
Rule induction in knowledge graphs using
linear programming

Sanjeeb Dash, Joao Goncalves

IBM Research AI

AAAI 2023

Knowledge graph completion

Knowledge Graph (KG): Directed node/edge-labeled multigraph; each edge is a “fact”, and
edge labels represent binary relations between nodes.

Example: 𝑎, 𝑟1 , 𝑏 is a fact or 𝑟1 𝑎, 𝑏 is true

𝑎, 𝑏, 𝑐, 𝑑 could be individuals,
𝑟, 𝑟1, 𝑟2 could be son_of, brother_of, related_to

a

b

d

c

r

rr1

r2

r2

r1

Knowledge graphs often have missing (and incorrect) facts.

KG completion problem: Find missing facts e.g., (𝑏, brother_of, 𝑎), (𝑐, brother_of, 𝑎)

Popular methods: Rule based & Embedding based

Rules

Examples: 𝑋, son_of, 𝑌 ∧ 𝑌, son_of, 𝑍 → 𝑋, grandson_of, 𝑍

KG Completion Problem: Answer query 𝑎, 𝑟, ?

Standard Approach:

1) Learn rule-based function 𝑓𝑟 𝑋, 𝑌 which gives high scores to likely facts 𝑋, 𝑟, 𝑌 where 𝑋, 𝑌
are nodes in the graph, and 𝑟 is an edge-label/relation

2) Answer query 𝑎, 𝑟, ? by finding 𝑥 such that 𝑓𝑟 𝑎, 𝑥 has highest score.

3) If the correct answer is 𝑏, measure accuracy by average rank/reciprocal rank of 𝑏 (MR/MRR)

Prior work

Kok, Domingos '05, Richardson, Domingos '06 – Markov Logic Networks
Yang, Yang, Cohen '17 (NeuralLP) – Neuro-symbolic methods
Rochstätel, Riedel '17 (NTP) – ,,
Sadeghian, Armandpour, Ding, Wang '19 (DRUM) – ,,
Evans, Grefenstette '18 – Differential ILP
Das et al. '18 (Minerva) – Reinforcement Learning
Qu et. al. '21 (RNNLogic) – RNN + Probabilistic methods
Meilicke et. al. '19 (AnyBURL) – Data mining
Teru, Denis, Hamilton ‘20 (GraIL) – Subgraph reasoning

Advantages:(1) Inductive reasoning is possible.
(2) Interpretable models when few rules are generated.

Drawbacks: (1) Lower levels of accuracy compared to embedding methods
(2) Current methods do not scale

Embedding based methods

Approach: Find 𝑣𝑎 ∈ ℝ𝑘 for each node 𝑎 and a mapping 𝑇𝑟: ℝ
𝑘 → ℝ𝑘 for each relation 𝑟 such that

the score 𝑇𝑟 𝑣𝑎 − 𝑣𝑏 is small for each fact 𝑎, 𝑟, 𝑏 .

Bordes, Usunier, Garcia-Duran, Weston, Yakhnenko '13 (TransE)
Yang, Yih, He, Gao, Deng '15 (DistMult)
Trouillon, Welbl, Riedel, Gaussier, Bouchard '16 (ComplEx)
Dettmers, Pasquale, Pontus, Riedel '18 (ConvE)
Lacroix, Usunier, Obozinski '18 (ComplEx-N3)
Sun, Deng, Nie, Tang '19 (RotatE)

Advantages:(1) Reasonable accuracy
(2) Scalable

Drawbacks: (1) Not effective for inductive reasoning (works for transductive reasoning)
(2) Model is not interpretable.

Goals: Develop a scalable, rule-learner that returns compact sets of rules

- Interpretability is an explicit goal, and we return low-complexity rules
- We trade off complexity versus accuracy
- Scalability is attained by solving linear programming models instead of non-convex models

Our work

Approach: Learn few (FOL) rules 𝑅1, … , 𝑅𝑝 and positive weights 𝑤1, … , 𝑤𝑝 where each 𝑅𝑖 has the form

𝑟1 𝑋, 𝑋1 ∧ 𝑟2 𝑋1, 𝑋2 ∧ ⋯∧ 𝑟𝑙 𝑋𝑙−1, 𝑌 → 𝑟 𝑋, 𝑌

where 𝑟1, … , 𝑟𝑙 are relations in 𝐺.

The length of this rule is 𝑙, and the left-hand-side of the rule is the clause 𝐶𝑖: V × V → 0,1

The learned prediction/scoring function 𝑓𝑟: V × V → ℝ+ for 𝑟 is:

𝑓𝑟 𝑋, 𝑌 =෍

𝑖=1

𝑝

𝑤𝑖𝐶𝑖 𝑋, 𝑌 ∀ 𝑋, 𝑌 ∈ 𝑉

Our work

e

g

f

h

r3r1

r2

r2

r1

i

j

r

r1

a

b

d

c

r

r3r1

r2

r2

r3

r3

r

r3

r3

r

edge 𝑟1 ∧ 𝑟2 ∧ 𝑟3 𝑟

(a,d) 1 1

(a,e) 1 1

(f,c) 0 1

(g,f) 1 1

(i,f) 1 1

(i,j) 0 1

(e,f) 1 0

(a,i) 1 0

(e,j) 1 0

r

r

Details

positive instances:
edges in KG = 𝐸𝑟

negative instances:
non-edges (sample)

