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We present our experience using CogTool, a tool originally designed for ease of use and learning by non-

psychologist design practitioners, as a means for rapid theory exploration. We created seven iterations of a 

“model prototype” of an aviation task where each iteration produced errors that pointed to additional theory 

or device knowledge that should be incorporated to prevent those errors. This theory and knowledge was 

put into the next iteration by modifying the mock-up of the device, not by changing the implementation of 

the underlying cognitive model. This trick allowed us to rapidly change theory and knowledge and 

understand what must eventually migrate to the underlying cognitive model to provide general support for 

predictions of novice behavior in multi-step procedures with complex devices. 

 

INTRODUCTION 

 

Human performance models have been painstakingly 

constructed and validated by researchers in domains relevant 

to Human Factors for decades, but few practitioners routinely 

use modeling as a tool in their design and evaluation work. 

This has spurred several efforts to create tools that allow non-

researchers to achieve the benefits of modeling without 

investing as much time in learning to model and constructing 

each new model (Blackmon. et. al., 2005; John, et. al., 2004). 

The time advantage of these tools is achieved by adopting sets 

of assumptions that simplify theories of human interaction. 

The fact that the target users of these tools are practitioners, 

and that such tools simplify theory, may lead researchers to 

dismiss the utility of such tools for basic research in new 

domains and for developing or extending theory. In this paper, 

we present an example from the aviation domain that belies 

that conjecture; we demonstrate how using a practitioner-

oriented tool, CogTool, provides a platform for researchers to 

rapidly explore theory and knowledge requirements in a new 

domain. 

 

BACKGROUND 

 

CogTool was created to allow UI designers with a 

graphics design background to use the Keystroke-Level Model 

(KLM; Card, et. al., 1980). UI designers often express their 

designs in storyboards, with frames representing the states of 

the device, widget “hot spots” representing the interactive 

controls in the device, and transitions connecting widgets to 

frames representing the actions a user takes to accomplish a 

task. When a UI designer demonstrates the correct way to do 

tasks, CogTool turns these storyboards and demonstrations 

into ACT-R code (Anderson, et. al., 2004) that emulates the 

KLM, runs the code, and returns a prediction of skilled 

performance time for the task on that UI. This modeling-by-

demonstration substantially reduced learning time and 

increased accuracy for novice modelers with no background in 

psychology, and showed an order of magnitude reduction in 

time for a skilled modeler to produce predictions on a new 

device and task compared to doing KLM by hand (John et. al., 

2004). CogTool has been taught in HF and HCI classes at 

universities and professional conferences (e.g., HFES 2008, 

2009) for several years and is used professionally by 

participants in these classes. 

CogTool is now being expanded to make predictions 

beyond the KLM. Teo and John (2008) reported an integration 

of CogTool, an Information Foraging Theory model, SNIF-

ACT (Fu & Pirolli, 2007), and a minimal model of visual 

search (Halverson & Hornof, 2007), that produced predictions 

of exploration behavior. This expanded tool, CogTool-

Explorer, uses Latent Semantic Analysis (LSA; Landauer, et. 

al. 2007) to calculate semantic relatedness metrics to feed to 

SNIF-ACT. CogTool-Explorer uses the name of the task as 

the goal and the labels on the widgets in the storyboard as the 

terms to calculate semantic similarity. 

Our goal in this research is to expand CogTool-Explorer 

beyond text-only, encyclopedia-like websites and simple 

search tasks to predict exploration behavior on complex 

devices with multi-step procedures and expert domain 

knowledge, for example, flight automation systems in an 

airliner cockpit. After presenting an aviation task, we report 

our expansion into this new domain, using CogTool-Explorer 

to rapidly explore what new theory, cognitive mechanisms, 

and domain knowledge may be necessary to include in a 

general model of flight deck tasks.  

 

THE TASK AND DEVICE 

 

The task is to enter the landing speed (an approach 

reference speed) into the Boeing 777 Flight Management 

Computer (FMC) using the Control and Display Unit (CDU). 

This task is very frequent and an experienced commercial 

airline 777 pilot instructor (the fourth author) considers it an 

easy task for commercial airline pilots new to the Boeing 777 

FMC. (Note that these pilots have been commercial airline 

pilots for many years before entering 777 training, but flight 

automation devices like the CDU may be new to them.) 
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The CDU is the primary input-output device for the FMC 

(Figure 1). Information in the FMC is organized into pages. A 

typical CDU data entry task is begun by pressing a function 

key to display the correct page (Step 1).  A page display 

includes a title line at the top, right and left data fields, and a 

scratch pad line at the bottom. Six line select keys (LSK, 

referred to as 1R, 2R,…6R, 1L,…6L) are adjacent to the 

display on each side. These are “soft keys”, i.e., their functions 

are indicated by the characters (commands or data and labels) 

on the display next to them. For example, in State 2, a pilot 

trained on this device knows that the approach reference speed 

can be entered into LSK 4R because it has the label 

FLAP/SPEED and a blank data display line (--/---). Hitting an 

LSK that contains a suggested value fills the scratch pad (Step 

2), as does typing with the alphanumeric keys (not used here). 

