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Abstract

In this paper, we study the relationship betw@é&nlattice-free cutsthe family of cuts obtained by
taking two-row relaxations of a mixed-integer program (M&nd applying intersection cuts based on
maximal lattice-free sets iR?, and various types of disjunctions. Recently, Li and Rid{&007) stud-
ied disjunctive cuts obtained frotrbranch split disjunctions of mixed-integer sets (theds generalize
split cuts). Balas (2009) initiated the study of cuts for tiwe-row continuous group relaxation obtained
from 2-branch split disjunctions. We study these cuts (alktlsemcross cutsfor the two-row contin-
uous group relaxation, and for general MIPs. We also consials obtained from asymmetric 2-branch
disjunctions which we caltrooked crossuts. For the two-row continuous group relaxation, we show
thatunimodularcross cuts (the coefficients of the two split inequalitiesrf@ unimodular matrix) are
equivalent to the cuts obtained from maximal lattice-frets ©ther than type 3 triangles. We also prove
that all 2D lattice-free cuts and their S-free extensioescaooked cross cuts. For general mixed integer
sets, we show that crooked cross cuts can be generated frivactused three-row relaxation. Finally,
we show that for the corner relaxation of an MIP, every crab&®ss cut is a 2D lattice-free cut.

1 Introduction

A recent topic of much interest is the generation of cuttifames for mixed-integer programs (MIPs) from
canonicalk-row mixed-integer sets. These canonical sets resemblsini@ex tableau of &-row MIP
where all basic variables are free integer variables andaaitbasic variables are nonnegative continuous
variables. Clearly, these sets can be obtained simply legtse) some of the rows of the simplex tableau
associated with the LP relaxation of an MIP. More generélig also possible to obtain a canonidalow
set as a relaxation of an MIP by first aggregating the rowsettmnstraint matrix of the MIP to obtainka
row relaxation and then treating a linear combination ofdhiginal integer variables as a separate variable
in each row. If the canonical set is obtained from a simplé&keiau, the resulting relaxation can be viewed
as a relaxation of the corner polyhedron associated witlbésés defining the tableau. These relaxations
are also called:-row continuous groupelaxations. All the nontrivial valid inequalities for ttianonical
k-row set are intersection cuts (a concept introduced byHalathat are derived using maximal lattice-free
convex sets ilR*. We call the cutting planes for general mixed-integer sbtained from canonicat-row
setskD lattice-free cuts Gomory mixed-integer (GMI) cuts or mixed-integer rourgliiMIR) cuts are 1D
lattice-free cuts.

Andersen, Louveaux, Weismantel and Wolsey [1] studied iovecanonical sets in detail, and showed
that the convex hull of solutions of such a set is given byt splis and other cuts obtained from lattice-free



sets inR? with at most 4 sides. Subsequently, Cornuéjols and MartB} gave an exact characteriza-
tion of the split cuts and intersection cuts based on maxiatate-free triangles and maximal lattice-free
guadrilaterals that yield facet-defining inequalities tlois set. Many authors have extended these results
to semi-infinite version of the canonicktrow set and to higher values &f[12] [32], to sets with more
structure, such as bounds on nonbasic variables [2], tegriadity of non-basic variables [20, 22], the non-
negativity of basic integer variables [10, 11], [21], [28hd both the integrality of non-basic variables and
non-negativity of basic integer variables [9][13]. See€][fB a recent survey on the topic.

Separately, Li and Richard [30] defined and studied cuts f@ediinteger sets obtained usindpranch
split disjunctions. At-branch split disjunction is obtained by dividing the Edelan space int@’ pieces
based ont linearly independent splits such that any integral ved&s in exactly one of the pieces; dis-
junctive cuts are then obtained by taking the convex hulheffiieces intersected with the linear relaxation
of the mixed-integer set. Thiebranch split disjunction generalizes the standard spgjudction. Li and
Richard [30] extend some results in [15] by constructinggasbf mixed-integer sets withinteger variables
which have facet-defining inequalities with infinite ranklwiespect td¢ — 1)-branch split cuts. Balas [5]
proposed the study of 2-branch split cuts for the two-rowticoious group relaxation.

In this paper we refer to 2-branch split disjunctionscesss disjunctionsand call the cuts derived from
themcross cuts We propose a new class of asymmetric 2-branch split dispmsand call the resulting cuts
crooked cross cutdn the first half of the paper, we study the relationship leetwcross and crooked cross
cuts and 2D lattice-free cuts, for the canonical two-rowetdbinteger set. For this set, we defim@modular
cross cutsa subfamily of cross cuts where the coefficients of the twib syequalities form a unimodular
matrix. We prove that the set of unimodular cross cuts eqtisset of cuts from maximal lattice-free
convex sets other thagpe 3triangles; there exist cuts from such triangles that cabeatbtained as cross
cuts. Further, there exist cross cuts which cannot be aatadis unimodular cross cuts. We show that all
valid inequalities (i.e., 2D lattice-free cuts) for thid see crooked cross cuts. Further, we show that some
known cutting plane classes for variants of the canonicatow set such as-free cuts, or cuts which
use integrality of non-basic variables (via trivial liftiror monoidal strengthening) can also be obtained as
crooked cross cuts.

In the second half of the paper, we study cross cuts and adookess cuts for general mixed-integer
sets. Nemhauser and Wolsey [29] earlier showed that sght 8dIR cuts, and GMI cuts are equivalent
(see Cornugjols and Li [17] for a proof of the equivalencemlft cuts and GMI cuts). Based on the above
papers, one can easily establish the following fact: Giveplia cut for a mixed-integer set obtained from a
disjunctiond_; | mz; <~yVY ., mx; > v+1wherer; € Zandz; is an integer variable far=1, ..., n,
there is a one-row relaxation of the set, with the coeffideftz; beingr;, such that an MIR cut derived
from the relaxation is equivalent to the split cut. In otherrds, a split cut is a 1D lattice-free cut. Our main
result is an (approximately) analogous result for cross aend crooked cross cuts for mixed-integer sets.
We show that any (crooked) cross cut can be obtained as &ézboross cut using the same disjunction
from a three-row relaxation of the mixed-integer set, whbeecoefficients of the integer variables in two of
the rows are equal to the coefficients in the inequalitiesdefithe (crooked) cross disjunction, and zero in
the third row. Further, when the coefficients of the integaiables in an MIP form a full-row rank matrix
(e.g., if the set is a corner relaxation of a MIP), then (cemkcross cuts can in fact be obtained from 2D
lattice-free cuts; this generalizes Nemhauser and Wasegult for this class of MIPs.

The paper is organized as follows. After presenting defingiand preliminary results in Section 2, we
analyze the relationship between intersection cuts usiagimmal lattice-free convex sets iR? and cross
and crooked cross cuts for the canonical two-row set in 8&@&i In Section 4, we present results relating
cross and crooked cross cuts with cutting planes for thergealotwo-row set where more information is



retained such as the integrality of non-basic variablesthadon-negativity of basic integer variables. In
Section 5, we present our results for general mixed integjist $e conclude with a few open questions in
Section 6.

2 Preliminaries

Consider the polyhedral mixed-integer set withrows
P={(x,y) €Z™ xR™ : Az +Gy=b, y >0}

whered € Q™ ™, G € Q™™ andb € Q™. Any mixed-integer linear program can be modeled in
this way. For example, the constraint > 0, wherex; is an integer variable for sonie can be replaced
by the constraints;; — s = 0,s > 0. Let P“" denote the linear programming (LP) relaxationfaf We
next discuss some main ingredients of disjunctive prograngnintroduced by Balas [4]. For convenience,
vectors of coefficients in a linear inequality or equation @ieated as row vectors. In particular, every
stands for a row vector.

Let D, C R™ "2 he polyhedral sets indexed lyc K with the additional property tha&™ x R™2 C
Urer Di. We then callD = Vi Dy adisjunctionand we call eaclD,, anatomof the disjunctionD. A
linear inequality is called disjunctive cufor P obtained from the disjunctiof if it is valid for PL* 1 D,
for all k € K. All points in P satisfy any disjunctive cut foP. Note that multiple disjunctive cuts can be
derived from the same disjunction. We refer to a disjunctivewhich is valid forP~" as atrivial cut. In
this paper we are interested in the following three typedsyfidctions :

1. Split disjunctions, where| K| = 2 and for somer € Z'*™ andy € Z!,
Dy = {(z,y) e R™*™2 : 7z < ~}, and,
Dy = {(z,y) e Rt : 1z >+ 1},
2. Cross disjunctions where| K| = 4 and for somer;, 7o € Z'*"1, andyy,y2 € Z?,
Dy = {(z,y) e RMT™2 ¢ iz <, mox < 72},
Dy = {(z,y) e R™MT™2 : iz <y, mox > 2 + 1},
D3 = {(z,y) e RMT™2 : ma >y + 1, mox < 72}, and,
Dy={(z,y) e RMT™2 : mx >~ + 1, mox > o + 1}
3. Crooked cross disjunctions where| K| = 4 and for somer;, my € Z!*™, andyy,y2 € Z1,
Dy ={(z,y) e Rt : mz <, (m—m)z <7y —mn}
Dy ={(z,y) e R : mu <y, (g —m)x > 72— 71 + 1}
D3 = {(z,y) e RM*™2 : myx > + 1, mox < o}, and,
Dy={(z,y) e RMT™2 : mux >~y + 1, mox > o+ 1}

The crooked cross disjunction is a valid disjunction siniergany integer poinpg € Z", bothmp and
mop are integral. Therefore eithetp < ~; ormp > ~1+ 1. In the first case, agr, — w1 )p is integral, either
(mg —m)p < 9 — 1 Or (me — m1)p > 72 — 71 + 1. In the second case, eithesp < v, or map > 2 + 1.
Also note that cross and crooked cross disjunctions reausplit disjunctions whemn; = 1.

For a setS C R", let int(.S) stand for the interior of the set. If;c x D), stands for a split disjunction,
then we say that the sB"'*"2 \ int(Uxcx Dy.) is a split set. We definerosssets anctrooked crossets in
a similar manner. We say that a linear inequatity+ dy > f (herec € R'*"t andd € R'*"2) is asplit cut
for P if it is a disjunctive cut derived from a split disjunctionh@&split closureof P is the set of points in
PP satisfying all split cuts foP. To obtain the closure, it suffices to consider splits whiseecomponents
of = have a greatest common divisor (g.c.d.) of 1. Cook, KannanSafrijver [15] showed that the split
closure ofP is a polyhedron.



