100.00 146 4.70 3 100.00 33markshare1 50 12 5117 95369 0.00 3,600 0.00 1,200 0.00 1,330markshare2 60 14 4580 85403 0.00 3,600 0.00 1,200 0.00 3,277mas74 150 1 1 12 6.68 0 0.00 0 14.02 1,661mas76 150 1 1 11 6.45 0 0.00 0 26.52 4,172misc03 159 1 231 992 37.71 3,600 34.92 1,200 51.70 18,359misc06 112 1,696 297 2074 99.84 792 0.00 0 100.00 229misc07 259 1 326 1678 11.25 3,600 3.86 1,200 20.11 41,453mod011 96 10,862 244 1673 17.41 3,600 0.00 0 72.44 86,385modglob 98 324 1034 7060 80.04 1,677 0.00 0 92.18 1,594mkc 5,323 2 147 4259 13.42 3,600 1.27 1,200 36.16 51,519pk1 55 31 3988 21245 0.00 3,600 0.00 0 0.00 55pp08a 64 176 423 1687 95.76 3,600 4.32 1,200 97.03 12,482pp08aCUTS 64 176 611 2126 88.74 3,600 0.68 1,200 95.81 5,666qiu 48 792 934 2142 29.19 3,600 10.71 1,200 77.51 200,354qnet1 1,417 124 203 784 66.22 3,600 7.32 1,200 100.00 21,498qnet1 o 1,417 124 146 587 83.78 3,600 8.61 1,200 100.00 5,312rentacar 55 9,502 79 265 23.40 3,600 0.00 5 0.00 0rgn 100 80 391 1142 99.60 3,600 0.00 0 100.00 222rout 315 241 1575 9393 22.60 3,600 0.03 1,200 70.70 464,634set1ch 240 472 179 694 76.47 3,600 51.41 34 89.74 10,768swath 6,724 81 152 1476 33.93 3,600 7.68 1,200 28.51 2,420vpm1 168 210 121 386 96.30 387 100.00 15 100.00 5,010vpm2 168 210 126 427 77.71 243 62.86 1,022 81.05 6,012
Table 2: MILPs of the MIPLIB 3.0.

and generate 1550 cuts as opposed to 93 iterations with 671 cuts in Table 2. Changingthe value of �k also makes a di�erence; increasing it from 5 to 6 makes some instances ofAppx-MIR-Sep harder to solve, but yielding cuts not obtainable with �k = 5.
Our results con�rm what other authors have already noticed, i.e., that the MIR closureprovides a good approximation of the optimal solution of many problems in MIPLIB 3.0.In many cases, we are able to compute bounds comparable with the ones already reportedin [7, 11, 23] in a shorter computing time. In a few cases, namely bell3a, bell5, harp2,rentacar, swath and gesa2, we have been able to improve over the best bound knownso far. Of course, 1 hour of CPU time to strengthen the initial formulation can be toomuch, but as shown in [7, 23], in a few cases such a preprocessing step allows the solutionof hard unsolved problems. We believe that speeding up the MIR separation procedurewould be a potentially valuable step.
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To quantify the usefulness of Appx-MIR-Sep we also ran our code on the MIPLIBproblems for an hour each with Appx-MIR-Sep turned o�. In these runs, we used boundstrengthening, GMI cuts, MIR cuts based on formulation rows, and cuts based on pureinteger base inequalities returned by INT-SEP; we performed signi�cantly more roundsof separation as solving Appx-MIR-Sep is quite time-consuming (and more than all theother methods above). In Table 3, we give the number of instances for which turning onAppx-MIR-Sep improves (worsens) the bound by more than a �xed percentage, given inthe columns. For example, turning on Appx-MIR-Sep worsens the bound by more than20% in one instance, but improves by the bound by more than 20% in 13 instances. In anextreme example, for rgn, we get a bound of only 6.8% if we turn o� Appx-MIR-Sep, and99.6% otherwise. On the average, 51.6% of the optimality gap was closed in these runscompared to 59.3% when Appx-MIR-Sep is activated. We also note that the average gapclosed in the experiments of Balas and Saxena was 71.5% (71.3% if arki001 is excluded),though with signi�cantly higher computing time expended.
percentage di�erence1% 5% 10% 20% 50% 100%

Appx-MIR-Sep better 25 20 15 13 8 5Appx-MIR-Sep worse 15 8 6 1 0 0
Table 3: E�ect of Appx-MIR-Sep

Finally, as suggested by a referee we compare results obtained by our default setting(and given in Tables 1 and 2) with results obtained by also generating strengthened lift-and-project cuts. See Section 6.2.2. The e�ect of the strengthened lift-and-project cutsreturned by the CglLandP cut generator is minimal, and we close only 0:4% more of theintegrality gap on the average (exluding modglob, where we had numerical di�culties).
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