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Abstract

We prove that if a lattice basis is nearly orthogonal (the angle between any basis vector and the
linear subspace spanned by the other basis vectors is at least π

3 radians), then a KZ-reduced basis can
be obtained from it in polynomial time. We also show that if a nearly orthogonal lattice basis has
nearly equal vector lengths (within a certain constant factor of one another), then the basis is Minkowski
reduced. We use these results to show that m i.i.d. random vectors drawn from a uniform distribution over
the unit ball in Rn form a Minkowski-reduced basis of the lattice generated by the vectors asymptotically
almost surely as n tends to infinity, if m ≤ cn for any constant c < 1/4, and form a KZ-reduced basis
for c < 1/5. The result on Minkowski reduction in lattices generated by random vectors extends a result
of Donaldson (1979) who proved this property for fixed m as n tends to infinity.
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1 Introduction

An m-dimensional lattice L in Rn is a set L = {u1b1 + u2b2 + · · ·+ umbm |ui ∈ Z} of all integer linear
combinations of m linearly independent vectors b1, . . . , bm in Rn, and the set B = {b1, . . . , bm} is called a
basis of L. Neelamani, Dash and Baraniuk [14] define a lattice basis to be θ-orthogonal if the angle between
any basis vector and the linear subspace spanned by the remaining basis vectors is at least θ. They call a
θ-orthogonal basis nearly orthogonal if θ is at least π

3 radians. They prove that a π
3 -orthogonal basis always

contains a shortest non-zero lattice vector. Thus, the shortest lattice vector problem (SVP) becomes trivial
for a π

3 -orthogonal basis, just as it is trivial for an orthogonal basis.
We prove additional properties of π

3 -orthogonal bases in this paper. We show that such a basis is nearly
KZ-reduced, in the sense that a π

3 -orthogonal basis can be transformed into a KZ-reduced basis in polynomial
time. Secondly, we show that if all vectors of a θ-orthogonal (θ ≥ π

3 ) basis have lengths no more than 2/cos θ
times the length of the shortest basis vector, then the basis is Minkowski reduced for some ordering of the
vectors.

Various authors have studied lattice problems in the context of a random lattice, i.e., a lattice generated
by (whose basis is) a set of random vectors. Donaldson [6] proved that for fixed m, a random n×m matrix
chosen uniformly from the unit sphere in Rnm defines a Minkowski reduced basis of the lattice generated
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by its columns a.a.s. as n → ∞. (An event is true almost surely if it is true with probability 1; it is true
asymptotically almost surely, or a.a.s., if it is true with probability tending to 1 as n → ∞.) It follows that
as n →∞, one of the columns of the random matrix is a shortest lattice vector a.a.s. In earlier work, Daudé
and Vallée [5] showed that in a random lattice generated by n vectors chosen independently and uniformly
from the unit ball in Rn, the expected number of iterations of the LLL algorithm [10] is O(n2 log n). Now
consider an m-dimensional lattice in Rn generated by m vectors chosen independently and uniformly from
the unit ball in Rn; these vectors form a basis because they are linearly independent almost surely. Recently,
Akhavi, Marckert and Rouault [2] proved that as n − m → ∞, the probability that this basis is “nearly
LLL-reduced” [10] tends to 1. More precisely, they show that such a basis satisfies the size condition in the
LLL algorithm (condition (i) in Definition 3). Neelamani, Dash and Baraniuk [14] show that for c = 0.071,
if m ≤ cn, then as n → ∞, this basis is a.a.s. π

3 -orthogonal. In Section 4, we improve the value of c to
1/4. We show that if c is any constant less than 1/4, then as n → ∞, m ≤ cn i.i.d. vectors chosen from a
uniform distribution over the unit ball in Rn form a Minkowski reduced basis a.a.s. (for some re-ordering of
the vectors). If c < 1/5, then m ≤ cn vectors from the above distribution form a KZ-reduced basis a.a.s.
These results imply Donaldson’s result cited above.