We definecross cuts crooked cross cufsthe cross closure and thecrooked cross closursimilarly.
Notice that any split cut is trivially a cross cut and also @oted cross cut. Given a split cut derived from
the disjunctionD; Vv D, as described above, a cross cut or crooked cross cut(with,) = (7,~) and
an arbitrary choice ofrs, v2) yields the same cut because the atoms of the resulting crassaked cross
disjunction are contained i, and Dy. Consequently, the (crooked) cross closure of a set is ic@utan its
split closure. To obtain the cross closure, it suffices teswerT, 7o such that the g.c.d. of the components
of each vector (denoted, e.g., by g.€xd)) is 1. For a cross cut, if say g.c(d;) # 1, then the cut is
dominated by another cross cut with the sameandr; replaced byr; /g.c.d(7;). We say that a cross cut
or a crooked cross cut igon-trivial if it is not valid for the split closure of°. As discussed in Section 1,
cross cuts were introduced by Li and Richard [30], who cathexin 2-branch split cuts.

Note that it is not immediately obvious whether the crossute of P is contained in its crooked cross
closure or vice-versa.

2.1 Cuts from 2D lattice free sets

Letr = [r1,72,....,7] € R2*" and f € R? be such thatfi, f2) ¢ Z* and bothr and f are rational.
Furthermore, assume that no column-aé equal to the zero vector. In this section, we briefly revibes
relationship between valid inequalities for the mixedeger set

W:{(Z,S)EZQXR:lzz—rs:f} 1)

and lattice-free convex setsR?. A lattice-freeconvex set ifR? is one which contains no integer point in
its interior. LetI ¥ denote the continuous relaxation1df. Unless stated otherwise, by a convex set we
mean a closed full-dimensional convex set. We denote tkeeiantof a convex seB by int(B), the boundary
by bnd B), and the recession cone by (&g.

Let B be any lattice-free convex setR? containingy in its interior. The sef3 can be used to generate
an intersection cut [3} """ | a;s; > 1, valid for W, where the coefficients; are computed as follows:

o 0 if r; € redB), 5
%= 1A A > 0andf + A € bndB) if rs & reqB). 2)

More preciselyy " | a;s; > 1is a valid inequality for the sé¥ 1"\ (int(B) x R"). (see [1].) This implies
the following statement.

Remark 2.1. Let Ve Dy, be a disjunction irZZ? and assumeB is contained inR? \ int(Upcx Dy), then
> i, a;s; > 1is adisjunctive cut fol?” obtained from this disjunction. In particular, B is contained in
a (crooked) cross set, thén" | a;s; > 1is a (crooked) cross cut fdil’.

Just as lattice-free sets lead to valid inequalitiedfarvalid inequalities fodl” lead to lattice-free sets.
More precisely, letvs > 1 be a valid inequality¢ € R'*") for W and definel, C R? as

Ly ={z€R?: IseRstas<1lz=f+rs}

Andersen et. al. [1] show thdt, is a lattice-free set anfl, = conv({f + ri/a; : a; > 0}) U cone({r; :
a; = 0}). Furthermore, ifL, C B for some lattice-free convex sét, thenas > 1 is implied by the
intersection cut defined b#.

Definition 2.2. A setB is called a maximal lattice-free convex sebifis lattice-free and there does not exist
a convex seB’ such thatB’ is lattice-free andB’ O B.
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In R™ any full-dimensional maximal lattice-free convex set isodypedral set [10, 31] with at mo&t*
facets. Therefore, for = 2 the maximal lattice-free convex sets are split sets, ttem@nd quadrilaterals.
The following more detailed classification was given by Deyl &Volsey [19]. A maximal lattice-free
convex set irR? is one of the following sets.

1. Asplitset{(zy,z2) : b < ajzy + agze < b+ 1} wherea; anday are coprime integers artds an
integer.

2. A triangle with a least one integral point in the relatiméerior of each of its sides, which in turn is
either:

(@) A type 1 triangle, i.e., a triangle with integral verscand exactly one integral point in the
relative interior of each side;

(b) Atype 2 triangle, i.e., one with at least one fractionaltexv, exactly one integral point in the
relative interior of the two sides incident tcand at least two integral points on the third side;

(c) A type 3triangle, i.e., a triangle with exactly threeeigtal points on the boundary, one in the
relative interior of each side.

3. A quadrilateral containing exactly one integral pointhe relative interior of each of its sides.

If a maximal lattice-free convex sé® with f in its interior is a quadrilateral, then the cut generated
using B via (2) is called ayuadrilateral cut Similarly, if B is a triangle of type 1, 2, or 3, the associated cut
is called ariangle cutof type 1, 2, or 3, respectively. Andersen et. al. [1] and @éjols and Margot [16]
showed that the convex hull & is given by split cuts, quadrilateral cuts, and trianglescut

2.2 Unimodular transformations of 2D maximal lattice-free sets

We now adapt results in [19] on lattice-free sets in “staddarm”. Let B be a 2D maximal lattice-free set.

If B is a quadrilateral, the four integer points on its boundamynf a parallelogram of area 1. Label
these pointsiy, us, uz, us € Z2 in counter-clockwise order. Théi = (us — w1, us — uy) is a unimodular
matrix, i.e.,U has integral components and déj = +1. Therefore, the mapping

2= Uz —w) (3)

mapsB to a maximal lattice-free sé8’ with u; = (0,0),us = (1,0),u3 = (1,1) anduy = (0,1); we say
that B’ is in standard form See Figure 1). Let¢; denote the side of the quadrilateral containing

For a triangle of type 1, take any integer vertex of the triarand the three integer points in the relative
interior of the sides, and label them, . . . , u4 as before, with the vertex being labeled ThenU defined
as before is unimodular, and the transformation in (3) nfaps a maximal lattice-free triangle of type 1 in
standard form as depicted in Figure@)L(For a triangle of type 2, any two adjacent integer pointthenside
containing multiple integer points along with the integeirs on the other two sides form a parallelogram
of area 1. Label them as before, with the adjacent pointgdalreledu; andu4. Then the transformation
in (3) mapsB to a type 2 triangle in standard form, as depicted in Figulgg. 1(

Finally, for a triangle of type 3, let the three integer psioh the sides be (in counter-clockwise order)
uy,uz,uz € Z2. Defineuy = ug + ug — u1, and letU = (uy — uy,u3 — uy); U is a unimodular matrix,
and the mapping in (3) maps to a triangle of type 3, as depicted in Figur&)lfwith u; = (0,0),uy =
(1,0),us = (0,1). Denote the side that contains the integer pojrdase;. For triangles of type 3 in standard
form, we insist that the poiritl, —1) lie on or below the line defining, ; if this is not the case after applying
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Figure 1: Lattice free sets after the transformation' (z — u1)

(3), then clearly(—1,1) lies below the line defining;. Then we can reflect the triangle about the line
z1 = 23 (this is the same as multiplying by ( (1) (1) )) and bring it into standard form.

As the unimodular mapping in (3) defines a one-to-one mappiit#f to Z2, a half-space iiR? defined
by 7z < ~ with 7, v integral, is mapped to another half-space < +’ with «’/,+’ integral. Therefore a
cross set is mapped to a cross set with this mapping.

Remark 2.3. If a maximal lattice-free seB is mapped taB’ with the mapping in (3), and®’ is contained
in a cross set, then applying the inverse transformation Uz + u; we obtain the fact thaB is contained
in a cross set. Analogous statements can be made for s@iasdtcrooked cross sets.

2.3 Cuts for general mixed-integer sets from 2D lattice-fre cuts

One can use 2D lattice-free convex sets to obtain cuts foergeiMIPs in the following manner. Aen-
eral 2D lattice-free cuffor the mixed-integer seP is an inequalityay > 1 which can be obtained as a
quadrilateral cut or triangle cut for the following two-roelaxation ofP:

Py(A,A2) = {(2,y) € Z2 x R™ : 2 + g1y = b1, 22+ goy = b2, y > 0},

whereg; = NG, b; = \'b for some)’ € RY™™ that satisfies\’ A € Z™, for i = 1,2. Notice that we can
take the canonical-row setl¥ and using integer row vectors, A\, € Z? obtain the setVa (A1, X2). In this
case, the quadrilateral cuts fora(\1, \2) give valid inequalities foll” but these cuts are not necessarily
guadrilateral cuts fobV. We discuss this further in Section 3.3.

3 Lattice-free cuts as disjunctive cuts for canonical two rav sets

In this section, we study the relationship between latiee-cuts and (crooked) cross cuts for the two-row
canonical setV. Consider a cross disjunction definedby m € Z? andy, v, € Z. We say that a cross
cut is aunimodular cross cuf the matrix 77 72] is unimodular and aon-unimodular cross cuitherwise.
We distinguish between unimodular and non-unimodularscdisjunctions and sets similarly. Note that the
set of unimodular cross sets is invariant under unimoduenrsformations of the type (3). We call the set of
points inWW ¥ which satisfy all unimodular cross cuts f@f its unimodular cross closureWe denote the
unimodular cross closure, the cross closure, and the cdomkss closure bdC, C, CC respectively. Recall
from Section 2 that the split closure @f contains boti andCC. A similar result holds fot/C. To see this,
consider a split cut defined by, v € Z? x Z as in Section 2 with atomB, , D,. Recall that the components
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of 7 can be assumed to have a g.c.d. of one.(kgty;) = (7, ). Choose a vector, in Z? such that the
matrix [71 71 is unimodular; this exists because g.crd)(is one. Finally, lety, be an arbitrary integer.
Then the atoms of the resulting unimodular cross disjunci@ contained i, and D5, and the split cut
is a unimodular cross cut.

We call the set of points ifi’ - which satisfy all quadrilateral cuts f&¥ its quadrilateral closure and
denote it byQ. We defineT;, 75, 73 to denote points itV ¥ that satisfy all triangle cuts of types 1,2, or
3, respectively. Basu et. al [7, Theorem 1.4] showed @& contained in the split closure &F, and also
(see Figure 6 in their paper) that C 7;,75. Therefore the intersectio@ N 73 equals the convex hull of
Ww.

In this section we establish the following relationshipsamen these closures.

Theorem 3.1. For the 2 row canonical setV the following holds: ())Q = UC and (i) CC = Q N 73.
ThereforeQ =UC O C D CC = QN 7T;.

Note that the inclusio®/C O C trivially follows from the definition of the corresponding@ts and the
inclusionC D CC follows from the fact tha€ © Q@ N 73 andCC = QN 75.

3.1 Obtaining 2D lattice-free cuts as disjunctive cuts
We begin by showing tha® O (.

Lemma 3.2. A quadrilateral cut forl¥ or a triangle cut of type 1 or 2 is a unimodular cross cut 16f.
Consequently O UC.

