Rule induction in knowledge graphs using linear programming

Sanjeeb Dash, Joao Goncalves IBM Research Al

AAAI 2023

Knowledge graph completion

Knowledge Graph (KG): Directed node/edge-labeled multigraph; each edge is a "fact", and edge labels represent binary relations between nodes.

Example: (a, r_1, b) is a fact or $r_1(a, b)$ is true

a, *b*, *c*, *d* could be individuals, *r*, *r*₁, *r*₂ could be *son_of*, *brother_of*, *related_to*

Knowledge graphs often have *missing* (and *incorrect*) facts.

KG completion problem: Find missing facts e.g., (*b*, *brother_of*, *a*), (*c*, *brother_of*, *a*)

Popular methods: Rule based & Embedding based

Rules

Examples: $(X, \text{son_of}, Y) \land (Y, \text{son_of}, Z) \rightarrow (X, \text{grandson_of}, Z)$

KG Completion Problem: Answer query (*a*, *r*, ?)

Standard Approach:

- 1) Learn rule-based function $f_r(X, Y)$ which gives high scores to likely facts (X, r, Y) where X, Y are nodes in the graph, and r is an edge-label/relation
- 2) Answer query (a, r, ?) by finding x such that $f_r(a, x)$ has highest score.
- 3) If the correct answer is *b*, measure accuracy by average rank/reciprocal rank of *b* (MR/MRR)

Prior work

Kok, Domingos '05, Richardson, Domingos '06 – Markov Logic Networks Yang, Yang, Cohen '17 (NeuralLP) – Neuro-symbolic methods Rochstätel, Riedel '17 (NTP) – ,, Sadeghian, Armandpour, Ding, Wang '19 (DRUM) – ,, Evans, Grefenstette '18 – Differential ILP Das et al. '18 (Minerva) – Reinforcement Learning Qu et. al. '21 (RNNLogic) – RNN + Probabilistic methods Meilicke et. al. '19 (AnyBURL) – Data mining Teru, Denis, Hamilton '20 (GraIL) – Subgraph reasoning

Advantages:(1) Inductive reasoning is possible.

(2) Interpretable models when few rules are generated.

Drawbacks: (1) Lower levels of accuracy compared to embedding methods (2) *Current methods do not scale*

Embedding based methods

Approach: Find $v_a \in \mathbb{R}^k$ for each node a and a mapping $T_r : \mathbb{R}^k \to \mathbb{R}^k$ for each relation r such that the *score* $||T_r(v_a) - v_b||$ is small for each fact (a, r, b).

Bordes, Usunier, Garcia-Duran, Weston, Yakhnenko '13 (TransE) Yang, Yih, He, Gao, Deng '15 (DistMult) Trouillon, Welbl, Riedel, Gaussier, Bouchard '16 (ComplEx) Dettmers, Pasquale, Pontus, Riedel '18 (ConvE) Lacroix, Usunier, Obozinski '18 (ComplEx-N3) Sun, Deng, Nie, Tang '19 (RotatE)

Advantages:(1) Reasonable accuracy (2) Scalable

Drawbacks: (1) Not effective for inductive reasoning (works for transductive reasoning) (2) Model is not interpretable.

Our work

Goals: Develop a scalable, rule-learner that returns compact sets of rules

- Interpretability is an explicit goal, and we return low-complexity rules
- We trade off complexity versus accuracy
- Scalability is attained by solving linear programming models instead of non-convex models

Our work

Approach: Learn few (FOL) rules $R_1, ..., R_p$ and positive weights $w_1, ..., w_p$ where each R_i has the form $r_1(X, X_1) \wedge r_2(X_1, X_2) \wedge \cdots \wedge r_l(X_{l-1}, Y) \rightarrow r(X, Y)$

where r_1, \ldots, r_l are relations in G.