2 Definitions

Consider an m-dimensional lattice L in Rn, m ≤ n. By an ordered basis of L, we mean a basis with a given
ordering of the basis vectors. We represent such a basis by an ordered set, for example (b1, . . . , bm), or as the
columns of a matrix B. We represent an unordered basis as {b1, . . . , bm}. We refer to the Euclidean norm of
a vector v as its length, and denote it by ‖v‖. We use λ(L) to denote the length of a shortest non-zero vector
in a lattice L. The (linear) span of a set of vectors b1, . . . , bm is the set {a1b1 + · · ·+ ambm | ai ∈ R} of
all (real) linear combinations of the set of vectors (not just integer linear combinations as for a lattice).

Definition 1 (Minkowski reduced). An ordered basis (b1, . . . , bm) is Minkowski reduced if b1 is a shortest
lattice vector, and for i = 2, 3, . . . ,m, bi is a shortest vector among lattice vectors not in the span of
{b1, . . . , bi−1}.

Every lattice has a basis which is Minkowski reduced. In definitions like the above, in our randomized
setting we could replace “a shortest vector” with “the shortest vector”, as it is almost surely unique up to
sign, but we will stay with the more general phrasing.

The QR decomposition, or thin QR factorization, of an n×m matrix B is its representation as B = QR
where Q is an n×m orthonormal matrix (QT Q = I) and R is an m×m upper-triangular matrix.

The following definition comes from Kannan [8].

Definition 2 (Proper). An ordered basis B = QR, R = (rij), is proper if rij ∈ (−|rii|/2, |rii|/2] for all
i, j ∈ 1, . . . ,m.

Lovász [12] refers to a proper basis as a weakly reduced basis. Any lattice has a proper basis; indeed,
any basis can be converted to a proper basis (and this is part of the LLL algorithm). We will show how
to make an upper-triangular basis R proper by adding appropriate multiples of earlier columns to the ith
column; with B = QR this corresponds to similar column operations on B (since column operations can
be expressed as right-multiplication). Taking i = 2, . . . , n in turn, and for each i taking j = i − 1, . . . , 1,
simply subtract from column i the multiple of column j bringing rij into the range (−|rii|/2, |rii|/2].

Definition 3 (LLL-reduced). For δ > 0, a basis B = QR, R = (rij), is δ-LLL-reduced if
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(i) for i = 1, . . . ,m− 1, |ri+1,i+1| ≥ δ|rii| (“size condition”), and
(ii) it is proper.

For any fixed δ in the interval (0,
√

3/2), for any lattice, in polynomial time the LLL algorithm [10]
obtains a δ-LLL-reduced basis with the property that the first basis vector has length at most λ(L)/δn−1.
(For δ >

√
3/2 a δ-LLL-reduced basis need not exist; with a bit of checking it can be seen that

√
3/2 is best

possible for the lattice generated by (1, 0) and (1/2,
√

3/2).)
We define proj⊥b1,...,bi

(v) to be the projection of the vector v on the subspace orthogonal to the span of
b1, . . . , bi.

The next definition is from Kannan [8], who attributes the notion to Korkine and Zolotarev [7].

Definition 4 (KZ reduced). An ordered basis B = (b1, . . . , bn) is KZ-reduced if:
(i) b1 is a shortest lattice vector;

(ii) the basis is proper;
(iii) in the lattice generated by B′ = {proj⊥b1(b2), . . . ,proj⊥b1(bn)}, B′ is a KZ-reduced basis.

Kannan also describes a slightly weaker condition without giving it a name.

Definition 5 (nearly KZ reduced). A basis is nearly KZ-reduced if it satisfies
(i) b1 is a shortest lattice vector;

(ii) in the lattice generated by B′ = {proj⊥b1(b2), . . . ,proj⊥b1(bn)}, B′ is a nearly KZ-reduced basis.

Note that the recursive requirement of properness in KZ-reducedness is implied by properness of the
original basis B. As usual it suffices to consider an upper-triangular basis. The recursive statement simply
refers to a submatrix with the first i rows and columns eliminated, for which properness follows instantly
from that of the whole matrix. By the same token, and as shown by Kannan [8], a nearly KZ-reduced basis
can be transformed to a KZ-reduced basis (i.e., properness attained) in polynomial time, via the procedure
used in LLL-reduction to make a basis proper, as outlined below Definition 2; it is easy to check that this
procedure does not spoil the “shortest lattice vector” condition (i).