Proof. Let B be an instance of one of the classes of maximal lattice-foewex sets mentioned in the
Lemma, and assume it is in standard form, as depicted in &iguif B is a type 1 triangle, the® is the
triangle with verticeg0, 0), (2,0), (0,2) and is contained in the unimodular cross set

{zeR? : 0< 2 <1JU{z€R?: 0< 2 <1} (4)

In a similar manner, ifB is a type 2 triangle or a maximal quadrilateral in standarchfat is contained in
the cross set in (4). The result follows from Remarks 2.3 addanhd from the fact that unimodular cross
sets are transformed to unimodular cross sets by unimottalesformations. .

The next result and its corollary show that there existitylia cuts of type 3 which are not unimodular
Cross cuts, nor even cross cuts.

Lemma 3.3. No maximal lattice-free triangle of type 3 is contained inrass set.

Proof. Let B be a type 3 triangle in standard form. Let the vertice®ddea,, as, a3, whereq; is the vertex
opposite the side;, for i = 1,2, 3. We will show that there do not exist, 72 € Z? and~y;, v, € Z such
that B is contained inthe cross spt € R? : 7y < mz <y +1}U{z € R? : 7y <Mz <y + 1}
Assume by contradiction that there are two split sets whasenucontainsB. Then these split sets
contain all the three vertices. Therefore, at least two efrttmust belong to one of the split sets. Consider
first the case where, andag belong to the same split set. Since there is an integer poititd relative
interior of the side:, the side joiningu, to a3, one facet of the split set coincides with Let this facet be
defined by the lindz € R? : a;21 + a2y = 0} whereay, as € Z, . Note thatn; < as as the point1, —1)
lies below this line. Therefore the other facet of the slitis of the form{z € R? : ajz; + aozs = o'}
where0 < o < aq; if &/ > a1, then the poin{1,0) lies in the interior of the split set. Consider the largest
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(@) (b) (©

Figure 2: Crooked cross sets containing maximal quadrditend triangles

possible splitsefz € R? : 0 < agz1+agze < oy }. Sincea; < ag, theline{z € R? : a1z +agze = o}
lies below the poinf0, 1) and thus intersects the sidgat a pointp whosez, coordinate is strictly less than
1. Therefore, the poinf0, 1) lies in the relative interior of the line segment; .

For the cross set to contaiB, the second split set must contain the triangle with vestice, (1,0).
Therefore, one of the facets of the second split set mustdregahe line segmenta;. Let this facet be
{2 € R? : Byz1 + faze = B2} Wherepy < 0, B2 > 0andpy, 32 € Z. The other facet of this split set is
defined by alingz € R? : 3121 + 222 = 3’} wheres’ > 0. The largest possible split set would be when
the facet has the forffiz € R? : (121 + oz = 0}. As(1,0) lies below this line, it intersects, at a point
g whosez, coordinate is strictly positive. Thus, the boundaryibetweerny and(1, 0) is not contained in
any of the splits, a contradiction.

The case where; andag belong to the same split set @ andas belong to the same split set can be
similarly analyzed. .

Corollary 3.4. There exists a type 3 triangle cut fér that is not a cross cut.

Proof. Consider a selV with three continuous variables, and a maximal lattice-frieangle B of type 3
such thatf +r; (2 € {1, 2, 3}) are the three vertices &. Then the inequalityvs > 1, wherea = (1,1, 1),
is generated using via (2). We will show that this inequality is not a cross cutsliclear that for any point
z* inint(B) there exists as* > 0 such that:* = f + rs* andas™ < 1. Now if as > 1 is a cross cut,
then there exists a cross disjunctiGhx R™ such thatC' is a cross disjunction iiR?, andas > 1 is valid
for the intersection ofV ¥ with each atom of the disjunction. By Lemma 3.3, one of thenatof C' (say
A) contains a point* in int(B). Then, there exists a poifit*, s*) in WX N (A x R?) with as* < 1, a
contradiction. .

While Corollary 3.4 shows that some type 3 triangle cuts atecnoss cuts, this does not imply that
C < T3. Tolllustrate this point, consider the case of a trianglecditlype 1 that is not dominated by a single
guadrilateral cut. However, the triangle cut is valid £r This follows from the fact that for any triangle cut
of type 1, one can construct (see Basu et. al [7]) an infinigeisece of quadrilateral cuts which in a formal
sense converge to the triangle cut.

Next we show that unlike cross cuts, all the triangle and gladdral inequalities can be obtained in a
very simple way by using crooked cross cuts. For type 3 tiemgome elements of the proof can be found
in [19].



Lemma 3.5. Any quadrilateral cut or triangle cut fof¥ is a crooked cross cut for/. Consequently,
CCCONTs.

Proof. We will show that every maximal lattice-free sBtin R? in standard form is contained in a crooked
cross set. This is obvious for triangles of type 1 or 2 in Féglythey are both contained in the set

Ci={2:0<z<1}U{z:z3>1and0 <z <1}U{z:2; <0and0 < zp — 21 < 1}.

See Figure 2(a) for a depiction 6f (by the dashed lines).

Now consider a maximal lattice-free quadrilate¢lin standard form. In Section 2.2 we denoted the
integral points on the boundary fto beu, . .. , u4, which are(0, 0), (1,0), (0, 1), (1, 1), respectively, and
also defined the edge containiagto bee;, fori = 1,...,4. Itis well-known that() is contained in the
crosssely = {z:0 < 23 <1} U{z:0 < 2 < 1}. To see this, note that for any poinin R? \ C,, the
convex hull ofv anduy, . .., u4 is a convex body containing one of, . . . , u4 in its interior; for example, if
v e {z: 2z <0,z <0}, thenu, lies in the interior of the convex hull af anduy, . .., u4.

As @ is a quadrilateral, the angle between the sides incidett same vertex is 90 degrees or more.
Without loss of generality we can assume this vertex is treeinoident with the edges; ande, (if this
condition does not hold, we can rotate the body via a uninadininsformation to attain it). The side
incident with this vertex having positive slopeds and the other side is;. One of these two sides forms
an angle of at most 45 degrees with the line segment joinir@ @nhd (0,1); assume it is;. Therefore
z9 — z1 < 1lis avalid inequality forQ N {z : z; < 0}. As@ C (3, z2 > 0is a valid inequality for
QN{z:2z <0}, and soisxy — z; > 0. ThereforeQ N {z : z; <0} CC;. ClearlyC; N {z: 2 >0} =
Co N{z: z > 0}. Therefore is contained in the crooked cross et

Let B be a maximal lattice-free triangle of type 3 in standard fohat contains the pointg; = (0, 0),
uz = (1,0) andus = (0, 1) in the relative interior of its sides. Denote the vertex ibatpposite to the edge
that containg,; = (0,0) by a1, the vertex that is opposite to the edge that contains- (1,0) by a, and
the vertex that is opposite to the edge that contajns- (0,1) by a3. LetT = R?\ (S; U Sz U S3) where

Slz{ZZOS,ZlSl}, SQZ{ZZOS,Zggl}, SgZ{ZZOS,Zl—I—ZQSl}.

Furthermore, let these sets be partitioned into smallsecdl@omponents as shown in Figure 3. (For example
S; = S uVIUVLUV3US; ) By elementary geometry, note that the paintwhich is the vertex opposite to
the edge containing point; = (0,0) must lie in the cone generated by rays:; andu;uz and furthermore,

it can not lie inside the triangle obtained by taking the @nfiull of the pointsy, us andus. Consequently,

ap € S UVLU ST UTy. Similarly,as € Sy UVaU Sy UTs andas € S; U V3 U Sf UTs.

Notice thatB can not intersect with the interior @f as otherwisé1, 1) would belong to the interior of
B. Similarly, the intersection oB with the interior of Ty, T3, Ty, T5 and Ty is empty. ThereforeB and all
three vertices oB lie in 57 U Sy U S3. We will next show thatB does not intersect with the interiors of the
setsS;, S5 andS; and conclude thaB in fact looks like the triangle shown in Figure 2(c).

As B is in standard form, we know that; satisfies the inequality; + z5 > 0 (see Section 2.2) and
thereforeas ¢ int(S] ) and thereforei; € V3 U Sg*. In addition, as.; = (0,0) is a convex combination of
pointsay andas, the pointa, must satisfyz; + z; < 0. Therefore, we conclude that € S5 .

The pointus = (0, 1) is a convex combination af; anda, and asi; satisfieszs < 1, the pointa; must
satisfyzy > 1. Furthermore, ag; € S;” UU; U SS U Ty andB Nint(Ty) = (), we conclude that; € S;".

Clearly, the edge connecting € S;" anday € S, and going throughi; = (0, 1) does not intersect the
interior of S; . Similarly, the edge connecting € S;" andas € V3 U S5 and going throughu, = (1,0)
does not intersect the interior 8§, and, the edge connectimg € S, andas € V3U.S5 and going through
u; = (0,0) does not intersect the interior 5f .



Therefore, we conclude th@ N Sy = {us}, BN Sy = {u1} andB N S; = {us} implying that
C3={z:21<0and0 <z <1}U{z:2zp>0and0 <z <1} U{z:20 <0and0 < z9 + 23 < 1}

containsB. HoweverCs is a subset of the crooked cross set contained within theeddstes in Figure 2(c)
(defined by removing; < 0 from the first set irC3, and changings > 0to ze > 1 in the second set). =

T2
.
S S; T,
T
3
u3
\Y; \Y;
2 1
S s!
V 2
0
u2
u
1
-
V3 6
+
T, s;
.
T5

Figure 3: Partitioning oR? by the split setsS;, S, and.S;

Recall that Andersen et. al. [1] and Cornuéjols and Mar6t proved thatonuv (W) is given by all
quadrilateral cuts, triangle cuts and split cuts. Theeefegmma 3.5 implies thatC = Q N 7s.
To complete the proof of Theorem 3.1, we will show in SectichtBatQ C UC.

3.2 Obtaining disjunctive cuts as 2D lattice-free cuts

Andersen et. al.[1, Corollary 1] show thatlif is non-empty andvs > o is a facet-defining inequality for
W, thena > 0. Itis easy to see that this property holds for any valid iradity not just facet-defining ones.
We use this fact in proving the following observation.

Lemma 3.6. If W is the empty set, i.el} has no integral solutions, then the split closurdBfequals(.

Proof. Let W be the empty set. If has two linearly independent columns, sayandr,, then the set
{2 € R?: 2z = f +r1s1 + 1289, s1,s2 > 0} contains integer points, adl is non-empty, a contradiction.
Therefore,r must have rank 1. LeV, := {z € R? : z = f + rsfor somes € R’} }. ThenW, is either

a half-line or a line inR?, and points iNIV, satisfya;z; + asz = b, for some co-prime integers, and

as. Assumeb is integral. Then there is an integer poirit € Z? satisfyinga; 2} + a223 = b. This means
that if W, is a line, it is non-empty, a contradiction. i, is a half-line, then there is a large enough integer
t > 0 such thatr is integral andt* + ¢rq lies inW,. Thereforeh must be non-integral. Thdi has empty
intersection with each side of the disjunction

(a121 + agze < [b]) V (a121 + azze > [b]),
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and the split closure dfi” is the empty set. .

