
OpenJDK and
Eclipse OpenJ9

Give your Java applications a thrill !

Mark Stoodley
Project lead for Eclipse OpenJ9 and Eclipse OMR

Senior Software Developer, IBM Runtime Technologies

A Tale of Three Open Source Projects

2

OpenJDK AdoptOpenJDK

Java Class Libraries
(without Hotspot)

Cross platform
Java Virtual Machine

(JVM)

Contributed in 2017
to Eclipse from

IBM SDK for Java
(and still built into it nightly!)

Cross platform
Build, Test, and Certify

OpenJDK binaries
with openly maintained

build farm

A Tale of Three Open Source Projects

3

OpenJDK AdoptOpenJDK

OpenJDK class libraries + Eclipse OpenJ9 JVM
developed in the open

built and tested in the open by AdoptOpenJDK
certified for production use

+ +

NOT about these commercial distributions…

4

OracleJDK IBM SDK
for Java

Well, mostly not…

OpenJDK with OpenJ9
is the best OpenJDK solution

for your Java workloads

Bold claim #1

5

AdoptOpenJDK
is the best place to get

your OpenJDK (with OpenJ9!) binaries

Bold claim #2

6

Eclipse OpenJ9 is
the best open source JVM project

in the open Java ecosystem

Bold claim #3

7

1. OpenJDK with OpenJ9
– What’s so great about it?

2. How to get OpenJDK with OpenJ9
– How can you try it out?

3. OpenJ9 and the Java ecosystem
– How does OpenJ9 relate?

Outline

8

§ Easy to swap!
– Install OpenJDK with OpenJ9 then point your apps at the new ‘java’
–Has the same Java class libraries your application is used to
–Best results: add a few simple command-line options

§ ~30% faster server start-up (class sharing + cached JIT code (AOT))
§ ~50% less physical memory use (heap&native memory management)

§ “Designed for Cloud” configuration options:
– Idle mode tuning for your less active JVMs (JIT, GC heuristics)
–Faster ramp-up in CPU constrained environments (JIT heuristics)

§ New JVM features (e.g. container support) with JDK8 and up

Why use OpenJDK with OpenJ9?

9

§ Start-up: phase before first user transaction can be processed
–Your customers get nothing during start-up
–Faster start-up means more nimble elasticity and better developer

productivity
–When disaster strikes, faster start-up gets you back on your feet faster

§ Ramp-up: phase where throughput not yet at steady-state
–Your customers get reduced service, but transactions are completing

§ As a Java user, you want fast start-up and fast ramp-up (of course!)

§ As JVM implementer: different strategies needed for these two
different phases

The importance of start-up (and ramp-up)

10

OpenJ9
~30% Faster Startup

11

OpenJ9
~50% Lower Physical Memory Use

12

Faster start-up performance using OpenJ9
Enterprise workload: OpenLiberty with DayTrader3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

OpenJDK9 with HotSpot OpenJDK9 with OpenJ9 OpenJDK9 with OpenJ9
w/AOT

OpenJDK9 with OpenJ9
w/AOT -Xquickstart

N
or

m
al

iz
ed

 s
ta

rt-
up

 ti
m

e

-37%
-49%

13
Benchmark: https://github.com/WASdev/sample.daytrader3
More details: https://github.com/eclipse/openj9-website/blob/master/benchmark/daytrader3.md

Smaller
Is

Better

https://github.com/WASdev/sample.daytrader3
https://github.com/eclipse/openj9-website/blob/master/benchmark/daytrader3.md

0

5

10

15

20

25

Eclipse Oxygen.2 IDE Start-up Time
(seconds)

OpenJDK9 with Hotspot OpenJDK9 with OpenJ9 w/ AOT -Xtune:virtualized

-40%

Faster start-up performance using OpenJ9:
Developer experience: Eclipse Oxygen.2 IDE

14 Source: https://dzone.com/articles/hello-openj9-on-windows-i-didnt-expect-you-so-soon
Holger Voormann wrote “Hello OpenJ9 on Windows, I didn’t expect to see you so soon”. March 18, 2018

Smaller
Is

Better

https://dzone.com/articles/hello-openj9-on-windows-i-didnt-expect-you-so-soon

§Physical memory use directly impacts density
– Consume more: fewer things fit in a given memory envelope
– Once you overflow, you need to buy more machines or VMs

§ Unless your resources are free: higher density saves $$

§Capacity planning challenge
– Imagine a JVM that always consumes available physical memory
– That JVM *always* operates at worst case
– What signals this JVM is actually getting close to limit?