Kannan [8] shows how to construct a KZ-reduced basis for any lattice (naturally this is an exponential-
time algorithm, since even finding a shortest vector b1 is not known to be in the polynomial-time class P). It
is also an easy observation from [8] that a KZ-reduced basis is also (

√
3/2)-LLL-reduced.

The next definitions come from Neelamani, Dash and Baraniuk [14].

Definition 6 (θ-orthogonal; nearly orthogonal). A basis {b1, . . . , bm} is θ-orthogonal if, for each i, the angle
between bi and the linear subspace spanned by the other basis vectors is at least θ. It is nearly orthogonal if
it is π

3 -orthogonal (we will describe all angles in radians).

Neelamani, Dash and Baraniuk [14] prove the following result.

Theorem 1. A π
3 -orthogonal basis contains a shortest non-zero lattice vector.

3 Main results

For any set of vectors {b1, . . . , bm}, define b′i = proj⊥b1(bi).

Lemma 2. Let B, with columns b1, . . . , bm, be a θ-orthogonal collection of vectors for some θ > 0. Then
B′, with columns {b′2, . . . , b′m}, is also a θ-orthogonal collection.
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Proof. Without loss of generality, it suffices to show that the angle between b′m and the subspace spanned by{
b′2, . . . , b

′
m−1

}
lies in the range [θ, π

2 ]. Taking the QR decomposition B = QR of the basis, it is equivalent
to prove the same for R (the orthogonal transformation Q preserves all angles); equivalently, we may assume
without loss of generality that B is upper triangular. Note that B′ is simply B with its first column and row
deleted. Writing θm ≥ θ for the angle between bm and the subspace spanned by b1, . . . , bm−1,

sin2(θm) =
r2
mm∑m

k=1 r2
km

.

Writing θ′m for the angle between b′m and the subspace spanned by b′2, . . . , b
′
m−1,

sin2(θ′m) =
r2
mm∑m

k=2 r2
km

≥ sin2(θm).

We conclude that θ′m ≥ θm ≥ θ. Therefore {b′2, . . . , b′m} is θ-orthogonal.

Definition 7 (Projection ordered). An ordered basis B = b1, . . . , bn is projection-ordered if (i) b1 is a
shortest basis vector, and (ii) B′ = {b′2, . . . , b′m} is a projection-ordered basis of the lattice it generates.

Any basis can be projection-ordered in polynomial time: just choose a shortest basis vector as the first,
then recursively projection-order the projections of the others.

Theorem 3. A projection-ordered π
3 -orthogonal basis is nearly KZ-reduced.

Proof. We prove this by induction on the dimension m of the lattice. The statement is vacuously true for
m = 1. Let B = (b1, . . . , bm) be a projection-ordered π

3 -orthogonal basis of an m-dimensional lattice.
For the first property of KZ-reducedness, Theorem 1 shows that b1 is a shortest lattice vector (not merely a
shortest basis vector). For the second property, by definition, B′ = (b′2, . . . , b

′
m) is projection-ordered, by

Lemma 2 it is π
3 -orthogonal, and of course it is of dimension m − 1, so by the inductive hypothesis it is

nearly KZ-reduced.

Therefore, a KZ-reduced basis can be obtained from a π
3 -orthogonal basis in polynomial time, by

projection-ordering it and then applying the algorithm to make a matrix proper.

Theorem 4. Let B = {b1, . . . , bm} be a θ-orthogonal basis for a lattice L with θ ≥ π
3 . Further, suppose

that
mini ‖bi‖
maxi ‖bi‖

≥ 2 cos θ. (1)

Then some ordering of the basis is Minkowski reduced.

Note that as θ increases above π
3 , the first hypothesis becomes stronger and the second one weaker. The

theorem is easy to show in the extreme cases. If θ = π
2 , the basis is orthogonal, and when ordered by

increasing length is clearly Minkowski-reduced. If θ = π
3 , 2 cos θ = 1, equation (1) and Theorem 1 imply

that all the basis vectors have lengths equal to λ(L), and the basis is trivially Minkowski-reduced.

