Performance Programming for Scientific Computation

SIAM Short Course

V

Portable High Performance

Bowen Alpern Larry Carter

13 March 1997

Expedient Portability
Goal

One (easy-to-write) program
Runs correctly (with ok performance)
On all sequential computers
Approach
High-level languages
Machine-specific compilers
Necessary social investment
To implement IN applications on M machines

Costs

O(1), language design & compiler technology (enormous)
O(IN), application development

O(M), compiler development

O(IN M), makefile tweaking (tiny)

SIAM V

1

Performance Portability

Goal
One (easy-to-write) program
Runs correctly with highest possible performance
On all possible computers

Expeditious solution (first fallback)
One (easy-to-write) program
Runs correctly with reasonably good performance
On almost all computers

Comprehensive solution (second fallback)
One program
Runs correctly with highest possible performance
On a collection of computers

First computer — no harder than hand tuning

Additional computers — easier

SIAMV 2

Principle of Portable Performance

For near-peak performance, different
computers will run different sequences
of source-language statements.

Example: DGEMV (matrix-vector product)

Scalar processors: DDOT based

Fewer stores

Vector processors: DAXPY based

Independent fmas

Superscalar processors: hybrid based

Some of both

How this is accomplished?
Tuned libraries (LAPACK, ScaLAPACK, etc.)
Optimizing compiler (FORTRAN9O, HPF, etc.)
Ad-hoc compiler directives and options

Explicit program variants

SIAMV 3

Possible Approaches

Improve compiler technology
Extends expedient portability
Languages for parallelism (F90, HPF, ZPL, Java?)
JIT and dynamic compilation

Kernel-based libraries (LAPACK /Scal APACK)
|dentify computationally intensive kernels

Implement highly tuned kernels on every computer

Who implements the kernels? How??
Domain-specific libraries
KeLP (structured, bulk-synchronous)
Multipol (fine-grained, asynchronous)
Generic program
Polyalgorithm (explicit program variants)
Specialize for model of the target machine

Machine-specific compilers

SIAMV 4

From Sabot’s High Performance Computing
“Don't stripmine or unroll loops.”
Hand optimizations inhibit portablility
Compilers do better on simple, clear code
Our viewpoint:
Yes, old CRAY vector codes have “pessimizations”

Yes, a few compilers do well on dense linear algebra

Maybe by <this year>+3, compilers will be great

(for the machine you replaced two years ago)

Stripmining and unrolling are sometimes needed.

When possible, write parameterized optimizations

More research needed

SIAM V

5

The Generic Program Approach

Generic program
A family of program variants

Pragmatically equivalent semantics

Different performance characteristics

Variation mechanisms

Overloading (alternative implementations)
Tuning parameters

Program transformations (semantics preserving)
Specialization
Select the variant with best performance

On an idealized model of the target

Discrete choices

Translation

From variant to executable code
High-level target language

What is the necessary social investment?

SIAM V

6

O O O O 0O O O O

$

integer*x4 class, Sample, ClassA, ClassB
parameter (Sample=1, ClassA=2, ClassB=3)
integer*x4 cache, KB32, KB64, KB128, KB256
parameter (KB32=1, KB64=2, KB128=3, KB256=4)

opecify the cache and problem sizes

parameter (class = ClassA)
KB32)

parameter (cache

Processor grid width for P processors

Three partially-conflicting goals:

1. Shape roughly square to reduce communication
2. Have enough columns to reduce cache misses
3. Avoid overhead of too many columns

P = 1 2 4 3 16 32 64 128 256
data (cols_array(LgProc, Sample, KB32),LgProc=0,8)
/ 1, 1, 2, 2, 4, 4, 3, 8, 16 /
data (cols_array(LgProc, ClassA, KB32),LgProc=0,8)
/ 1, 2, 4, 4, 4, 4, 3, 8, 16 /
data (cols_array(LgProc, ClassB, KB32),LgProc=0,8)
/1t 1, 2, 8, 8, 8, 8, 16, 16 /
data (cols_array(LgProc, Sample, KB64),LgProc=0,8)
/ 1, 1, 2, 2, 4, 4, 3, 8, 16 /
data (cols_array(LgProc, ClassA, KB64),LgProc=0,8)
/ 1, 2, 2, 2, 4, 4, 3, 8, 16 /

SIAM V

7

PMH Model

[1 [1
N I N [B Oy

Sequential computer

Sequence of memory modules

Connected by channels

Channels can be active simultaneously

Parallel computer

Tree of memory modules

Processors at the leaves

Memory capacity concentrated toward the root

SIAM V

8

Space-Limited Procedures

Recursive procedures
Recursive calls must use less space

Promotes locality

Ambiguous argument passing semantics

Even for arrays!

call-by-reference

Allows aggressive inlining (within a memory module)

call-by-value

Allows explicit data movement (between memory modules)

Procedure name overloading

Interchangable versions

Explicit tuning parameters
Machine parameters of the PMH model

Problem parameters describe problem instances
Free parameters are deferred tuning choices

Explicit parallelism

SIAM V

9

Specialization

Series of discrete choices

Select a version for each module
Inline procedures with big arguments
Surface-sharing

Resolve all tuning parameters
Machine parameters from the specific PMH
Problem parameters by the application tuner

Free parameters

System supplied defaults
May be overridden by tuner

Performance feedback

Variant cost-estimation

As a function of the free parameters?

Code instrumentation

SIAM V

10

Divide-and-conquer!
Recursively break problems into subproblems
Leave number and size of subproblems free
General performance considerations

Parallelism

Independent subproblems execute concurrently

Memory hierarchy

Divide-and-conquer tends to maintain locality

Processor utilization

Conventional compiler optimizations

Specific performance considerations
Procedure call overhead inlined away

Array arguments passed by value, only if ...

data movement entailed on target computer

SIAM V

11

Necessary Social Investment

To tune IN applications for M machines
O(1) costs
Generic model of computation (PMH)
Language for generic programs

Space-Limited Procedures

An interactive specialization engine

A translator archetype
O(N) costs

Generic programs for applications (O(N log M)?7)
O(M) costs

Translator development
O(IN M) costs

Specialization

Inline code (target-specific inner loops)

SIAMV 12

