
Rapid Theory Prototyping: An Example of an Aviation Task

Bonnie E. John
1

 Marilyn Hughes Blackmon
2
 Peter G. Polson

2
 Karl Fennell

2
 Leonghwee Teo

1

1
Human-Computer Interaction Institute, Carnegie Mellon University

Pittsburgh PA 15213 USA

{bej, teo}@cs.cmu.edu
2
Institute of Cognitive Science, University of Colorado

Boulder, CO 80309 USA

{blackmon, Peter.Polson}@colorado.edu, karlfennell@aol.com

We present our experience using CogTool, a tool originally designed for ease of use and learning by non-

psychologist design practitioners, as a means for rapid theory exploration. We created seven iterations of a

“model prototype” of an aviation task where each iteration produced errors that pointed to additional theory

or device knowledge that should be incorporated to prevent those errors. This theory and knowledge was

put into the next iteration by modifying the mock-up of the device, not by changing the implementation of

the underlying cognitive model. This trick allowed us to rapidly change theory and knowledge and

understand what must eventually migrate to the underlying cognitive model to provide general support for

predictions of novice behavior in multi-step procedures with complex devices.

INTRODUCTION

Human performance models have been painstakingly

constructed and validated by researchers in domains relevant

to Human Factors for decades, but few practitioners routinely

use modeling as a tool in their design and evaluation work.

This has spurred several efforts to create tools that allow non-

researchers to achieve the benefits of modeling without

investing as much time in learning to model and constructing

each new model (Blackmon. et. al., 2005; John, et. al., 2004).

The time advantage of these tools is achieved by adopting sets

of assumptions that simplify theories of human interaction.

The fact that the target users of these tools are practitioners,

and that such tools simplify theory, may lead researchers to

dismiss the utility of such tools for basic research in new

domains and for developing or extending theory. In this paper,

we present an example from the aviation domain that belies

that conjecture; we demonstrate how using a practitioner-

oriented tool, CogTool, provides a platform for researchers to

rapidly explore theory and knowledge requirements in a new

domain.

BACKGROUND

CogTool was created to allow UI designers with a

graphics design background to use the Keystroke-Level Model

(KLM; Card, et. al., 1980). UI designers often express their

designs in storyboards, with frames representing the states of

the device, widget “hot spots” representing the interactive

controls in the device, and transitions connecting widgets to

frames representing the actions a user takes to accomplish a

task. When a UI designer demonstrates the correct way to do

tasks, CogTool turns these storyboards and demonstrations

into ACT-R code (Anderson, et. al., 2004) that emulates the

KLM, runs the code, and returns a prediction of skilled

performance time for the task on that UI. This modeling-by-

demonstration substantially reduced learning time and

increased accuracy for novice modelers with no background in

psychology, and showed an order of magnitude reduction in

time for a skilled modeler to produce predictions on a new

device and task compared to doing KLM by hand (John et. al.,

2004). CogTool has been taught in HF and HCI classes at

universities and professional conferences (e.g., HFES 2008,

2009) for several years and is used professionally by

participants in these classes.

CogTool is now being expanded to make predictions

beyond the KLM. Teo and John (2008) reported an integration

of CogTool, an Information Foraging Theory model, SNIF-

ACT (Fu & Pirolli, 2007), and a minimal model of visual

search (Halverson & Hornof, 2007), that produced predictions

of exploration behavior. This expanded tool, CogTool-

Explorer, uses Latent Semantic Analysis (LSA; Landauer, et.

al. 2007) to calculate semantic relatedness metrics to feed to

SNIF-ACT. CogTool-Explorer uses the name of the task as

the goal and the labels on the widgets in the storyboard as the

terms to calculate semantic similarity.

Our goal in this research is to expand CogTool-Explorer

beyond text-only, encyclopedia-like websites and simple

search tasks to predict exploration behavior on complex

devices with multi-step procedures and expert domain

knowledge, for example, flight automation systems in an

airliner cockpit. After presenting an aviation task, we report

our expansion into this new domain, using CogTool-Explorer

to rapidly explore what new theory, cognitive mechanisms,

and domain knowledge may be necessary to include in a

general model of flight deck tasks.