The contents of the scratch pad are then entered into a data 

display line by hitting its LSK (Step 3). 

 

ITERATIONS ON A MODEL PROTOTYPE 

 

We performed seven iterations on a “model prototype” of 

this CDU task, that is, the ACT-R model that makes the 

predictions did not change between iterations, only the 

semantic space it used and the storyboard it worked on were 

changed. Thus, analogous to a UI prototype that works only 

enough to do user tests, our model prototypes work only 

enough to allow us to examine errors made at each stage and 

make changes to include new theory and knowledge to 
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State 1: Blank screen 
Step 1: Hit the INIT REF button to 

transition to the APPROACH 
REF screen 

State 2: APROACH REF screen 
presents 2 alternative 
suggestions in upper right 
(next to 1R and 2R) 

Step 2: Hit the 2R button to put its 
values into the scratch pad 

State 3: 30/138 is in the scratch pad 
(bottom line of display, far left) 
4R is ready to receive a value 
(shows --/---) 

Step 3: Hit the 4R button to enter the 
scratch pad value into the FMC 

 

State 4: 30/138 appears 
in 4R 
Data is entered 
into the FMC 

 
END OF TASK 

 

Figure 1. The steps to enter the approach reference speed using the CDU 

 
 

Table 1. Results of seven iterations of model prototypes of setting an approach reference speed on the CDU. The first column of results shows the number of model 

runs that successfully completed the task out of 100 runs. The next three columns show how many runs completed each of the three steps successfully. The 

changes made in CogTool and how much time it took to make those changes (in minutes) is in the center of the table. The right side of the table shows the types of 

errors at each step and how many runs made that error. Numbers with * preceding them indicate that the CogTool storyboard allowed recovery from these errors as 
per the theory. Cells containing a dash mean that the error is not applicable in this iteration. Blank cells mean the model did not get far enough to make that error.  



alleviate these errors. Table 1 shows a progression from a 

model prototype that never completed the task to one with a 

92% success rate. (There is variability in the underlying ACT-

R model in its visual search and its decisions to choose 

between items of high semantic similarity, so we ran each 

model 100 times to assess its behavior.) Below, we present 

how each iteration differs from its predecessors and how new 

theory and knowledge were rapidly prototyped by simple 

changes in the storyboard. 

 

Iteration 1: Out-of-the-box CogTool-Explorer 

 

The Out-of-the-Box model was constructed by making 

CogTool storyboard of the information in Figure 1. The four 

states of the CDU are four frames in the storyboard. In each 

frame, 69 button widgets represent the CDU’s buttons, labeled 

just as they are on the CDU, e.g., “INIT REF”, “1”, “A”. Each 

line of text on the display screen is represented as a non-

interactive widget (e.g., the model can look at it, but not touch 

it or transition to another frame from it). The goal was 

represented as a task, just as it was stated in a training 

document, “Select landing flap and reference air speed for an 

approach.” The steps to accomplish this task are represented 

as transitions between button widgets and frames (as in Figure 

1), i.e., hitting the INIT REF button in the first frame 

transitions to the second frame. If the model hits any other 

button, it does nothing and is counted as an error.  

When CogTool-Explorer is run, it automatically sends the 

task statement and the widget labels to an LSA server to 

calculate semantic similarities between them, with reference to 

a default semantic space (1
st
_year_college). It uses those 

semantic similarities to make decisions about which widget to 

press to accomplish the task. We expected this out-of-the-box 

model to fail, as it knows virtually nothing about the 

vocabulary of the domain nor operation of the device, and, as 

expected, it failed in all 100 runs. In fact, it never succeeded at 

the first step, hitting the INIT REF button. 

 

Iteration 2: Using experienced pilot’s knowledge  

 

The next iteration took only 1 minute to do with CogTool-

Explorer because it already had the ability to select between 

different LSA semantic spaces. We simply selected (in a drop-

down list) a new semantic space against which to calculate 

similarities between the task and widget labels. The new 

semantic space was built from 2192 documents, containing 

4670 unique terms, extracted from four instruction manuals 

that pilots are likely to have read while learning to use the 

CDU. Calculating similarities against a domain-appropriate 

semantic space is analogous to using 777 pilot trainees in a 

user study instead of non-pilot college freshmen. This iteration 

did marginally better, selecting INIT REF in the first step 10 

times, but those runs then failed to select 2R in the second 

step. This means that at the first step, INIT REF was more 

attractive than chance, but with 69 buttons to examine, 86% of 

the time it chose from an incorrect region of the device. 