Some elements of the proof of the next result were observé&hlas [5]. In particular, he observed that
given a derivation of a cut using a cross disjunction, oneusarthe multipliers for the inequalities defining
the cross set to obtain a quadrilateral which may be a maxettate-free quadrilateral or (in degenerate
cases) a maximal lattice free triangle of type 1 or 2.

For the purpose of the next Proposition, we define the velftaxiatom as the point where the defining
inequalities of the atom intersect, i.e., the vertex of ttoerer; z < 71, m2z < 7 IS the pointz* satisfying
mzt =y, 2" = Y.

Proposition 3.7. Any non-trivial unimodular cross cut fdi is implied by either a quadrilateral cut or a
triangle cut of type 1 or 2.

Proof. Consider a non-trivial unimodular cross cut fiéf. The existence of such a cut implies thatis
non-empty,

otherwise by Lemma 3.6 the split closureldtis the empty set, and therefore so is the cross closure of
W, a contradiction. We will next derive four inequalities a#fig a lattice-free set from the multipliers used
in obtaining the cross cut as a valid inequality in each atbthedisjunction. This set will be contained in
a maximal lattice-free quadrilateral or triangle of typerRo

Let the cross cut bez + gs > d, where(c, g) € R'*(2+7) and the cut is derived from the disjunction
\/;-4:1DZ- where the set®); are defined as in Section 2 via the inequalities

mz <7, M2 > 71+ 1, moz < yg, Moz > o + 1.

By subtracting appropriate multiples of the constraintsrs = f from the cutcz + gs > d, we can assume
that it has the forms > . As W is non-empty, we can assume that 0.

As as > 0is valid for W L¥ | but the cross cut is not, we can assume> 0. Therefore, we can assume,
without loss of generality, that the cross cut has the faumn> 1. We next define a lattice-free convex set
Q. such that the cut defined by (2) implias > 1. More precisely, we will show that,, C Q..

Consider the atonD; of the disjunction given byriz < 71, m2z < ~5. Consider the case when the
intersection of this atom with’ /¥ is non-empty. By definitiongs > 1 is valid for

z—rs=f,5>0, (5)
—7T122 -1,
—Moz 2 —72.

Using LP duality, there exists multipliegsc R'*? (for z — rs = f), andv,w > 0, such that

w—uvm —wmy = 0, (6)
—pr S «, (7)
pf —on —wy > 1. (8)

Equation (6) follows from the fact that thevariables are free, and (7) from the fact that 0. Therefore
1 = vm + wmy. Note that asvs > 1 is not valid forlW ¥, one ofv, w must be positive.

We define one side ap,, corresponding td; to beuz > vy, + wy,. We next show thal.,, satisfies
the above inequality, but no integer point/iin does. The inequality (8) implies thétstrictly satisfies the
inequality uz > vy, + wy,. Further, for eacly; > 0, this inequality is satisfied byf + r;/«;) as

ap > —pri = oy = —prif (pf —on —wy2) =
pf —vyr —wye > —pri/o = p(f +rifa;) > vy +wye.

11



If o; = 0, then this inequality is satisfied bfy+ Ar; forall A > 0: as—ur; < 0 or ur; > 0 by (7), it
follows that

p(f +Ar) —voyp —wy2 > pf —vy —wyp > 1

Thereforer; is a direction in the recession cone of the gete R? : puz > vy + wye} (since{z € R? :
wz > vy; + w2} is a closed set). Hende, is contained in the half-space defined by

(v + wma)z > vy + wys. 9

Further, any integer vectarcontained in the ator; satisfiesvr; +wme)z < vy + w7y, asv,w > 0 and
one ofv, w is positive. Therefore; cannot lie in the interior of the half-space (9). Finallyzifis a unique
vertex of one of the other atoms, thenz* > ~; andmyz* > 7, with one of these two inequalities holding
as a strict inequality. Thereforg also satisfies (9).

If the intersection ofD; with W is empty, therds > 1 is implied by the constraints in (5). Therefore,
there exist multiplierg: € R? andv, w > 0 satisfying (6), (8) and-ur < 0instead of-ir < o. Thenur >
0 = ur;/a; > 0 for every positivey;. Thereforeuf > vy, + wy, implies thatu(f +r;/a;) > vy +wye.
Similar to the previous case, df; = 0, then we can verify that; is a recession direction for (9). Therefore
L,, satisfies the inequality (9), anfllies in the interior of the corresponding half-space. Moezpit can
again be verified that all the integer pointbelonging toD; satisfy (vr; + wme)z < vy; + wye and if z*
is a unique vertex of one of the other atoms, them, + wmy)z* > vy + wye.

As the choice of the atom is arbitrary, we can similarly deiivequalities (9) for each atom, and assert
that f is contained in the interior of the s, defined by these inequalities, and thatis contained irnQ.
Further, any integer point iR? is contained in one of the atoms of the disjunction, and catievefore be
contained in the interior of),,. Therefore®,, is lattice-free, and the intersection cut defined by it i@pli
the cross cutvs > 1.

We will now show that?),, is contained in a maximal lattice-free quadrilateral cargle of type 1 or
2. By definition, ), has at most 4 sides. Further, the unique vertex of each atdheafross disjunction
is integral. For example, consider the atdme R? : w1z < 1, mz < 72}; its unique vertex is the point

1

z* satisfyingm z* = v, andmez* = 4. As the matrix[ ] is unimodular,z* is integral. These integral

2
vertices of the atoms all lie i), and therefore must lie on its boundary. N@Jy is full-dimensional as it
containsy in its interior.

If it is not maximal, then consider a maximal lattice-freeeex setB containing it; 3 must also contain
the integer vertices of the atoms on its boundary. As thexrelauch pointspB cannot be a triangle of type
3. Further it cannot be a split set, as that would contrabietion-triviality ofcz 4+ gs > d. Therefore,B
must be a quadrilateral, or a triangle of type 1 or 2. .

In Figure 4, we depict two linearly independent splits defina disjunction, the aton; and the
inequality (v + wmy)z > vy + wy, by the dashed line.

Corollary 3.8. Q@ C UC.

Proof. If there does not exist a non-trivial unimodular cross chentZ/C equals the split closure d/,
but Q is contained in the split closure &V as shown by Basu et. al. [7], and the result follows. Assume
there exists a non-trivial unimodular cross cut. The previcesult implies that the unimodular cross cut is
implied by a quadrilateral cut or a triangle cut of type 1 offBereforeQ = Q9 N7; N7, C UC. .

12



Figure 4: The disjunction defining a cross cut

3.3 Relative strength of unimodular and non-unimodular cress cuts

It is not obvious if it is possible to obtain non-unimodulaonss cuts that are not implied by any (or a
combination of) unimodular cross cuts. We next present aumamodular cross cut which is not dominated
by any single unimodular cross cut.

Example 3.9. LetWW* be the set of pointéz, s) € Z? x R4 that satisfy

(2) = (D)+( D)o (1)ne()sr () wo

Now consider the non-unimodular cross set

DO = [ =

{(21,20) €ER? : 0< 21 + 290 <1} U{(21,22) ER? : 0< 21 — 20 < 1}. (11)

One can show that the inequality + s, + 1453 +2s4 > 1 is implied by the cross disjunction associated
with the above cross set. To this end, dgt= conv{f + ;- }, wherea = (1,1,14,2), f is the constant
vector in (10), and, . . ., r4 are the columns associated with the variabdes. . . , s, in (10). ThusQ is the
quadrilateral with vertices}, —3), (—2,3), (33, 15), and(3, —3), and is depicted by the shaded object in
Figure 5. One can verify thap is contained in the cross set (11); in particular, the sidég)gass through
the vertices of the atoms of the cross disjunction.

Proposition 3.10. The inequalitys; + so + 14s3 + 2s4 > 1 is not a unimodular cross cut fdi*.

Proof. If the inequalitys; + so + 14s3 + 2s4 > 1 is a unimodular cross cut fa*, then by Proposition
3.7, there exists a maximal lattice-free quadrilateral maximal lattice-free triangle of type 1 or type 2 that
containg)). We will however show that any maximal lattice-free convekcontaining the s&p is a maximal
lattice-free triangle of type 3. This would therefore imphat the inequalitys; + so + 14s3 + 2s4 > 1 is
not a unimodular cross cut fé¥*.

Let M be the maximal lattice-free convex set containipg Two facet-defining inequalities df/ are
221+ 29 > 0and—2z; + 29 > —2: both the Iines{(zl, 22) | 221+ 29 = 0} and{(zl, ZQ) | — 221+ 29 = —2}
define facets of) and contain integer points in their relative interior. Téfere, these must be facets/af.
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Figure 5: Example of lattice-free convex set that is comdim a non-unimodular cross set and not in a
unimodular cross set.

The intersection of the line€&z; + zo = 0 and—2z; + 25 = —2 (i.e., (%, —1)) is a vertex ofM. This
is becausel/ must contain an integer point in the relative interior offeatits facets and while the facets
of M defined by the linegz; + zo = 0 and—2z; + z2 = —2 contain the integer point®), 0) and(1, 0),
respectively, the convex hull ¢b,0), (1,0), (3, —1) contains no integer points in its interior.

Since2z; + z9 > 0 and—2z; + zo > —2 define facets of\/, all potential candidates for integer points
on the boundary ofi/ are integer points satisfying these inequalities. Note th&,3) and (2, ;) are
vertices of@) and thus belongs td7. If any integer pointz1, z5) with z; > 0,29 > 1 (except(z1, z2) =
(0,1)) belongs toM, then the point0,1) belongs to the interior of the convex hull 6f;, 25), (33, &)
and(—3,3). Similarly, if an integer pointz1, 22) with z; < 0,25 > 1 belongs to), then it satisfies the
condition2z; + z2 > 0 and therefor€0, 1) belongs to the interior of the convex hull 6f;, 22 ), (0,0) and
(22, 4). Therefore the only integer point containedif other than(0,0) and(1,0) is (0,1). Thus, M
must be a maximal triangle of type 3 with, 1) contained in the relative interior of the third side. .