Proof. Let B be a basis satisfying the hypotheses of Theorem 4. Assume without loss of generality that B
is scaled and ordered such that

1 = ‖b1‖ ≤ ‖b2‖ ≤ · · · ≤ ‖bm‖ , (2)
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so that (1) implies ‖b1‖ / ‖bm‖ ≥ 2 cos θ.
We claim that any lattice vector w =

∑
uibi is at least as long as the longest basis vector appearing with

nonzero coefficient, i.e., ‖w‖ ≥ ‖bk‖ where k = max {i : ui 6= 0}. Then for any i ∈ {1, . . . ,m}, bi is a
shortest nonzero lattice vector not contained in the span of b1, . . . , bi−1, because any such lattice vector w
has k ≥ i, and thus (by the claim) ‖w‖ ≥ ‖bk‖ ≥ ‖bi‖. Therefore B is Minkowski-reduced.

We now prove the claim. Let v =
∑

i<k uibi, so that w = v + ukbk. Let θ′ be the angle between bk and
v, and let l1 = ‖v‖ and l2 = ‖bk‖. Theorem 1 implies that l1 ≥ λ(L) = ‖b1‖. Observe that

‖w‖2 = ‖v + ukbk‖2 = (l1 ± ukl2 cos θ′)2 + (ukl2 sin θ′)2

= l21 + u2
kl

2
2 ± 2ukl1l2 cos θ′

≥ l21 + u2
kl

2
2 − |uk|l1,

using 2l2 cos θ′ ≤ ‖b1‖ = 1 from (1) and (2). Therefore

‖w‖2 − ‖bk‖2 ≥ l21 + u2
kl

2
2 − |uk|l1 − l22. (3)

If |uk| = 1 then the right hand side of (3) is l21 − l1 ≥ 0 as l1 ≥ 1. Otherwise |uk| ≥ 2, and the right hand
side of (3) satisfies

l21 + u2
kl

2
2 − |uk|l1 − l22 ≥ l21 + u2

kl
2
2 − |uk|l1l2 − l22

=
(
l1 − 1

2 |uk|l2
)2 + 3

4u2
kl

2
2 − l22

≥
(
l1 − 1

2 |uk|l2
)2 + 2l22

≥ 0.

Either way, this proves that ‖w‖2 − ‖bk‖2 ≥ 0, establishing the claim.

4 Random lattices

We define a random lattice as one generated by (the columns of) a random matrix, considering several
distributions over n×m matrices B:

(i) entries of B are standard normal random variables N(0, 1);
(ii) each column of B is an independent random vector uniform over the unit ball in Rn;

(iii) B as a whole is drawn uniformly from the unit ball in Rnm;
(iv) each entry of B is an independent symmetric Bernoulli random variable (“symmetric” meaning taking

values +1 or −1) with success probability 1/2.
We call distributions (i), (ii), and (iii) simple Gaussian distributions; as we will discuss later, they are almost
exactly equivalent for our purposes. We consider distributions (i)-(iii) (and not other similar distributions
such as vectors drawn uniformly from the unit sphere in Rn) as they are discussed in [14], [2] and [6],
respectively, and we wish to compare our results with those in the above papers. We note that (i) is equivalent
to choosing the column vectors of B from the standard Gaussian measure over Rn, or B itself from that over
Rmn. Trivially, the columns of B are almost surely linearly independent (making B a lattice basis) in the
first three cases if m ≤ n. In the last case, the columns of B are a.a.s. linearly independent: indeed [3]
shows a much stronger result that for any fixed c with 0 < c < 1, as n → ∞ with m = cn, the smallest
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singular value of B/
√

n is a.a.s. almost exactly 1 −
√

c. (This result of [3] is further strengthened in [11],
which allows m ≤ cn and gives a concentration inequality for the smallest singular value of B/

√
n.)

The ideas and techniques we use here are similar to those in Daudé and Vallée [5] and Akhavi, Marckert
and Rouault [2]. However, our results are for the case m < n, applying only to non full-dimensional lattices.