THE TASK AND DEVICE

The task is to enter the landing speed (an approach

reference speed) into the Boeing 777 Flight Management

Computer (FMC) using the Control and Display Unit (CDU).

This task is very frequent and an experienced commercial

airline 777 pilot instructor (the fourth author) considers it an

easy task for commercial airline pilots new to the Boeing 777

FMC. (Note that these pilots have been commercial airline

pilots for many years before entering 777 training, but flight

automation devices like the CDU may be new to them.)

To appear in the Proceedings of the Human Factors and Ergonomics Society 53nd Annual Meeting, 2009

The CDU is the primary input-output device for the FMC

(Figure 1). Information in the FMC is organized into pages. A

typical CDU data entry task is begun by pressing a function

key to display the correct page (Step 1). A page display

includes a title line at the top, right and left data fields, and a

scratch pad line at the bottom. Six line select keys (LSK,

referred to as 1R, 2R,…6R, 1L,…6L) are adjacent to the

display on each side. These are “soft keys”, i.e., their functions

are indicated by the characters (commands or data and labels)

on the display next to them. For example, in State 2, a pilot

trained on this device knows that the approach reference speed

can be entered into LSK 4R because it has the label

FLAP/SPEED and a blank data display line (--/---). Hitting an

LSK that contains a suggested value fills the scratch pad (Step

2), as does typing with the alphanumeric keys (not used here).

The contents of the scratch pad are then entered into a data

display line by hitting its LSK (Step 3).