Rule 𝑟1 𝑋, 𝑋1 ∧ 𝑟2 𝑋1, 𝑋2 ∧ 𝑟3 𝑋2, 𝑌 → 𝑟 𝑋, 𝑌 and
associated clause-edge vectorKG:

a-j are entities
r, r1, r2, r3 are relations

𝑟1 𝑎, 𝑏 ∧ 𝑟2 𝑏, 𝑐 ∧ 𝑟3 𝑐, 𝑑 is true and
𝑟 𝑎, 𝑑 is true

𝐶1 𝑋, 𝑌

𝑎𝑖1

min
𝑤,𝜉

෍

𝑖:𝑦𝑖=1

𝜉𝑖 + τ෍

𝑘∈𝐾

neg𝑘𝑤𝑘

𝜉𝑖 + σ𝑘∈𝐾 𝑎𝑖𝑘𝑤𝑘 ≥ 1, 𝜉𝑖≥ 0, (𝑡𝑖, ℎ𝑖) ∈ 𝐸𝑟

෍

𝑘∈𝐾

𝑐𝑘𝑤𝑘 ≤ 𝐶

𝑤𝑘 ∈ 0,1 , 𝑘 ∈ 𝐾

loss on positive instances loss on negative instances

cover positives

complexity bound

select clause k or not

LP Model

Minimize error for weighted collection of rules:

value of scoring fn.

Model details

- 𝐸𝑟 = set edges labeled by 𝑟, and 𝑡𝑖 , ℎ𝑖 = 𝑖th edge in 𝐸𝑟
- 𝑤𝑘 variable gives weight for rule k; 𝑤𝑘 > 0 implies rule k is chosen
- 𝑎𝑖𝑘 is a constant = 𝐶𝑘(𝑡𝑖, ℎ𝑖)

- 𝑐𝑘 is a constant = 1+ rule length
- 𝐶 is a parameter bounding weighted complexity of chosen rules
- τ is a parameter, neg𝑘 is a constant

Modeling
– Use all positive facts for a relation + sample some negative facts for the LP model

Algorithmic issues
– Use simple shortest path heuristics to find relational paths, and associated rules
– Iterate over different values of tau and complexity

Code available at: https://github.com/IBM/LPRules

Related work

Linear Programming based boosting methods for classification that use column generation

Demirez, Bennett, Shawe-Taylor '02
Eckstein, Goldberg '12
Eckstein, Kagawa, Goldberg '19
Dash, Gunluk, Wei '18

Solve LP over small subsets of rules

clause complexity costs

clause data matrix

Restricted Master LP

Pricing Heuristic

Augment with improving clauses
(columns)

Column Generation

Column Generation

Step 0 – Fix an initial complexity and tau value

Step 1 – Use simple heuristics to create an initial collection of rules

Step 2 – Set up LP model and solve it

Step 3 – Obtain dual values of LP model

Step 4 – Dual values indicate which facts are “well-covered” and which are not. Heuristically
generate new rules that “cover” facts that are not well-covered.

Step 5 – Repeat Steps 2 – 4 till termination criterion

Sizes of datasets

Datasets # Relations # Entities # Train # Test # Valid

Kinship 25 104 8544 1074 1068

UMLS 46 135 5216 661 652

FB15k-237 237 14541 272115 20466 17535

WN18RR 11 40943 86835 3134 3034

YAGO3-10 37 123182 1079040 5000 5000

Neuro-symbolic methods take a long time on FB15k-237 and cannot handle YAGO3-10

Experiments (accuracy)

† We could not run RNNLogic on FB15k-237 and report numbers taken from Qu et al. (2021)

Datasets ComplEx-N3 AnyBURL NeuralLP DRUM RNNLogic LPRules

Kinship 0.889 0.626 0.652 0.566 0.687 0.746

UMLS 0.962 0.940 0.750 0.845 0.748 0.869

FB15k-237 0.362 0.226 0.222 0.225 †0.288 0.255

WN18RR 0.469 0.454 0.381 0.381 0.451 0.459

YAGO3-10 0.574 0.449 0.449

Running time + number of rules

Metric Datasets AnyBURL NeuralLP RNNLogic LPRules

Average #
rules per
relation

Kinship 6653.1 10.4 200.0 21.0

UMLS 1837.6 15.1 100.0 4.2

FB15k-237 79.9 8.1 14.2

WN18RR 47.3 14.3 200.0 15.6

YAGO3-10 63.0 7.8

Running
time

Kinship 1.7 1.6 108.8 0.5

UMLS 1.9 1.1 133.4 0.2

FB15k-237 3.9 14565.9 234.5

WN18RR 1.8 399.9 104.0 11.0

YAGO3-10 34.3 1648.4

Avg number of rules per relation and wall clock running time on a 60 core machine

Accuracy versus Complexity tradeoff

Change in MRR with change in average rules per relation

LPRules + rules from other code

MRR values using rules generated by AnyBURL and RNNLogic (in experiments A-D)

A – Use other rule-based code
B – Take rules and weights and use in our prediction function
C – Recalculate weights using complexity bound
D – Add our rules and recalculate weights

Avg # rules/relation

Concluding remarks

Features

– Our LP model performs well: it chooses a small set of rules that yield high accuracy

– Our simple rule generation heuristics suffice for small datasets

– Column generation is essential for large datasets such as YAGO3-10

Directions for improvement

– More general rules

– Better sampling (for better scaling & accuracy)