We rely on the following concentration inequality of Cirelson, Ibragimov and Sudakov [4], as given by
Massart [13, Thm 3.4]. (We give just one of two inequalities from [13, Thm 3.4].) It is far more general
than we need, but simple and convenient.

Theorem 5. Consider some Lipschitz function ζ on the Euclidean space RN with Lipschitz constant L. If
P denotes the canonical Gaussian measure on RN , and M the corresponding mean, or median, of ζ, then
for every λ ≥ 0,

P
(
|ζ −M | ≥ λ

)
≤ 2 exp

(
− λ2

2L2

)
. (4)

In the context of the theorem above we will need a convenient asymptotic formula for the mean or
median of a Chi-distributed random variable.

Lemma 6. A random variable X ∼ χk has mean µ =
√

k(1 + O(1/k)).

Proof. It is well known that

µ =
√

k
Γ((k + 1)/2)

Γ(k/2)
.

Substituting
Γ(z) =

√
2π/z(z/e)z(1 + O(1/z))

gives
µ =

√
k(1 + 1/k)k/2e−1/2(1 + O(1/k)).

The logarithm of the middle term is

k
2 ln(1 + 1

k ) = k
2 ( 1

k −
1

2k2 + · · · ) = 1
2 + O( 1

k ),

and for x < 1 we have exp(x) = 1 + O(x) so that the term itself is

(1 + 1/k)k/2 = exp(1/2 + O(1/k)) = exp(1/2) exp(O(1/k)) =
√

e(1 + O(1/k)).

Thus,
µ =

√
k(1 + O(1/k)).

(As an alternative to Lemma 6, an adequate estimate of the median can be obtained even more easily
if a bit more convolutedly: X2 has mean k2 and variance 2k, by Markov’s inequality this implies that its
median is within 2

√
2k of the mean, and the median of X is the square root of that of X2.)

Neelamani, Dash and Baraniuk [14] showed that lattice bases defined by distributions (i), (ii) and (iv)
above are a.a.s. π

3 -orthogonal as n tends to infinity and m ≤ 0.071n. For the first two distributions, we
improve the ratio of m to n based on the following lemma.
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Lemma 7. Let X be a vector (X1, . . . , Xn) whose entries are independent standard normal random vari-
ables, Xi ∼ N(0, 1). Let c ∈ (0, 1). As n → ∞, the (random) angle between X and the subspace L
spanned by m similar, independent random vectors X1, . . . ,Xm with m = bcnc is within n−0.1 radians of

tan−1

(√
1
c − 1

)
with probability 1− exp(−Ω(n)).

Proof. L is almost surely m-dimensional. It is well known that the squared length of X has chi-squared
distribution χ2

n, and its orientation is uniform over a unit sphere in Rn. By the latter property, the (random)
angle between X and L is identically distributed to the angle between X and any fixed m-dimensional sub-
space L′. For convenience, let L′ be the subspace spanned by the m unit vectors (1, 0, 0, . . . ), (0, 1, 0, . . . ),
etc.

The projection of X onto L′ is

X′ = (X1, . . . , Xm, 0, . . . , 0), (5)

and the orthogonal component of X with respect to L′ is

X′′ = (0, . . . , 0, Xm+1, . . . , Xn). (6)

The angle φ between X and L′ is precisely the angle between X and X′, namely

tan−1
(∥∥X ′′∥∥ /

∥∥X ′∥∥)
, (7)

where ‖X ′′‖ ∼ χn−m and ‖X ′‖ ∼ χm (and, though we will not use this fact, the two variables are
independent). Since n and m are both large (m = bcnc and n →∞), both ‖X ′′‖ and ‖X ′‖ are concentrated
random variables, and their ratio is also concentrated, as we now show.

For a random vector X = (X1, . . . , Xk) playing the role of X′ or X′′ above depending on the choice
of k, in Theorem 5, let ζ(X) = ‖X‖. Then ζ is a Lipschitz function with Lipschitz constant L = 1. By
Lemma 6, E[ζ(X)] = µ =

√
k(1+O(1/k)), and for n sufficiently large, |E[ζ]−

√
k| ≤ 1. Then Theorem 5

yields

P
(
|ζ −

√
k| ≥ 1 + λ

)
≤ 1 exp

(
−1

2λ2
)
.