ITERATIONS ON A MODEL PROTOTYPE

We performed seven iterations on a “model prototype” of

this CDU task, that is, the ACT-R model that makes the

predictions did not change between iterations, only the

semantic space it used and the storyboard it worked on were

changed. Thus, analogous to a UI prototype that works only

enough to do user tests, our model prototypes work only

enough to allow us to examine errors made at each stage and

make changes to include new theory and knowledge to

INIT

REF
RTE

DEP

ARR
ALTN

FIX

MENU

LEGS HOLD

NAV

RAD

FMC

COMM

VNAV

PROG

DEL CLR

PREV

PAGE

NEXT

PAGE

EXEC

BRT

1 2 3

4 5 6

7 8 9

. 0 +/-

E A B C D

F G H I J

K M O

P

V X Y

Z

W

SP

L N

Q R S T

U

/

INIT

REF
RTE

DEP

ARR
ALTN

FIX

MENU

LEGS HOLD

NAV

RAD

FMC

COMM

VNAV

PROG

DEL CLR

PREV

PAGE

NEXT

PAGE

EXEC

BRT

1 2 3

4 5 6

7 8 9

. 0 +/-

E A B C D

F G H I J

K M O

P

V X Y

Z

W

SP

L N

Q R S T

U

/

GRWT
407.0

< INDEX

APPROACH REF

FLAPS VREF
25O 146 KT

30O 138 KT

FLAPS/SPEED
- - / - - -

THRUST LIM >

INIT

REF
RTE

DEP

ARR
ALTN

FIX

MENU

LEGS HOLD

NAV

RAD

FMC

COMM

VNAV

PROG

DEL CLR

PREV

PAGE

NEXT

PAGE

EXEC

BRT

1 2 3

4 5 6

7 8 9

. 0 +/-

E A B C D

F G H I J

K M O

P

V X Y

Z

W

SP

L N

Q R S T

U

/

GRWT
407.0

< INDEX

APPROACH REF

FLAPS VREF
25O 146 KT

30O 138 KT

FLAPS/SPEED
- - / - - -

THRUST LIM >

 30/138

INIT

REF
RTE

DEP

ARR
ALTN

FIX

MENU

LEGS HOLD

NAV

RAD

FMC

COMM

VNAV

PROG

DEL CLR

PREV

PAGE

NEXT

PAGE

EXEC

BRT

1 2 3

4 5 6

7 8 9

. 0 +/-

E A B C D

F G H I J

K M O

P

V X Y

Z

W

SP

L N

Q R S T

U

/

GRWT
407.0

< INDEX

APPROACH REF

FLAPS VREF
25O 146 KT

30O 138 KT

FLAPS/SPEED
- - / - - -

THRUST LIM >

 30/138

State 1: Blank screen
Step 1: Hit the INIT REF button to

transition to the APPROACH
REF screen

State 2: APROACH REF screen
presents 2 alternative
suggestions in upper right
(next to 1R and 2R)

Step 2: Hit the 2R button to put its
values into the scratch pad

State 3: 30/138 is in the scratch pad
(bottom line of display, far left)
4R is ready to receive a value
(shows --/---)

Step 3: Hit the 4R button to enter the
scratch pad value into the FMC

State 4: 30/138 appears
in 4R
Data is entered
into the FMC

END OF TASK

Figure 1. The steps to enter the approach reference speed using the CDU

Table 1. Results of seven iterations of model prototypes of setting an approach reference speed on the CDU. The first column of results shows the number of model

runs that successfully completed the task out of 100 runs. The next three columns show how many runs completed each of the three steps successfully. The

changes made in CogTool and how much time it took to make those changes (in minutes) is in the center of the table. The right side of the table shows the types of

errors at each step and how many runs made that error. Numbers with * preceding them indicate that the CogTool storyboard allowed recovery from these errors as
per the theory. Cells containing a dash mean that the error is not applicable in this iteration. Blank cells mean the model did not get far enough to make that error.

alleviate these errors. Table 1 shows a progression from a

model prototype that never completed the task to one with a

92% success rate. (There is variability in the underlying ACT-

R model in its visual search and its decisions to choose

between items of high semantic similarity, so we ran each

model 100 times to assess its behavior.) Below, we present

how each iteration differs from its predecessors and how new

theory and knowledge were rapidly prototyped by simple

changes in the storyboard.

Iteration 1: Out-of-the-box CogTool-Explorer

The Out-of-the-Box model was constructed by making

CogTool storyboard of the information in Figure 1. The four

states of the CDU are four frames in the storyboard. In each

frame, 69 button widgets represent the CDU’s buttons, labeled

just as they are on the CDU, e.g., “INIT REF”, “1”, “A”. Each

line of text on the display screen is represented as a non-

interactive widget (e.g., the model can look at it, but not touch

it or transition to another frame from it). The goal was

represented as a task, just as it was stated in a training

document, “Select landing flap and reference air speed for an

approach.” The steps to accomplish this task are represented

as transitions between button widgets and frames (as in Figure

1), i.e., hitting the INIT REF button in the first frame

transitions to the second frame. If the model hits any other

button, it does nothing and is counted as an error.

When CogTool-Explorer is run, it automatically sends the

task statement and the widget labels to an LSA server to

calculate semantic similarities between them, with reference to

a default semantic space (1
st
_year_college). It uses those

semantic similarities to make decisions about which widget to

press to accomplish the task. We expected this out-of-the-box

model to fail, as it knows virtually nothing about the

vocabulary of the domain nor operation of the device, and, as

expected, it failed in all 100 runs. In fact, it never succeeded at

the first step, hitting the INIT REF button.

Iteration 2: Using experienced pilot’s knowledge

The next iteration took only 1 minute to do with CogTool-

Explorer because it already had the ability to select between

different LSA semantic spaces. We simply selected (in a drop-

down list) a new semantic space against which to calculate

similarities between the task and widget labels. The new

semantic space was built from 2192 documents, containing

4670 unique terms, extracted from four instruction manuals

that pilots are likely to have read while learning to use the

CDU. Calculating similarities against a domain-appropriate

semantic space is analogous to using 777 pilot trainees in a

user study instead of non-pilot college freshmen. This iteration

did marginally better, selecting INIT REF in the first step 10

times, but those runs then failed to select 2R in the second

step. This means that at the first step, INIT REF was more

attractive than chance, but with 69 buttons to examine, 86% of

the time it chose from an incorrect region of the device.