The proof of Corollary 3.4 illustrates that it is not possilib obtain every type 3 triangle cut using
a single cross cut (unimodular or otherwise). On the otheidhdy Lemma 3.5 all the facet-defining
inequalities ofi” can be obtained using crooked cross cuts. Therefore thkenl@voss closure is contained
in the cross closure. However, as we do not know if the unirfewcand non-unimodular cross closures are
obtained by a finite number of inequalities within the respedamilies, we cannot use Corollary 3.4 and
Example 3.9 to conclude that the inclusions in Theorem FIstaiict. We believe that these inclusions are
strict.

4 QOther two row canonical models

The main motivation for studying the sBf is that it can be obtained as a relaxation of an MIP by taking
two-rows of a simplex tableau (where integer variables asid) and dropping the (i) integrality of the non-

basic variables, and, (ii) nonnegativity of the basic Jada. Stronger relaxations of the original set can be
obtained by retaining more information about the origiretl Ve next consider two extensions studied in
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the literature.

4.1 ‘Monoidal’ Strengthening

A stronger two-row relaxation of a mixed-integer set usiagib solutions is the following set
T={(z,8) €Z*xZE xR} P : 2 —rs= f}

where the firsip nonbasic variables are assumed to be integral. A valid m@yguor 7' obtained via a
maximal lattice free convex sét is

n

p
ZO_@SZ‘ + Z o;8; > 1 (12)
=1

i=p+1

whereq; is generated using (2) and = o! for somet € Z?*!, where
ol — 0 if r; +t eredB), (13)
: I/A:A>0andf + \(r; +t) e bndB)} if r; +t € red B).

The construction ofy; is closely related to the fill-in function of Gomory and Jobn$26], and the monoidal
strengthening proposed by Balas and Jeroslow [6]. Recdigyconstruction has been studied in [19], [13],
[9].

We next demonstrate that inequality (12) is a crooked cras$oc 7. Lett; € Z2fori = 1,...,p be
given. Thenlet’ = z + "7 , ;s; and consider the set

T ={(<,s) € Z> xR" : 2/ —1's = f} (14)

wherer] = r;+t; fori < pandr, = r; fori > p+1. Now inequality (12) is a 2D lattice-free cut f@¥ via
B. As B is contained in some crooked cross set, inequality (12) imaked cross cut fof” and therefore
for T. To see this, notice that if (12) is a crooked cross cutffgrthen it is valid for the intersections of
the four atoms of the associated disjunction w(if)“". Consider the atom defined by 2’ < ~; and
w2’ < 79, and note thad "t_, a;s; + > iepy1 isi > 1is valid for

Q' ={(,s) € R™2 . 12 <41, m2 < 79,2 —r's=f,s> 0}.

But then, the same inequality is valid for
p p
Q={(zs) cR"? . wl(z—l—Zt_isi) <, 7r2<z+ Zﬂ-s,) < 9,z—rs=f,5s>0}
i=1 i=1

because if the inequality cuts off a poifit,s) € @, it must also cut off the pointz’,s) € @’ where
7 =z+3 "  ts, Repeating the same argument for the remaining three atoowsssthat the inequality
is indeed a crooked cross cut for Consequently, monoidal strengthening simply correspdaoadhanging
the crooked cross disjunction that is used to generate thé&auilarly, if B is contained in a cross set, then
(12) is a cross cut fof'.
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4.2 S-free cuts
Let NV be a rational polyhedron iR? and letS = N N Z2. Consider the set

W ={(z,5) €Z* xR} : z—rs=f,z€ S}, (15)

and recall that}’ can be obtained by dropping the constraint S from 1. We denote the continuous
relaxation ofi¥’ obtained by replacing € S andz € Z? with z € N andz € R? by W Facet-defining
inequalities of the convex hull 3% were first studied by Johnson [28] in the case wigi®finite. Recently
Dey and Wolsey [21], Fukasawa and Gunlik [25], and Basli @] studied variants of the above set.

Let B C R? be a convex set such that(i)N.S = (). Such a set is called a—free convex set. All full-
dimensional maxima$-free convex sets are polyhedra [10]Hfis a maximalS-free polyhedron containing
[ inits interior, then there are row vectgrs€ R? such thatB = {u € R? : g;(u—f) < 1,5 € {1,...,k}}.
Itis shown in [10], [21] and [25] that a valid inequality foi (called anS-free cu} is .7 | a;s; > 1, where
the coefficientsy; are given by

o = Maxi<j<k{g;ri}- (16)

All facet-defining inequalities of (15) that separate thep6z, s) := (f,0) are S-free cuts obtained from
maximalS-free convex sets. In fact, the above papers show the fallgwi

Remark 4.1. If B is anS-free convex set, then the associateftee cut is valid folV7 27\ (int(B) x R™).

To see the correctness of the remark above note that any [@oi)te WP\ (int(B) x R") satisfies
zZ=f+rs s>0andz ¢ int(B). Thereforeg;(z — f) > 1 for somel € {1,...,k}. Butthen

n n n
Zaié’i > Z(Qm)@ =q Zn‘éi =q(z—f)>1
i—1 i—1 i=1

and thereforéz, s) satisfies the5-free cut. We next show that &Hree cuts are, in fact, crooked-cross cuts.

Theorem 4.2. Any S-free cut forlV is a crooked-cross cut for the mixed-integer set obtaineaugymenting
W with the constraints definingy.

Proof. Let B be anS-free convex setany ;" | o;s; > 1 be the associatestfree cut. LetB’ = int(B) xR",
andN’ = N x R". Now observe that

WLP \ B/ 2 V_VLP \ B/ — WLP \ (Bl N N/), (17)

where the inclusion follows from the fact thet“” > W¥ and the equality follows from the fact that
WLP C N’. Now using Remark 4.1 and (17), the ¢}, a;s; > 1is also valid forlW 2\ (B n N').

Let F' be a maximal lattice-free convex set containiigh N. ThenF' is contained in a crooked cross
setC. Therefore

WLP\ (B'ON') 2 WEP\ (int(F) x R") D WEP\ (int(C) x R™).

As the S-free cut is valid for the last set in the equation above, BAd” equals the points i’ ¥ which
satisfy the constraints a¥, the Lemma follows from Remark 2.1. "

In the proof of Theorem 4.2, if' is also contained in a split or a cross set, then$Heee cut is also,
respectively, a split or a cross cut for the mixed-integeédsscribed in Theorem 4.2.
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Finally, consider the sef = T'N {(z,s) € Z* x R : z € S} whereT is as defined in Section 4.1.
Given a maximals-free convex seB, one can use the monoidal strengthening techniques in ff@rerate
the cut

n

p
Zdisi + Z o;8; > 1 (18)
=1

1=p+1
for T, whered; equalsa! for somet € Z? Nrec(N) and

of = max <j<i{g;(ri +1)}.

Using arguments similar to those in the previous sectioncareconclude that the inequality (18) can be
obtained using a crooked cross disjunction. Note that ird#fiition of &; above, we requireto lie in the
recession cone a¥. This is because replacing with r; 4+ ¢ corresponds to replacingwith z + ts; in the
definition of (T) in (14). Clearly,z + ts; € S provided that: € S andt € rec(N).

5 Cross and crooked cross disjunctions for general mixed igger sets
Consider the mixed-integer set with rows
P={(x,y) € Z™ xR™ : Ax + Gy =b, y > 0}, (29)

whered € Qm*™ G € Qm*"2 andb € Q™*!. Recall that we us®”" to denote the continuous relaxation
of P. Throughout this section, the symboldenotes a row vector with; components¢, g denote row
vectors withny components, and, f are numbers. The symbals 3, v, § denote numbersy, u, 7w, 7, o are
row vectors with\, u € RY>™, 7 ¢ R'*™ andr € R*"2. A symbol along with a superscript (e.g’) has
the same dimension as the symbol itself.

We say that an inequalityz + dy > f is a translation otz + d'y > f’ w.rt. P, if there exists a
row vectory, € R™ and a positive scalaf such thafc, d, f] = u[A, G, b] + d[¢,d’, f']. Given row vectors
Alyeeey, A € R™, let

P M\, .. ) ={(z,y) € Z™ x R™ : \jAx + NGy = \bfori=1,...,k, y > 0},

a particulark-row relaxation ofP.
In this section, we show that if a non-trivial (crooked) @aut for P is obtained from a disjunction
defined by row vectors, 5 € Z™ andyy, v € Z, then there exists a three-row relaxationfobf the form

P3(A, A2, A3) = {(z,y) € Z" x R"™ : mx+ g1y = b1, mx + g2y = ba, g3y = b3, y > 0},

which yields an equivalent cut under the application of tame (crooked) cross disjunction. When the
matrix A has full row rank,A3 = 0 and thusgs = 0, b3 = 0. Consequently one can obtain the same cut
from a two-row relaxation of?; see Corollary 5.9. An important example of a mixed integgghere the
matrix A has full row rank is that of a corner relaxation of an MIP. Amet special case whenta&o-row
relaxation of (19) suffices is presented in Lemma 5.5, wisekesnma 5.4 and Lemma 5.7 give the precise
structure of the three-row relaxation in the general case.

Given a (crooked) cross cut fa@t, it is easy to obtain a four-row relaxation sfwhich yields the same
cut, without translation under the application of the same (crooked) cross digpmciOur result implies
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that there always exist a relaxation with three or fewer rtves also yields aequivalent(crooked) cross
cut (via translatior). When the third constrainjzy = b3 is not needed, for example, whehhas full row
rank, then the (crooked) cross cut from the relaxation wiih tows is in fact a 2D lattice-free cut, obtained
by replacingrx by z; andmsx by z5. In general, we expect to obtain stronger cutting planesppyyang
cross and crooked-cross disjunctionsRdnstead of generating 2D lattice-free cuts, but we cannoter
this. In contrast, splits cuts can be obtained (up to tréinslg) as MIR cuts (i.e., as 1D lattice-free cuts)
from a one-row relaxation of the original MIP [29].

In showing the main result we use the observation that amoked) cross cut foP is a split cut for
Pn{—mz > —v}and asplit cut forP N {mx > v + 1}. We combine this with the fact that split cuts
can be obtained from one row relaxations. The constructi@me-row relaxations therefore plays a crucial
role in the three-row relaxation we construct for (crookemss cuts.

In proving that split cuts are equivalent to MIR cw@sd thus showing that split cuts can be obtained
from a one row relaxatignone typically has to consider three cases. Assume a splis cerived from a
split disjunctionD; v D, (hereD; and D, are defined as in Section 2). In the first caB&’ N Dy # ) =
PLP 1 D,, in which case the only non-trivial split cut is the Gomorin@tal cutrz < -, which is also an
MIR cut. In the second case, the intersectionf” with D; and D, is non-empty, and any split cut can
be derived, up to a translation, as an MIR cut. In the final c&é N D, = PP n D, = . Trivially,
the split closure is empty. However, bottx < v andwz > + + 1 are Gomory-Chvatal cuts, and the cut
0x 4+ 0y > 1 is valid for the MIR closure, which is therefore also emptye Wscuss the first two cases in
Lemma 5.1 in Section 5.1.