Take λ = 1
2k0.4. For n sufficiently large, 1

2k0.4 ≥ 1, whereupon

P
(
|ζ −

√
k| ≥ k0.4

)
≤ 2 exp

(
−1

8k0.8
)
.

Since k = Θ(n), another way to put it is that with probability 1− exp(−Ω(n0.8)),

‖X‖ = ζ =
√

k + O(k0.4) =
√

k (1 + O(n−0.1)). (8)

By the union bound, (8) holds for both X ′ and X ′′ with probability 1− exp(−Ω(n0.8)), in which case

‖X ′′‖
‖X ′‖

=
√

n−m√
m

(1 + O(n−0.1)) =
√

1/c− 1 (1 + O(n−0.1))

=
√

1/c− 1 + O(n−0.1).
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Since tan−1 has bounded derivative, in the same event as above,

φ = tan−1
(∥∥X ′′∥∥/∥∥X ′∥∥)

= tan−1
(√

1/c− 1
)

+ O(n−0.1). (9)

The following lemma draws a trivial corollary to Lemma 7 and extends it to simple Gaussian matrices
of types (ii) and (iii).

Lemma 8. For any c ∈ (0, 1), let m = bcnc and let B be an n×m matrix drawn from a simple Gaussian
distribution (i), (ii), or (iii). As n → ∞, the (random) angle between any column of B and the subspace
spanned by the remaining columns is within n−0.1 radians of tan−1

(√
1/c− 1

)
with probability 1 −

exp(−Ω(n)).

Proof. For the standard Gaussian distribution (i), we know that (8) holds for each column with failure prob-
ability exp(−Ω(n0.8)); by the union bound over the n columns, it holds for every column, with probability
1− exp(−Ω(n0.8)).

The rest we derive from this, the well known fact that all these distributions are isotropic, and the fact
that the column vector lengths are predictable in an almost-sure, almost exact sense. Specifically, we will
now show that for any c ∈ (0, 1], with n → ∞ and m = bcnc, in a matrix B drawn from any of these
distributions, a.a.s. every column has almost exactly the same length. The details are routine, but we give
them for the sake of completeness.

The uniform distribution (ii) over the unit ball puts measure proportional to rn on the set of vectors of
length r ≤ 1, so the probability a random vector has length r ≤ R is

∫ R
0 rndr/

∫ 1
0 rndr = Rn+1. Taking

R = 1 − n−0.2, with probability 1 − exp(−Ω(n0.8)) each of the m vectors has length 1 + O(n−0.2). A
matrix drawn from distribution (iii) can be generated by drawing a matrix from distribution (i) and rescaling
its entries to give net length distributed over r ∈ [0, 1] with density proportional to rnm. By our argument
for (i), the column lengths are a.a.s.

√
n(1+O(n−0.1)) before rescaling, implying a net length of

√
nm(1+

O(n−0.1)), and by the same argument as for (ii) the target length is a.a.s. 1 + O(n−0.2), from which it
follows that a.a.s. every rescaled column length is

√
n · 1/

√
nm · (1 + O(n−0.2)). Each “a.a.s. ” refers to a

failure probability of order exp(−Ω(n0.8)), and the union bound leaves this unchanged.

As a corollary of Lemma 8 we obtain the following.

Theorem 9. Let c ∈ (0, 1). With m ≤ cn and n → ∞, a simple Gaussian matrix B of type (i), (ii) or
(iii) is a.a.s. φ-orthogonal, with φ = tan−1(

√
1/c− 1) + O(n−0.1). If c < 1/4, then the matrix is a.a.s.

π
3 -orthogonal.

Proof. We first consider m = bcnc, in which case the matrix’s column vectors X1, . . . ,Xm satisfy the
hypotheses of Lemma 8 (the distinction between m and m + 1 is insignificant). Letting φi be the angle
formed between Xi and the subspace spanned by the other vectors, Lemma 8 says that with probability
1 − exp(−Ω(n0.8)), B is φ-orthogonal with φ = mini φi = tan−1(

√
1/c− 1) + O(n−0.1). Further,

solving for tan−1
(√

1/c− 1
)

=
√

3, one gets c = 1/4. Therefore, for any constant c′ < 1/4, as n tends

to infinity, a matrix with bc′nc i.i.d. columns is a.a.s. π
3 -orthogonal.