Looking at the runs that made it to the second step, 6 of the 10

hit the INIT REF button again and 3 hit the characters on the

screen instead of an LSK button. Both of these errors reflect

lack of device knowledge, i.e., that repeatedly pressing a

button doesn’t make progress in this task and that the screen is

not a touch screen but has soft keys that select the data

displayed on the screen. The latter is remedied in the next

iteration; the former in iteration 5.

Iteration 3: Elaboration & knowledge of soft keys

In the third iteration, we brought to bear prior research in

semantic relatedness. First, measures of semantic relatedness

in LSA and similar tools are more valid and reliable with

longer texts than with short labels. Previous research has

delivered accurate predictions of human behavior by

automatically elaborating short labels, simulating how people

elaborate text with background knowledge during text

comprehension (Blackmon et al., 2005, 2007). Ultimately, this

elaboration process could be built “under the hood” in

CogTool-Explorer, but we could rapidly examine its potential

by hand-editing the label on each button to include fully

spelled out terms as well as abbreviations. For example, the

label on the INIT REF button became “INIT REF

Initialization Reference Position”. Likewise, we elaborated the

goal beyond what was originally written by the instructor;

CogTool-Explorer allows an arbitrarily long string to be

entered as the task name, so it was trivial to enter an

elaborated goal into this field. The first two authors spent a

few hours looking up terms in aviation glossaries and entering

them into the button labels and task name.

We used a similar method to simulate the device

knowledge that LSKs are labeled by the text on the display

adjacent to them. The text on the line next to each button (and

its elaboration) was simply copied into the label for each LSK

in the storyboard. This simulated the pilot’s knowledge that

the label of an LSK is the text on the screen next to it.

These changes resulted in a model prototype that still

does not complete the entire multi-step task. However, it hits

INIT REF 19 times in the first step, and one run hit 2R in the

second step (then hit 2R again in the third step, failing to

complete the task). Hitting a key in the wrong region of the

CDU on the first step is still a frequent error despite

elaborations (70 runs); repeatedly hitting the same key on the

second step emerges as a frequent error (made in 15 of the 19

runs that reached Step 2). The next iteration addresses the

former, and iteration 5 addresses the latter.

Iteration 4: Prototyping hierarchical visual regions

Prior research, both empirical and theoretical, has

indicated that a model of using a complex device should

choose a region of the device to focus attention on rather than

treating all the buttons as equally possible at all times

(Blackmon et al., 2005, 2007). To simulate this theory in the

storyboard, we inserted frames that had large widgets

encompassing regions of buttons rather than individual button

widgets (Figure 2, Frame A). The model was forced to select a

region to focus on first, which transitioned it to a frame where

it could see only the individual buttons in that region (Frame

B). Following Blackmon et. al. (2005, 2007), the labels on

these regions were the concatenation of all the button labels in

the region. This easily prototyped a two-level visual search,

focusing first on the region, (Mode keys, Function keys, etc.),

and then on the specific buttons in that region

Because momentarily attending to an incorrect region

would not prevent a pilot from completing the task, we

augmented the storyboard to allow recovery from focusing on

an incorrect region. Each incorrect selection transitioned to a

frame that did not contain that region, forcing the model to

focus on a different region (Frame C). If it chooses to focus on

the correct region at this point, it transitions onto the correct

path (Frame B) and continues with the task. Adding regions

and the ability for the model prototype to recover from error

took the first author 1 hour. By comparison adding a robust

general mechanism for hierarchical visual search and recovery

to the underlying ACT-R model has recently taken weeks of a

skilled ACT-R modeler’s time.