In trying to prove an analogous result in Section 5.2 for keabcross cuts derived from disjunctions of
the formD, v Dy vV D3 vV D4 (see Section 2), we perform a similar case by case analysisdh the cases
will be ordered differently). We consider the case wheh” does not intersecDs U Dy, but intersects
D; U Dy in Lemma 5.7. In Lemma 5.4, we consider the case WRé&R intersects bothD; U D4 and
Dy U Dy. These two results will imply Theorem 5.8. Finally, we calesithe case wheR“” does not
intersect eitheDs U D4 or D1 U D- in Lemma 5.5 and Corollary 5.6. Collectively, these resinfigly that
the (crooked) cross closure always equals the closure e#pect to (crooked) cross cuts obtained from
three-row relaxations aP (cuts from two-row relaxations suffice whehhas full row rank). The first two
cases above imply this result whé&4" is not contained in the interior of a (crooked) cross set,thadhird
case implies this result wheR™" is contained in the interior of a (crooked) cross set.

5.1 Some results on split cuts

The next property of split cuts can be obtained from the pod@&quivalence of split cuts and MIR cuts in
[29], or the proof of equivalence of split cuts and GMI cutdi@]. Even though the result is known, we
reprove it in the precise form needed for our main result. d@Rdlbe notation introduced in Section 2 for
split disjunctions, namely); = {(z,y) € R"*"2 : 7o < ~}andDy = {(z,y) € R"™ "2 : 1z > v+ 1}
where(r, ) € Zm T,

Lemma 5.1. Let(7,v) € Z™+! and assume tha®™” N (Dy U Dy) # 0. Letcx + dy > f be a nontrivial
split cut for P derived from the disjunctio®; Vv Ds, then there exista € R'*™ with 7 = \A such that
mx +d'y > v+ 1is atranslation ofcx + dy > f w.r.t. P for somel’. Furthermore,;rz + d'y > v+ 1 can
be derived as a split cut for the one-row relaxationfof

PN ={(z,y) € Z™ xR : mx+ gy =,y > 0},

whereg = AG and 3 = \b, from the same disjunction.
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Proof. Let P< = PLY' 0 D; andPZ = P n D,. By assumption, bot®= and P< cannot be empty and
without loss of generality, assume thaf is not empty.

If P<is empty, then the linear program= min{rz : = € P*"} has an optimal valug* > ~. Using
LP duality, there exist multipliers’ € R™™ such that\'A = 7, NG < 0 and\'b = z*. Therefore the
implied equation\’(Ax + Gy = b) gives the cutrx > [2*], where[z*| > v + 1, as an MIR cut. Note that
when P< is empty, any split cut is dominated by a translationrof> v + 1. Therefore, in this casg; (\')
gives the desired one-row relaxation.

We now assume that botR= and P< are nonempty. Let the split cut faP that we consider be
cr +dy > f. In this case, as the cut is valid for boft¥ and P<, if cz + dy > f is not a supporting
hyperplane for eitheP= and P<, then one can trivially get a stronger split cut. We assuratcth-dy > f
is a supporting hyperplane fét=. Therefore, there exist multipliers;, Ay € R anda, as € R, such
that

c=MA+am, d>MG, f=Mb+ai(y+1) (for P3),
c= XA —asm, d> NG, [ <Ib—a(y) (for P<).

Clearly, a1, ag > 0, otherwise the inequalityr + dy > f is a trivial inequality valid forP. Observe that

(A2=A)A = (o +ag)m,
Qo —M)G < d— MG,
(A2 —=A1)b > (a1 +a2)y+ar.

Now considerP; ((A2 — A1)/(a1 + a2)), the relaxation obtained by combining the defining equatioi”
with the row vectorf\s — A\1)/(a1 + a2) € R™. DefiningT = d — A\ G, it follows thatr > 0 and

1 (5]
+ + 20
™ Ozl—i-OéQTy_’Y a1 + o ( )
is valid for P; ((A2 — A\1)/(c1 + a)), and therefore so is the MIR cut
(o751 aq
x4+ >(v+1 . 21
041+0427T Oél—i—OéQTy*(’Y )a1+a2 (1)

This cut can also be written as;7x + 7y > (v + 1)ay; further it is a split cut derived from the same
disjunction as:z + dy > f. Substituting outy; 7, 7 and(y + 1)« gives

cx — MAzx +dy — MGy > f — A\b.

Therefore the inequality (21) divided hy; /(1 + «2), which has the desired form, is a translation of the
original inequalitycx + dy > f. .

It is not true in general that a split cut can be obtained aplit cut without translatiorfor some one-
row relaxation. Moreover, whenP’? does not intersect eithéd, or D, (and is contained in the interior
of the associated split set), Lemma 5.1 does not hold. Inctég, not every inequality can be derived up
to translation as an MIR cut. For example, Iet= {z € 72 . 07> 1 > 0.3} which can be rewritten
in our standard form a® = {(z,y) € Z* x R : 21 4+ y1 = 0.7, z1 — y» = 0.3}. The cutzy < 0is
a split cut for P obtained from the disjunctiofw; < 0) V (z; > 1). Notice that any one-row relaxation
of Pis of the form(\; 4 X2)z1 + A\y1 — Aoy = 0.701 + 0.3\ and is always feasible for any choice of
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x9 Thereforer, > 0 is not valid for a one-row relaxation; further it cannot beasbed by translation as,
does not appear in the constraints definihgHowever, wherP™“" £ () is contained in the interior of a split
set, the proof of Lemma 5.1 can be adapted to show that adtamsbf0x + 0y > 1 is obtainable from a
one-row relaxation.

We next describe a simple class of mixed-integer sets wharse=g hull is given by split cuts. We will
use this result later in Section 5.2 to distinguish betwemmnivial crooked cross cuts and split cuts.

Lemma 5.2. Consider the mixed integer sét := {(z,y) € Z™ x R}*> : Az + Gy = b}, whereA €
Qm*m G e Qm*m2, andb € Q™*! and ranKA) = 1. Then the split closure givesnv( P).

Proof. As ranK A) = 1, we haveA = no for somen € Q<! ando € Q<™. Without loss of generality,
we assume that; # 0fori € {1,...,n1 } since ifo; = 0, then the'™ column of A is the zero vector and thus
x; can be ignored. Also assume that data defidthgamely,, o, G, b are integral and g.c.tr) = 1. This
can be achieved, without loss of generality, by first sirmétausly scalingr, G andb so thato is integral
and g.c.do) = 1. Thenn, G andb can be scaled simultaneously to make them integral.

Let@ = {(z,y) € Z' xR} : nz + Gy = b}. AsQ has a single integer variable, results in [15] imply
that the convex hull of) is given by split cuts. We next considering two cases and gshatwthe polyhedral
structure ofQ) is essentially identical to that d?.

Case 1: AssumeP # (). We will first show that ifcx + dy > f is a valid inequality forP, then
¢ = 6o for somed € R. This claim trivially holds forn; = 1 so we consider; > 2. Let (z,9) € P
and definer’ = (09, —01,0,...,0). Asoz’ = 0, we have(z + kx’,¢) € P for any integerk. Therefore,
c(& + kx') + dyg > f for any integerk, and consequently;’ = 0, i.e. cio2 = co0q. Similarly, it is easy to
show thateyo; = ¢;oq forall i € {3,...,n1}. Aso; # 0, we obtainc = 6o whered = ¢; /0.

As (z,9) € P, clearly (o2,9) € @ # (. This observation implies that iz + dy > f is a valid
inequality for@, thendox + dy > f is a valid inequality forP. Conversely, notice that for any integer
z € Z, there exists: € Z™ with oz = Z (as g.c.d.o) = 1). Thisimplies thatif(z, ) € @ then(z,y) € P
whereoz = % and, consequently, fox + dy > ~ is valid for P, thendz + dy > ~ is valid for Q.

We have so far established thatifx + dy > f is a valid (facet-defining) inequality for cof®?), then
0z + dy > fisvalid for Q. As the convex hull of) is obtained using split cutsz + dy > f is dominated
by a nonnegative linear combination of some split elits+ d'y > f* (i = 1,...,t) for Q. We will next
show that eachiox + d'y > fis a split cut forP fori = 1, ..., .

Supposey’z + d'y > fis a split cut forQ obtained by the disjunctio®; \V Dy whereD; = {(z,y) €
R x R™ : z < ~}andDsy = {(z,y) € R x R" : z > ~ + 1} for somey € Z. We first consider
the case when bot’” N D; andQ*" N D, are non-empty. In this case, there exists\, € R and
a1, ag > 0 such that

Mn—ar =6, MG<d, Mb—ayy>f!
Xan +ag =8 MG < d', b+ az(y+1) > f

However, this implies that we can obtain the éutz + d'y > f* as a split cut forP using the disjunction
or < vV ox > v+ 1. Next, consider the cas@’” N D; = (. In this case, it can be verified that
the inequalityd’ox + dy > ~ is dominated by the cutz > 1 + 1 which is a split cut. Similarly when
Q" N D, = 0, it can be verified that the inequalijoz 4+ dy > f* is dominated by a split cut.

Case 2:AssumeP = (). As g.c.d(c) = 1, we also have) = (. If there is a collection of nontrivial
split cuts of the form§?z + d'y > f* that show that) is empty set, thed’cx + d'y > f* are nontrivial split
cuts showing thaP is empty set. The only remaining case is when there existsjandition D vV D5 such
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that bothQ™” N Dy andQ™” N D, are empty. In this case, observe t#lt” N {(z,y) € R™ x R}? :
oz >y +1} =0andP*’ N {(z,y) € R x R"? : oz <~} = . Thus the split closure P is empty.a

5.2 Cross and crooked cross cuts for general sets

It is convenient in section to work witbarametric cross cutthat are a generalization of cross and crooked
cross cuts. Letr,m € Z'*™ and~;,v, € Z and consider th@arametric crosglisjunction defined as
follows:

Dy ={(z,y) e RMT™2 : —mx > —v, — (mg —tm)x > —(y2 —ty11)},

Dy = {(z,y) e RMT™2 : —mx > —yy, (my—tm)x >y —ty1 + 1}

D3 = {(z,y) e R . muz >~y +1, —mx > —72}, and,

Dy={(z,y) e RMT™2 . mz >y +1, mx >y + 1},
wheret is a non-negative integer. Notice that whes 0 we have a cross disjunction and whies 1 we
have a crooked cross disjunction. @t = PP n D, fori =1,...,4.