If we do not have m = bcnc but m ≤ cn, referring to (5) and (6) we see that making m smaller can
only shorten any projection X′

i and can only lengthen any orthogonal component X′′
i , and thus each angle

φi can only become larger.
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We now give our main result regarding random lattices.

Theorem 10. Let B denote an n × m matrix drawn from a simple Gaussian distribution, with m ≤ cn.
If c < 1/4, then a.a.s. as n → ∞, some ordering of B forms a Minkowski reduced basis of the lattice
generated by its columns. If c < 1/5, then a.a.s. some ordering of B forms a KZ-reduced basis.

Proof. Assume c < 1/4. Fixing any θ with π
3 < θ < tan−1(

√
1/c− 1 ), by Theorem 9, B is a.a.s. θ-

orthogonal. By the discussion above we know that a.a.s. the column lengths ‖bi‖ of B are within a factor
1 + o(1) of one another. Henceforth we assume that both “a.a.s. ” conditions hold. Since 2 cos θ < 1, every
ratio ‖bi‖ / ‖bj‖ = 1 + o(1) > 2 cos θ. Thus, the columns satisfy the hypotheses of Theorem 4, and we
conclude that some ordering of B is Minkowski reduced.

Assume c < 1/5. Fixing any θ with tan−1(2) < θ < tan−1(
√

1/c− 1 ), by Theorem 9, B is a.a.s.
θ-orthogonal. Also, a.a.s. the column-lengths of B are within a factor 1 + o(1) of one another. Henceforth
we assume that both “a.a.s.” conditions hold. Without loss of generality, suppose that the columns of B
are projection-ordered (recall Definition 7). Consider the decomposition B = QR, where R = (rij) is an
m ×m upper triangular matrix. Let θi be the angle between bi and the subspace spanned by the preceding
columns of B.

For any i, j ∈ 1, . . . ,m, |rii| ≥ ‖bi‖ sin θi, while |rij | ≤ ‖bj‖ cos θj . As θi, θj ≥ θ,

|rij |
|rii|

≤ ‖bj‖ cos θj

‖bi‖ sin θi
≤ ‖bj‖ cos θ

‖bi‖ sin θ
= (1 + o(1)) cot θ <

1
2
.

Therefore B′ is a proper matrix. Since it is also projection-ordered, it is KZ-reduced.

Finally, observe that in a matrix with ±1 entries drawn from a symmetric Bernoulli distribution, all
columns have equal length. If the Bernoullis have success probability 1/2 and the matrix is n × m with
m ≤ 0.071n, it is shown in [14] that it is π

3 -orthogonal a.a.s. as n → ∞. The following theorem is then an
immediate consequence of Theorem 4.

Theorem 11. An n×m matrix with ±1 entries drawn from a symmetric Bernoulli distribution with success
probability 1/2 is a.a.s. Minkowski reduced as n →∞ with m ≤ 0.071n.

To put our results in context, note that a matrix satisfying the hypotheses of Theorem 10, with c < 1/5,
is a.a.s. LLL-reduced: this follows from the fact that it is KZ-reduced. Donaldson [6] proved that a matrix
drawn from the simple Gaussian distribution (iii) is a.a.s. Minkowski reduced as n → ∞ but m is fixed.
Thus, Theorem 10 is a significant extension of his result.

Also, as mentioned earlier, Akhavi, Marckert and Rouault [2] proved that a matrix drawn from the simple
Gaussian distribution (ii) satisfies the LLL size-reduction property (Definition 3.(i)) as long as n−m →∞.
By reducing the number of columns permitted we are able to derive the stronger results of the present paper,
namely Theorem 10, and the stronger assumptions we make are necessary: from (5), (6), (7), and the proof
of Lemma 7, the θ-orthogonality we rely on can be seen to fail if n−m grows very slowly.
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