Prototyping hierarchical visual search caused big leaps in

success rate on Steps 1 and 2, allowing 3 runs to successfully

complete the entire task. Ninety-nine correctly completed the

first step, with 16 runs recovering from initially focusing on an

incorrect region, showing the value of the addition of these

theories. Clearly additional knowledge is necessary to

complete the entire task, but the augmented storyboard created

in this iteration is a good foundation on which to explore

which knowledge to add. Forty-one runs hit a key repeatedly

and 50 runs hit 1R (the incorrect alternative for this task).

Both errors reflect a lack of device knowledge, which we will

explore separately in the next two iterations.

Iteration 5: Prototyping memory of the last action

The model repeatedly hitting the same button is

understandable given the implementation of information

foraging currently in CogTool-Explorer. If a button’s label has

a high semantic relatedness to the goal, the model hits it. A

new screen appears, but the button’s label is the same and the

model sees it as still the most attractive button to hit even

though the task has progressed to a different stage in the

procedure. Therefore, the first bit of procedural knowledge we

added was to not hit a key two times in a row. This is a

reasonable piece of knowledge for this device and task,

although it would not be for all devices (e.g., when scrolling

down a contact list in a cell phone, the down button is hit

repeatedly) or all CDU tasks (the CDU has Next Page and

Previous Page buttons that are often hit repeatedly).

It is trivial to prototype this small theory (that the model

has a memory of the last step) and device knowledge (that

hitting a button twice doesn’t help this task) in CogTool.

Simply open the frame after a button is hit and delete that

button. The button is no longer available for consideration at

the new point in the task, prototyping that the model knows

what it hit last and to not hit it again. This change to the

storyboard took about 1 minute and increased the overall

success rate by 1 run, from 3 to 4. Looking at the type of

errors made, the last step had no repeated keys, but the model

hit the alternative option as the last step in 53 runs. Thus, the

next iteration adds device knowledge of alternatives.

Iteration 6: Prototyping knowledge of alternatives

When a pilot hits INIT REF, the flight automation uses

the state of the airplane (Is it on the ground or in the air? Is it

near its destination?) to suggest likely steps for the pilot to

take. In this task, the Approach Ref CDU page displays two

alternative flap settings and approach speeds to the pilot;

25º/146 KT (knots) on the top right line select key (1R) and

30º/138 KT on the second right line select key (2R). Pilots

know that either option can be selected and that if the wrong

one is inadvertently selected and appears in the scratch pad,

they can select the other one by hitting the other button. This

knowledge can be easily simulated by changing the CogTool

storyboard (Figure 3).

In Frame E, the model can select either 1R (the incorrect

alternative) or 2R (the correct alternative). It is then forced to

attend to the scratch pad by transitioning to frames that have

only the scratch pad available (simulating visually verifying

its contents (Frames F or H). If the correct alternative was

selected, the model can continue with the task (Frame G). If

not, it must recover from its error by selecting the other

alternative (Frame I), which puts it back on the correct path

(Frame F).

This change in the storyboard took about 5 minutes and

produced an overall success rate of 4 runs. The manipulation

worked, in that 36 runs chose the incorrect option first but

recovered from that choice, so 86 runs made it successfully

past Step 2. In Step 3, however, 54 runs repeated 2R and 26

runs selected 1R, instead of proceeding with the task and

entering the scratchpad into 4R. These errors are akin to the

Figure 2. Portion of the prototype of hierarchical visual search.