We will need the following basic property of parametric @asits.

Lemma5.3.If cx+dy > f is a non-trivial parametric cross cut faP derived from the disjunction?_, D;,
thenm, andm, are linearly independent.

Proof. Assume thatr; and 7y are linearly dependent. Ity = 0, then for anyt one can verify that
Ut D; = {(z,y) : mx < m1} U{(z,9) : mx > 7 + 1}. Therefore the parametric cross disjunction is
just a split disjunction andz + dy > f is a split cut. Similarlycx + dy > f is trivially a split cut for P
whenm; = 0. We can thus assume that £ 0 andwy, = dm; for somed # 0.

We first assume that g.c(@;) = g.c.d(m2) = 1. Next observe that because of the restriction on the
g.c.d. ofr; andmwy, 6 = +1 and is thus integral. The atoniy, ..., D4 become, respectively,

{(z,y): mz <y, 0 —t)mr <y —tn}{(z,y): mr <y, (6 —t)mz >y —ty + 1},

{(@,y): mz>m+1, oma <o}, and{(z,y) : mx >y + 1, dmz > v + 1}.

Now, the set of point§(x,y) : max € Z} is clearly contained in}_, D;. After all, if z € R™ andmz is
integral, then eitherryz < v or mz > 1 + 1. In the first case, a& — t) is integral, so igd — t)mZ
and therefore this number cannot lie strictly betweenr tv, andy, — ty; + 1. One argues similarly in the
second case. Therefore; + dy > f is valid for PLY n {(z,y) : mx € Z}. However, Cook, Kannan and
Schrijver [15] showed that the split closure Bfis contained in

conv(P* 0 {(z,y) : mxz € Z}). (22)

Thereforecx 4+ dy > f is valid for the split closure of, a contradiction. Therefore, the claim holds when
g.c.d(m) =1landg.c.dm) = 1.

In the general case, as andm, are integral, there must exist an integer veetoand co-prime integers
r, s such thatr; = s7’, 7o = ro’ andd = r/s. One can then show that + dy > f is valid for (22) withm,
replaced byr’, and consequently,; andmy have to be linearly independent for any non-trivial paraiet
Cross cut. .

We next prove a series of lemmas which differ primarily in #ssumptions on which atoms have a
non-empty intersection witi~". A basic idea that we use in the proofs is the observationftinat given
parametric cross cut, the cut is a split cut fof” N {—r;z > —v;} using the disjunction

(7T2 — t7T1).1‘ < (’)/2 — t’)/l) V (7T2 — t7T1).1‘ >y —ty1 + 1,
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and it is a split cut forP“? N {mz > ~; + 1} using the disjunctionryz < v V ez > 42 + 1. In the
next lemma, we assume that bafh U Q> and Q3 U Q4 are non empty. In this case, using the fact that
translations of split cuts can be derived from one-row rafiaxs, we can argue that any parametric cross
cut can be generated from a three-row relaxation of theviatig form.

Lemma 5.4. Letcx + dy > f be a non-trivial parametric cross cut faP derived from the disjunction
Vi D If Q1 UQy # 0 andQs U Qq # 0, then there exishy, Ao, A3 € R>*™ withr; = \; A fori = 1,2
and A3 A = 0 such that a translation ofx + dy > f is a parametric cross cut for the three-row relaxation
of P,

Py(A1, A, Az) = {(z,y) € Z™ x R™ : mx + g1y = b1, max + g2y = ba, g3y = b3, y > 0},
whereg; = \;G, b; = \;bfor i = 1,2, 3, derived from the disjunction?_, D;.
Proof. As cx + dy > f is valid for bothQ3 and@y, it is a split cut for
Pz ={(z,y,5) €Z™ xR™" . Az + Gy =0b, mxz —s1 =7 + 1, 51,4 > 0}

derived from the disjunctiofimoz < ~2) V (max > 79 + 1). AsQ3 U Q4 is not empty, by Lemma 5.1 there
exists a translation afr + dy > f for PZ which has the formryz 4+ d'y + €’s; > f’ and can be derived as
a split cut for the following one-row relaxation &f=:

PP (M, aq]) = {(3372/78) € Z™ xR (MA+ arm)z + MGy — arst = Mb+ aq (1 + 1)} ,
wherel; € R™, a1 € R and we havers = A\ A + aym1. We will refer to the inequalityx + dy > f as

theoriginal cut and the inequalityrsx + d'y + €’s; > f/ ascut (A).
As cut (A) is a translation of the original cut for the get we have

c o 1A T
d d G 0

B ol =1 e | T 'UB + 01 1 (23)
f f! p1b v +1

for someg;,d; € R andp; € R'™™ where;, > 0. Clearly,5; = ¢'. As cut (A) is a split cut for
PZ([A1, 1)), itis also a split cut for the two-row set

T ={(zy,s) € Z™ x RTH : MAz + MGy = Mb, mx —s1 =y + 1}

Notice thatrx — s1 = 71 + 1 is included in the definition of this set and therefore addingultiple of this
equation to cut (A), we can obtain the following cut

(m2 + o)z +d'y > f'+01(n + 1), (24)

which we will call cut (B), as a split cut fofl". By rewriting (23) note that coefficients of cut (B) satisfy

o + 0171 c 1A
d d ,ulG
=0 -
0 0 0
fr401(n +1) f pab
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and therefore cut (B) is a translation of the original cut forWe will work with cut (B) in the rest of the
proof and for notational ease write itas+dy > f, wherec = (mo+0171),d = d andf = f'+51(y1+1).
So far, we showed that cut (B) is a translation of the origmalfor P and it can be obtained as a split
cut for T' derived from the disjunctionémoz < 72) V (mz > 72 + 1). Therefore, cut (B) is valid for
TEP N {x : mx <y} = TP N D3 O PEP (M) N D3 and, similarly, also foP" (A1) N Dy.
We now look at the remaining atoms associated with the paranoeoss disjunction. As the original
cut is valid for@, and(@-, it is a split cut for

pPs ={(z,y) € Z™ xR" : Az + Gy =b, mx + s2 =71, S2,y > 0}

derived from the disjunctiofi(my — tmm1)x > vo —ty1 + 1) V ((7m2 — tm)z < 79 — ty1). As cut (B) is a
translation of the original cut, cut (B) also is a split cut &= derived from the same disjunction. Therefore,
asQ; U Q9 is not empty, there exists a translation of cut (B) foF which has the forn{ry — tmy)z +
d"y + €"so > f”, which we will call cut (C). Clearly cut (C) can be derived aspdit cut for the following
one-row relaxation oP=:

PF([AQ,O(Q]) = {(l‘,y) € Z" x RT_E t (A2 A 4 agm)x + MGy + agse = A2b + Oég’yl} ,

where)s € R™, oy € R and we haver, — tm; = A\ A + agm. As before, it is easy to see that cut (C) is a
split cut for the two-row set

K ={(z,y,s) € Z" x RP*"" : \gAw + X\oGy = Aob, mz + 52 = 71}

Furthermore, as cut (C) is a translation of cut (B) foF,

C Ty — tmy MQA Uyt
CZ o d// /LQG 0
/32 O_ - 6l/ + 0 + 62 1 (25)
f f pi2b M
for somes3s, 6, € R! anduy € RY>™ where, > 0 anddy = —e”. Notice that cut (B) may not be a split

cut for K. However, cut (B) is a split cut for the three-row set
L={(z,y,8) € Z" x RT! : NgAz + MGy = A\ab, Az + 112Gy = pugb, mx + 52 =71},

and therefore cut (B) is valid faPy " (\g, o) N Dy and PEF (N, p2) N Ds.
Now consider the three-row relaxation Bfgiven by the multipliers\, Ay andA3 = ps:

Pg()\l, AQ,)\g) = {(.T,y) eZ™ xR™ : Az +\Gy=X\b, i1 =1,2,3;y > 0},

and note thaPs (A1, Ao, A3) = PEP (M) N PEE (N, po). Clearly, cut (B) is valid forPs3 (A1, A2, A3) N D; for
i =1,...,4 and therefore it is a parametric cross cut R\, A2, A3). We have therefore established that
a translation of the original cut, namely cut (B), can be iblgtd as a parametric cross cut from a three-row
relaxation ofP. We will next show that the coefficients of thevariables in this three-row relaxation satisfy
the desired properties.

Remember that; andns are assumed to be linearly independent, and

AN A o — (V1T —Qq 1
M = /\2A = 7T2—t7T1—Oé27T1 = —(t+0é2) 1 |: :1 :|
A3A (B2 — 1)ma + (201 +t — d2)m1 (B201 + 1 —02) (B2 —1) ’
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Clearly the matrix)/ has rank either 1 or 2. If rafiR/) = 2, then there exists a non-singulax 3 matrix
M’ such thatM’'M = [m,7m,0]7 and the relaxationP3 (A1, A2, A3) can indeed be written in the desired
form by multiplying the defining equations by’

On the other hand, if rarfR/) = 1, then by Lemma 5.2 the convex hull &&(\;, A2, A3) can be
obtained using split cuts. However, this implies that thegjinalitycz + dy > f is valid for the split closure
of P asP;(\1, A2, A3) is obtained by taking linear combinations of the rowsbfSince we assumed that
the original cutcz + dy > f is a nontrivial cross cut, and therefore so is its transtatio + dy > f, we
obtain that rank) ) = 2, completing the proof. .

We would like to emphasize that both cut (B) and cut (C) in th@opabove are translations of the
original cut with respect td>. We cannot, however show that either of them is a parametogsccut for
P>(A1, A2) when we do not have the translation rgyy = bs.

Lemma 5.5. LetVvi_, D; be a parametric cross disjunction, and assuhg) Q4 = () (resp.,Q1 U Qo = 0).
Thenmiz < ~; (resp.,mx > 1 + 1) is a parametric cross cut foP. If it is a non-trivial one, then there
existAr, Ao € RM>™ with m; = A\ A, mo = Ay A such that it is a parametric cross cut for

Py(A1, o) ={(z,y) € Z™" xR™ : maz + g1y = b1, mex + gay = ba, y > 0},
whereg; = \;G andb; = \;b for i = 1,2, derived fromvi_| D;.

Proof. By definition, 1z < ~; is valid for D; and D,. Also, Tz < v; is valid for() = Q3 = Qq4, and is
thus a parametric cross cut féx.