The *length* of this rule is *l*, and the left-hand-side of the rule is the clause $C_i: V \times V \rightarrow \{0,1\}$

The learned prediction/scoring function $f_r: V \times V \rightarrow \mathbb{R}_+$ for r is:

$$f_r(X,Y) = \sum_{i=1}^p w_i C_i(X,Y) \quad \forall X,Y \in V$$

Details

$C_1(X,Y)$ \swarrow Rule $r_1(X,X_1) \land r_2(X_1,X_2) \land r_3(X_2,Y) \rightarrow r(X,Y)$ and associated clause-edge vector

KG: a-j are entities

r, r_1 , r_2 , r_3 are relations

 a_{i1}

LP Model

Minimize error for weighted collection of rules:

Model details

- E_r = set edges labeled by r, and $(t_i, h_i) = i$ th edge in E_r
- w_k variable gives weight for rule k; $w_k > 0$ implies rule k is chosen
- a_{ik} is a constant = $C_k(t_i, h_i)$
- c_k is a constant = 1+ rule length
- C is a parameter bounding weighted complexity of chosen rules
- τ is a parameter, neg_k is a constant

Modeling

- Use all positive facts for a relation + sample some negative facts for the LP model

Algorithmic issues

- Use simple shortest path heuristics to find relational paths, and associated rules
- Iterate over different values of tau and complexity

Code available at: https://github.com/IBM/LPRules

Related work

Linear Programming based boosting methods for classification that use column generation

Demirez, Bennett, Shawe-Taylor '02 Eckstein, Goldberg '12 Eckstein, Kagawa, Goldberg '19 Dash, Gunluk, Wei '18

Column Generation

Solve LP over small subsets of rules

Column Generation

Step 0 – Fix an initial complexity and tau value

Step 1 – Use simple heuristics to create an initial collection of rules

Step 2 – Set up LP model and solve it

Step 3 – Obtain dual values of LP model

Step 4 – Dual values indicate which facts are "well-covered" and which are not. Heuristically generate new rules that "cover" facts that are not well-covered.

Step 5 – Repeat Steps 2 – 4 till termination criterion

Sizes of datasets

Datasets	# Relations	# Entities	# Train	# Test	# Valid
Kinship	25	104	8544	1074	1068
UMLS	46	135	5216	661	652
FB15k-237	237	14541	272115	20466	17535
WN18RR	11	40943	86835	3134	3034
YAG03-10	37	123182	1079040	5000	5000

Neuro-symbolic methods take a long time on FB15k-237 and cannot handle YAGO3-10

Experiments (accuracy)

Datasets	ComplEx-N3	AnyBURL	NeuralLP	DRUM	RNNLogic	LPRules
Kinship	0.889	0.626	0.652	0.566	0.687	0.746
UMLS	0.962	0.940	0.750	0.845	0.748	0.869
FB15k-237	0.362	0.226	0.222	0.225	† 0.288	0.255
WN18RR	0.469	0.454	0.381	0.381	0.451	0.459
YAGO3-10	0.574	0.449				0.449

† We could not run RNNLogic on FB15k-237 and report numbers taken from Qu et al. (2021)

Running time + number of rules

Metric	Datasets	AnyBURL	NeuralLP	RNNLogic	LPRules
Average # rules per relation	Kinship	6653.1	10.4	200.0	21.0
	UMLS	1837.6	15.1	100.0	4.2
	FB15k-237	79.9	8.1		14.2
	WN18RR	47.3	14.3	200.0	15.6
	YAG03-10	63.0			7.8
Running time	Kinship	1.7	1.6	108.8	0.5
	UMLS	1.9	1.1	133.4	0.2
	FB15k-237	3.9	14565.9		234.5
	WN18RR	1.8	399.9	104.0	11.0
	YAG03-10	34.3			1648.4

Avg number of rules per relation and wall clock running time on a 60 core machine

Accuracy versus Complexity tradeoff

Change in MRR with change in average rules per relation

LPRules + rules from other code

Avg # rules/relation

MRR values using rules generated by AnyBURL and RNNLogic (in experiments A-D)

- A Use other rule-based code
- B Take rules and weights and use in our prediction function
- C Recalculate weights using complexity bound
- D Add our rules and recalculate weights

Concluding remarks

Features

- Our LP model performs well: it chooses a small set of rules that yield high accuracy
- Our simple rule generation heuristics suffice for small datasets
- Column generation is essential for large datasets such as YAGO3-10

Directions for improvement

- More general rules
- Better sampling (for better scaling & accuracy)