INIT

REF
RTE

DEP

ARR
ALTN

FIX

MENU

LEGS HOLD

NAV

RAD

FMC

COMM

VNAV

PROG

DEL CLR

PREV

PAGE

NEXT

PAGE

EXEC

BRT

1 2 3

4 5 6

7 8 9

. 0 +/-

E A B C D

F G H I J

K M O

P

V X Y

Z

W

SP

L N

Q R S T

U

/

Mode Keys INIT REF
Initialization reference…

LCD screen display LSK
line select keys

scratchpad scratch pad

Numeric
Keys 1
one 2
two…

Function
Keys…

F’nct’n
Keys

INIT

REF
RTE

DEP

ARR
ALTN

FIX

MENU

LEGS HOLD

NAV

RAD

FMC

COMM

VNAV

PROG

DEL CLR

PREV

PAGE

NEXT

PAGE

EXEC

BRT

1 2 3

4 5 6

7 8 9

. 0 +/-

E A B C D

F G H I J

K M O

P

V X Y

Z

W

SP

L N

Q R S T

U

/

Mode Keys INIT REF
Initialization reference…

LCD screen display LSK
line select keys

scratchpad scratch pad

Alpha Keys
A B C D E…

Numeric
Keys 1
one 2
two…

Function
Keys…

F’nct’n
Keys

INIT

REF
RTE

DEP

ARR
ALTN

FIX

MENU

LEGS HOLD

NAV

RAD

FMC

COMM

VNAV

PROG

DEL CLR

PREV

PAGE

NEXT

PAGE

EXEC

BRT

1 2 3

4 5 6

7 8 9

. 0 +/-

E A B C D

F G H I J

K M O

P

V X Y

Z

W

SP

L N

Q R S T

U

/

Frame A Frame B

Frame C

repeat-key error that was addressed in iteration 5. 2R is

exactly the repeat-key error; 1R is not exactly the key that was

hit in Step2, but it is involved in the step as an alternative to

2R. Thus, expanding the notion of memory for last step to

include knowledge of alternatives will be the final iteration.

Iteration 7: All theories and knowledge combined

We added all theories and device knowledge together into

one model prototype, a 2-minute change once the previous

ones were built, and this final iteration performs the task with

a 92% success rate. Fourteen percent initially examined the

wrong region in Step 1 and 40% initially chose the wrong

alternative in Step 2, but these are recoverable errors both in

real life and in the model prototype. The 5 runs that did not

succeed in Step 2 and the 3 runs that did not succeed in Step 3

can be attributed to the variability in visual search and

decision-making inherent in CogTool-Explorer, but not to any

systematic lack of knowledge.

DISCUSSION AND FUTURE WORK

Our exploration has demonstrated that a model with

semantics alone is unlikely to accomplish multi-step tasks on a

complex device. This in itself is not surprising, but the very

low success rates for each additional piece of knowledge and

the jump to 92% success rate when the low contributors are

combined may be. This exploration itself may have

implications for training, e.g., that experienced pilots new to

the CDU should be instructed in how alternative suggestions

are presented and can be manipulated. Perhaps more

importantly, though, any model that hopes to predict

performance on such tasks will have to include many pieces of

detailed semantic, theoretical, procedural, and device

knowledge to succeed, each of which would be substantial

work to include in a robust, general way in an underlying

cognitive model. So, before putting in that modeling effort, we

have demonstrated a way to rapidly prototype the addition of

those theories, mechanisms, and knowledge using CogTool-

Explorer’s storyboard. These prototypes provide guidance

about what will be valuable to build into CogTool-Explorer

“under the hood”.

ACKNOWLEDGEMENTS

The authors thank Matt Koch, Steve Casner, and Mike

Matessa for their contributions to the content of this paper and

Mike Byrne and Wayne Gray for their comments on its

presentation. This research was supported in part by funds

from NASA, Boeing, NEC, PARC, ONR, N00014-03-1-0086,

and a scholarship from DSO National Laboratories to the last

author. The views and conclusions in this paper are those of

the authors and should not be interpreted as representing the

official policies, either expressed or implied, of NASA,

Boeing, NEC, PARC, DSO, ONR, or the U.S. Government.

REFERENCES

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin,

Y. (2004). An integrated theory of the mind. Psychological Review, 111(4),

1036-1060.

Blackmon, M. H., Kitajima, M., & Polson, P. G. (2005). Tool for accurately

predicting website navigation problems, non-problems, problem severity,

and effectiveness of repairs. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems. CHI '05 (31-40). New York: ACM.

Blackmon, M. H., Mandalia, D. R., Polson, P. G., & Kitajima, M. (2007).