Now assumeryx < 7 is a non-trivial parametric cross cut, i.e., it is not vala the split closure of
P. Therefore, the split closure @ (and alsoP~") cannot equal. As Q3 = Q. = (), the Farkas’ Lemma
implies that there exist multipliers;, \;, € R™, anday, as, 1, f2 € R4 such that

)\llA + aym — Prme =0, )\/1G <0, )\llb + 061(’)/1 + 1) — Biye > 1, (26)
MNA+ agmy + ey =0, MNyG <0, Xob+ag(y1 + 1)+ Ba(r2+1) > 1. (27)

As mx < 77 is a non-trivial parametric cross cut, Lemma 5.3 implieg thaand 7y are linearly inde-
pendent. IfA] = 0, the linear independence af andm, would imply thatay = $; = 0 which would
contradict the last inequality in (26). Therefoxe # 0, and we can similarly conclude thaf # 0. There-
fore, P»(\}, \}) is a non-trivial relaxation of?, and P£Y (N, \y) N Dy = 0 and PEY (N, \y) N Dy = 0.
This implies thatr;z < 7 is a cross cut foPa (A}, \)).

We can assume that at least onef 3 is positive, otherwiseP”"” = (), a contradiction to the assumed
non-triviality of m;z < ~;. Similarly, we conclude that one aof,, 55 is positive. Ifa; = 0, theng; > 0;
this would imply thatP™" has an empty intersection withe : moz < 72}. Then points inP“" would
satisfymox > 9. Similarly, if a; = 0, then points inP“" would satisfymoz < o + 1. Thus if botha; and
ap are zero, then both the inequalitiesr > 2 + 1 andmyz < 4 are split cuts, and the split closure Bf
is empty, a contradiction. Therefore at least onefas is positive.

If 31 =0o0r B3, =0, thenm iz <~ + 1is a valid inequality forP’*, and thereforer;z < ~, is a split
cut for P. As we assumed that;z < 4 is not a split cut forP, we can assume tha@i > 0 andS, > 0.
Now, equations (26) and (27) imply that

i )a=e(D)weea= (20 7))
A=0Q where() =
< Ay T —ay —[3
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The determinant of2 equalsay 82 + ao 31 Which is positive, and therefofe is invertible. Letting

MY o1 (N
(h)-="(3)
we see thah; A = m; and\a A = 7. Further, the relaxatiof?; (A1, A2) = Py(\], AS), as the constraints of
either relaxation can be obtained from the constraintsebther by linear combinations.
Notice that if the intersection aP~* with D; and D, is empty, then arguing as above, we would infer
thatmx > v + 1 is a parametric cross cut for the two-row relaxatiBi{\1, \2); further the coefficients
of the z variables in the first constraint d®(\;, A2) would ber; and in the second constraint would be

oy —tmy. Clearly, we could then conclude thf(A\1, A2) = P>(A1, A2 +tA1), and that the second relaxation
has the desired form. The result follows. n

Corollary 5.6. Let the intersection oL* with every atom of a parametric cross disjunctiofi_, D; be
empty. Theiz + 0y > 1 is a linear combination of parametric cross cuts. Therefibwe parametric cross
closure ofP equalsf).

Proof. If PL satisfies the conditions of the corollary, then Lemma 5.5igsghatrz < v, (or —mz >
—~1) andmxz > ~1 + 1 are parametric cross cuts f&r Adding these cuts together, we obtéin+ 0y > 1.

Lemma 5.7. Letcx + dy > f be a non-trivial parametric cross cut faP derived from the disjunction
\/leD,», and assum&)s = Q4 = 0, butQ, U Q2 # (. Then there exisk(, Ay, A3 € R withr; = \;A
fori = 1,2 and\3A = 0 such that a translation ofr +dy > f is a parametric cross cut faPs; (A1, A2, A3).

Proof. Let A1, A2 be defined as in Lemma 5.5. Then the LP relaxation of the twioretaxationP; (A1, A2)
has empty intersection witb3 and D,4. Further, as in the proof of Lemma 5.4, we can obtaint+ dy > f
as a split cut forP<, and thereby from a one-row relaxation Bf. From this, obtain the multiplieX’ (=
A2 in Lemma 5.4) such that: + dy > f is valid for PLP(\) N Dy and PP (V) N Dy. Thencz + dy > f

is valid for the intersection of each atom of the disjunctiomwith PFF (A1, X5, \'). Finally, from the proof
of Lemma 5.4 it is clear thakt’ A is a linear combination of; andm,; more precisely in the notation of
Lemmab5.4N A = 7wy — (t + ag)m. Then setting\s = X' — Ao + (£ + a2) A1, we see thaPs (A, A2, \) =
P3(A1, A2, A3), and the latter relaxation has the desired form. "

Together Lemma 5.4 and Lemma 5.7 imply the following result.

Theorem 5.8. Letcx + dy > f be a non-trivial parametric cross cut faP derived from the disjunction
Vi, Dy If PEP 0 (UL, D;) # 0, then there exist row vectobs , Ao, A\3 € R™ with m; = \;A fori = 1,2
and A3 A = 0 such that a translation afz + dy > f is a parametric cross cut for the three-row relaxation
of P, P3(\1, A, A3), derived from the disjunction?_, D;.

This result can be viewed as a generalization of Lemma 5.chiab a statement about the equivalence
of split cuts and MIR cuts.

5.3 A special case

Consider the case when the coefficient mattikas full row rank and note that in this casd = 0 implies
that A = 0 and therefore we obtain the following as a corollary of Tleeo5.8.
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Corollary 5.9. Letex + dy > f and P satisfy the conditions of Theorem 5.8 Althas full row rank, then
there exist row vectora;, \s € R with m; = \; A for ¢ = 1, 2 such that a translation ofz + dy > fis a
parametric cross cut for the two-row relaxation Bf P»(\1, \2), derived from the disjunction;*:lDi.

Consider a non-trivial cross cut: + dy > f for a setP where A has full row rank. By Corollary
5.9,cx + dy > fis across cut fo’, (A1, A2). Consider any atom of the disjunction which has nonempty
intersection withP£" (A1, \2), and obtain multipliers for its constraints and for the defjninequalities of
the atom, sayriz < v, andmax < 7o, which prove thatx + dy > f is a valid inequality. Them is a
(uniquely defined) linear combination @f andr,. Therefore, we can subtract multiples of the constraints
of Py(\1, A\2) to obtain an equivalent cut'y > f’, which is a cross cut for the two-row relaxation. But
replacingrmx by z; andmyz by 22, we see that’y > f’ is a unimodular cross cut for a set having the same
form asWW in (1), and is thus implied by a quadrilateral cut or a trigngit of type 1 or 2. Thus, ift has full
row rank, then there is a 1-to-1 correspondence (up to aiosk) between non-trivial cross cuts and the
family of quadrilateral cuts foP and triangle cuts of type 1 or 2. Similarly, there is a 1-tostrespondence
(up to translations) between crooked cross cuts and 2[@ddftee cuts forP.

In particular, consider the following MIP

z = min{cx+dy : Ax+Gy=bx € Z™, yc R™ >0, y >0}

where all data is rational. Let a basis for the LP relaxatibtinis problem be given and using this basis, the
variables are rewritten as= [z p, xn]| andy = [yp, yn]| Wherex g, yp denote the basic variables ang,

yn denote the nonbasic variables. Similarly, the constraiatrisis rewritten agAgp, Ay, Gp, Gn]. We
call the following relaxation of the MIP, where non-negdiwvequirements of the nonbasic variables are
dropped, itxorner relaxation

zo = min{cr+dy : Ax+Gy="b,x € Z", y € R", zy >0, yy > 0}.

This relaxation is a natural extension of the well-knownnesrrelaxation of pure integer linear programs
(IP) introduced by Ralph Gomory (see [27], [14] for recersiodissions). Clearly, the corner relaxation, both
for IPs and MIPs, depends on the choice of the LP basis.

Note that this feasible region of this corner relaxation eguivalently be written as

zp+ Alzy +Glyy = b (28)
yp + A’zy + G*yy = b (29)
zy—1Is = 0 (30)

s, yn > 0 (31)

rpg,rN € 7 (32)

after (i) writing the nonnegativity of 5 variables using additional slack variables, and, (ii) mpljting the
original constraint matrix with the inverse of the (basigtrix obtained by collecting the columns associated
with the basic variables.

Notice thatyp variables are not restricted in sign and givwen =, yn that satisfy (28), (30)-(32), itis
always possible to setz = b*> — A%z — G2y to obtain a feasible point. Therefore, dropping variables
yp and equations (29) simply corresponds to projecting ouytheariables and does not change the value
of the relaxation. Now note that the coefficients of the ietegariables in the remaining constraints form

the matrix :
- | Ip A
4 = [ 0 Iy ]

26



wherelz and Iy are identity matrices of appropriate dimension. Cleatligas full-row rank and therefore
satisfies the conditions of Corollary 5.9. Therefore theiligmf crooked cross (cross) cuts for a corner
relaxation of an MIP equals the family of 2D lattice-freec(juadrilateral cuts and triangle cuts of type 1
and 2).

6 Concluding remarks

One of our main contributions in this paper is to define thekeol cross cuts and show that, for general
mixed-integer sets, they dominate 2D lattice-free cuterBhough we believe this dominance to be strict,
we are not able to establish it. In other words, we are nottabdaswer if a two-row relaxation is sufficient
to produce any given (crooked) cross cut. Depending on tee@mto this question, one can conclude if
crooked cross cuts strictly dominate 2D lattice-free cuta@. We think this is a very interesting open
problem.

Another related question we have not looked at in this papearhiether or not the (crooked) cross cut
closure of a polyhedral mixed-integer set is polyhedral.teNibat polyhedrality of the cross cut closure
would not immediately imply the polyhedrality of the qudaigral closure of the canonical two-row set.
This is due to another open question regarding the dominafnm®ss cuts over unimodular cross cuts.

A final related question that we find interesting is whethanaircrooked cross cuts give the convex hull
of mixed-integer sets with only two integer variables. Uiy this would be an extension of the fact that split
cuts give the convex hull of mixed-integer sets with a sirigteger variable. We believe the answer to be
affirmative.

Recently there has been much research into deriving eféectitting planes for MIPs using 2D lattice-
free cuts. One computational approach which has been explsrto obtain a two-row continuous group
relaxation from two simplex tableau rows corresponding dsit integer variables with fractional value,
derive 2D lattice free cuts, and then apply lifting to incangte upper bound information and integrality
of variables (see [8], [23], [24]). It seems hard to deviseefirctive algorithm to find good, maximal,
lattice-free bodies such that the associated cuts aret@iblay the current LP solution. The results in this
paper suggest an alternative to generating 2D lattice fuée for MIPs. Rather than creating a two-row
continuous group relaxation from a pair of simplex tableaws; one can directly apply different crooked
cross disjunctions to these rows, though it is probably hardnoose a good crooked cross disjunction.
Answers to such computational questions require extemsigerimentation.
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