Looking at the runs that made it to the second step, 6 of the 10 

hit the INIT REF button again and 3 hit the characters on the 

screen instead of an LSK button. Both of these errors reflect 

lack of device knowledge, i.e., that repeatedly pressing a 

button doesn’t make progress in this task and that the screen is 

not a touch screen but has soft keys that select the data 

displayed on the screen. The latter is remedied in the next 

iteration; the former in iteration 5.  

 

Iteration 3: Elaboration & knowledge of soft keys 

 

In the third iteration, we brought to bear prior research in 

semantic relatedness. First, measures of semantic relatedness 

in LSA and similar tools are more valid and reliable with 

longer texts than with  short  labels.  Previous  research  has  

delivered  accurate predictions of human behavior by 

automatically elaborating short labels, simulating how people 

elaborate text with background knowledge during text 

comprehension (Blackmon et al., 2005, 2007). Ultimately, this 

elaboration process could be built “under the hood” in 

CogTool-Explorer, but we could rapidly examine its potential 

by hand-editing the label on each button to include fully 

spelled out terms as well as abbreviations. For example, the 

label on the INIT REF button became “INIT REF 

Initialization Reference Position”. Likewise, we elaborated the 

goal beyond what was originally written by the instructor; 

CogTool-Explorer allows an arbitrarily long string to be 

entered as the task name, so it was trivial to enter an 

elaborated goal into this field. The first two authors spent a 

few hours looking up terms in aviation glossaries and entering 

them into the button labels and task name.  

We used a similar method to simulate the device 

knowledge that LSKs are labeled by the text on the display 

adjacent to them. The text on the line next to each button (and 

its elaboration) was simply copied into the label for each LSK 

in the storyboard. This simulated the pilot’s knowledge that 

the label of an LSK is the text on the screen next to it. 

These changes resulted in a model prototype that still 

does not complete the entire multi-step task. However, it hits 

INIT REF 19 times in the first step, and one run hit 2R in the 

second step (then hit 2R again in the third step, failing to 

complete the task). Hitting a key in the wrong region of the 

CDU on the first step is still a frequent error despite 

elaborations (70 runs); repeatedly hitting the same key on the 

second step emerges as a frequent error (made in 15 of the 19 

runs that reached Step 2). The next iteration addresses the 

former, and iteration 5 addresses the latter. 

 

Iteration 4: Prototyping  hierarchical visual regions 

 

Prior research, both empirical and theoretical, has 

indicated that a model of using a complex device should 

choose a region of the device to focus attention on rather than 

treating all the buttons as equally possible at all times 

(Blackmon et al., 2005, 2007). To simulate this theory in the 

storyboard, we inserted frames that had large widgets 

encompassing regions of buttons rather than individual button 

widgets (Figure 2, Frame A). The model was forced to select a 

region to focus on first, which transitioned it to a frame where 

it could see only the individual buttons in that region (Frame 

B). Following Blackmon et. al. (2005, 2007), the labels on 

these regions were the concatenation of all the button labels in 



the region. This easily prototyped a two-level visual search, 

focusing first on the region, (Mode keys, Function keys, etc.), 

and then on the specific buttons in that region 

Because momentarily attending to an incorrect region 

would not prevent a pilot from completing the task, we 

augmented the storyboard to allow recovery from focusing on 

an incorrect region. Each incorrect selection transitioned to a 

frame that did not contain that region, forcing the model to 

focus on a different region (Frame C). If it chooses to focus on 

the correct region at this point, it transitions onto the correct 

path (Frame B) and continues with the task. Adding regions 

and the ability for the model prototype to recover from error 

took the first author 1 hour. By comparison adding a robust 

general mechanism for hierarchical visual search and recovery 

to the underlying ACT-R model has recently taken weeks of a 

skilled ACT-R modeler’s time. 

Prototyping hierarchical visual search caused big leaps in 

success rate on Steps 1 and 2, allowing 3 runs to successfully 

complete the entire task. Ninety-nine correctly completed the 

first step, with 16 runs recovering from initially focusing on an 

incorrect region, showing the value of the addition of these 

theories. Clearly additional knowledge is necessary to 

complete the entire task, but the augmented storyboard created 

in this iteration is a good foundation on which to explore 

which knowledge to add. Forty-one runs hit a key repeatedly 

and 50 runs hit 1R (the incorrect alternative for this task). 

Both errors reflect a lack of device knowledge, which we will 

explore separately in the next two iterations. 