Automating usability evaluation: Cognitive Walkthrough for the Web puts

LSA to work on real-world design problems. In T. K Landauer, D. S.

McNamara, D. Simon, & W. Kintsch (Eds.), Handbook of Latent Semantic

Analysis (pp. 345-375). Mahwah, NJ: Lawrence Erlbaum.

Card, S. K., Moran, T. P., & Newell, A. (1980). The keystroke-level model for

user performance time with interactive systems. Communications of the

ACM. 23 (7), 396-410.

Fu, W.-T., & Pirolli, P. (2007). SNIF-ACT: A cognitive model of user

navigation on the World Wide Web. Human-Computer Interaction, 22,

355-412.

Halverson, T. & Hornof, A. J. (2007). A minimal model for predicting visual

search in human-computer interaction. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems. CHI '07 (pp. 431-

434). New York: ACM.

John, B. E., Prevas, K., Salvucci, D. D., & Koedinger, K. (2004). Predictive

human performance modeling made easy. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems. CHI '04 (pp. 455-

462). New York: ACM.

Landauer, T. K., McNamara, D. S., Dennis, S., & Kintsch, W. (2007)

Handbook of Latent Semantic Analysis. Mahwah, New Jersey: Lawrence

Erlbaum Associates.

Teo, L. & John, B. E. (2008) Towards predicting user interaction with

CogTool-Explorer. Proceedings of the Human Factors and Ergonomics

Society 52nd Annual Meeting (New York, NY, Sept 22-26, 2008).

Figure 3. Portion of the prototype of knowledge of alternatives.

INIT

REF
RTE

DEP

ARR
ALTN

FIX

MENU

LEGS HOLD

NAV

RAD

FMC

COMM

VNAV

PROG

DEL CLR

PREV
PAGE

NEXT
PAGE

EXEC

BRT

1 2 3

4 5 6

7 8 9

. 0 +/-

E A B C D

F G H I J

K M O

P

V X Y

Z

W

SP

L N

Q R S T

U

/

Mode Keys INIT REF
Initialization reference…

Alpha Keys
A B C D E…

F’nct’n
Keys

GRWT

407.0

< INDEX

APPROACH REF

FLAPS VREF
25O 146 KT

30O 138 KT

FLAPS/SPEED
- - / - - -

THRUST LIM >

Frame E

INIT

REF
RTE

DEP

ARR
ALTN

FIX

MENU

LEGS HOLD

NAV

RAD

FMC

COMM

VNAV

PROG

DEL CLR

PREV

PAGE

NEXT

PAGE

EXEC

BRT

1 2 3

4 5 6

7 8 9

. 0 +/-

E A B C D

F G H I J

K M O

P

V X Y

Z

W

SP

L N

Q R S T

U

/

30/138 scratch pad

Frame F

INIT

REF
RTE

DEP

ARR
ALTN

FIX

MENU

LEGS HOLD

NAV

RAD

FMC

COMM

VNAV

PROG

DEL CLR

PREV
PAGE

NEXT
PAGE

EXEC

BRT

1 2 3

4 5 6

7 8 9

. 0 +/-

E A B C D

F G H I J

K M O

P

V X Y

Z

W

SP

L N

Q R S T

U

/

25/146 scratch pad

Frame H

Frame I

 30
o
 138 KT LSK

Frame G

INIT

REF
RTE

DEP

ARR
ALTN

FIX

MENU

LEGS HOLD

NAV

RAD

FMC

COMM

VNAV

PROG

DEL CLR

PREV

PAGE

NEXT

PAGE

EXEC

BRT

1 2 3

4 5 6

7 8 9

. 0 +/-

E A B C D

F G H I J

K M O

P

V X Y

Z

W

SP

L N

Q R S T

U

/

Mode Keys INIT REF
Initialization reference…

LCD screen display LSK
line select keys

scratchpad scratch pad

Numeric
Keys 1
one 2
two…

Function
Keys…

F’nct’n
Keys

Alpha Keys
A B C D E…

Frame G