 

Iteration 5: Prototyping memory of the last action  

 

The model repeatedly hitting the same button is 

understandable given the implementation of information 

foraging currently in CogTool-Explorer. If a button’s label has 

a high semantic relatedness to the goal, the model hits it. A 

new screen appears, but the button’s label is the same and the 

model sees it as still the most attractive button to hit even 

though the task has progressed to a different stage in the 

procedure. Therefore, the first bit of procedural knowledge we 

added was to not hit a key two times in a row. This is a 

reasonable piece of knowledge for this device and task, 

although it would not be for all devices (e.g., when scrolling 

down a contact list in a cell phone, the down button is hit 

repeatedly) or all CDU tasks (the CDU has Next Page and 

Previous Page buttons that are often hit repeatedly). 

It is trivial to prototype this small theory (that the model 

has a memory of the last step) and device knowledge (that 

hitting a button twice doesn’t help this task) in CogTool. 

Simply open the frame after a button is hit and delete that 

button. The button is no longer available for consideration at 

the new point in the task, prototyping that the model knows 

what it hit last and to not hit it again. This change to the 

storyboard took about 1 minute and increased the overall 

success rate by 1 run, from 3 to 4. Looking at the type of 

errors made, the last step had no repeated keys, but the model 

hit the alternative option as the last step in 53 runs. Thus, the 

next iteration adds device knowledge of alternatives. 

 

Iteration 6: Prototyping knowledge of alternatives 

 

When a pilot hits INIT REF, the flight automation uses 

the state of the airplane (Is it on the ground or in the air? Is it 

near its destination?) to suggest likely steps for the pilot to 

take. In this task, the Approach Ref CDU page displays two 

alternative flap settings and approach speeds to the pilot; 

25º/146 KT (knots) on the top right line select key (1R) and 

30º/138 KT on the second right line select key (2R). Pilots 

know that either option can be selected and that if the wrong 

one is inadvertently selected and appears in the scratch pad, 

they can select the other one by hitting the other button. This 

knowledge can be easily simulated by changing the CogTool 

storyboard (Figure 3). 

In Frame E, the model can select either 1R (the incorrect 

alternative) or 2R (the correct alternative). It is then forced to 

attend to the scratch pad by transitioning to frames that have 

only the scratch pad available (simulating visually verifying 

its contents (Frames F or H). If the correct alternative was 

selected, the model can continue with the task (Frame G). If 

not, it must recover from its error by selecting the other 

alternative (Frame I), which puts it back on the correct path 

(Frame F).  

This change in the storyboard took about 5 minutes and 

produced an overall success rate of 4 runs. The manipulation 

worked, in that 36 runs chose the incorrect option first but 

recovered from that choice, so 86 runs made it successfully 

past Step 2. In Step 3, however, 54 runs repeated 2R and 26 

runs selected 1R, instead of proceeding with the task and 

entering the scratchpad into 4R. These errors are akin to the 

Figure 2. Portion of the prototype of hierarchical visual search. 
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repeat-key error that was addressed in iteration 5. 2R is 

exactly the repeat-key error; 1R is not exactly the key that was 

hit in Step2, but it is involved in the step as an alternative to 

2R. Thus, expanding the notion of memory for last step to 

include knowledge of alternatives will be the final iteration.  

 

Iteration 7: All theories and knowledge combined 

 

We added all theories and device knowledge together into 

one model prototype, a 2-minute change once the previous 

ones were built, and this final iteration performs the task with 

a 92% success rate. Fourteen percent initially examined the 

wrong region in Step 1 and 40% initially chose the wrong 

alternative in Step 2, but these are recoverable errors both in 

real life and in the model prototype. The 5 runs that did not 

succeed in Step 2 and the 3 runs that did not succeed in Step 3 

can be attributed to the variability in visual search and 

decision-making inherent in CogTool-Explorer, but not to any 

systematic lack of knowledge. 

 

DISCUSSION AND FUTURE WORK 

 

Our exploration has demonstrated that a model with 

semantics alone is unlikely to accomplish multi-step tasks on a 

complex device. This in itself is not surprising, but the very 

low success rates for each additional piece of knowledge and 

the jump to 92% success rate when the low contributors are 

combined may be. This exploration itself may have 

implications for training, e.g., that experienced pilots new to 

the CDU should be instructed in how alternative suggestions 

are presented and can be manipulated. Perhaps more 

importantly, though, any model that hopes to predict 

performance on such tasks will have to include many pieces of 

detailed semantic, theoretical, procedural, and device 

knowledge to succeed, each of which would be substantial 

work to include in a robust, general way in an underlying 

cognitive model. So, before putting in that modeling effort, we 

have demonstrated a way to rapidly prototype the addition of 

those theories, mechanisms, and knowledge using CogTool-

Explorer’s storyboard. These prototypes provide guidance 

about what will be valuable to build into CogTool-Explorer 

“under the hood”. 
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Figure 3. Portion of the prototype of knowledge of alternatives. 
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