The importance of frugal physical memory use

15

Lower memory consumption using OpenJ9
Enterprise workload: OpenLiberty with DayTrader3

16
Benchmark: https://github.com/WASdev/sample.daytrader3
More details: https://github.com/eclipse/openj9-website/blob/master/benchmark/daytrader3.md

0.0

0.2

0.4

0.6

0.8

1.0

1.2

OpenJDK9 with HotSpot OpenJDK9 with OpenJ9 OpenJDK9 with OpenJ9
w/AOT

OpenJDK9 with OpenJ9
w/AOT -Xquickstart

N
or

m
al

iz
ed

 J
VM

 R
es

id
en

t S
et

 S
iz

e

Footprint after start-up
(all runs with -Xmx1g, no -Xms)

-62%

Smaller
Is

Better

https://github.com/WASdev/sample.daytrader3
https://github.com/eclipse/openj9-website/blob/master/benchmark/daytrader3.md

Lower memory consumption using OpenJ9
Enterprise workload: OpenLiberty with DayTrader3

17

-62%
0 300 600 900 1200 1500 1800

JV
M

 R
es

id
en

t S
et

 S
iz

e

Time (sec)

Footprint under load
(all runs with -Xmx1g, no -Xms)

OpenJDK9 with HotSpot
OpenJDK9 with OpenJ9
OpenJDK9 with OpenJ9 w/AOT

-44%

Smaller
Is

Better

Benchmark: https://github.com/WASdev/sample.daytrader3
More details: https://github.com/eclipse/openj9-website/blob/master/benchmark/daytrader3.md

https://github.com/WASdev/sample.daytrader3
https://github.com/eclipse/openj9-website/blob/master/benchmark/daytrader3.md

But what about
throughput performance?

Sure, OpenJ9 starts fast and allocates frugally

18

Comparable throughput using OpenJ9
Enterprise workload: OpenLiberty with DayTrader3

19

-62%

Bigger
Is

Better

Benchmark: https://github.com/WASdev/sample.daytrader3
More details: https://github.com/eclipse/openj9-website/blob/master/benchmark/daytrader3.md

0 200 400 600 800 1000 1200 1400 1600 1800

Th
ro

ug
hp

ut

Time (sec)

OpenJDK9 with Hotspot
OpenJDK9 with OpenJ9
OpenJDK9 with OpenJ9 (-Xshareclasses -Xsc60m -Xscaotmax=8m)

https://github.com/WASdev/sample.daytrader3
https://github.com/eclipse/openj9-website/blob/master/benchmark/daytrader3.md

Don’t just take my word for it…

20

§ Apache OpenWhisk: open source serverless platform
– “OpenWhisk actions over Eclipse OpenJ9 is ~25% faster than actions over Hotspot runtime.”
– “Eclipse OpenJ9 runtime based actions use 3x smaller memory footprint compared to Hotpot runtime.”
– Source: https://medium.com/@ParamSelvam/apache-openwhisk-java-actions-on-eclipse-openj9-runtime-b21f1239d404

§ Linkerd: open source network proxy designed to be deployed as a service mesh
– Release 1.4.5: “we've added experimental support for the OpenJ9 JVM.”
– “Preliminary tests with OpenJ9 exhibit a 3x reduction in startup time, a 40% reduction in memory

footprint, and a 3x reduction in p99 latency.”
– “…find a Linkerd+OpenJ9 Docker image at buoyantio/linkerd:1.4.5-openj9-experimental on Docker Hub.”
– Source: https://groups.google.com/forum/#!topic/linkerd-users/FE15LPAPEaA

§ OpenJ9 and SpringBoot2 Microservices in Docker
– “OpenJ9 has 3x smaller footprint compared to OpenJDK with HotSpot or Oracle JRE…”
– “OpenJ9 starts 30% faster than OpenJDK with HotSpot when Shared Classes are enabled.”
– Source: https://medium.com/criciumadev/using-openj9-for-running-microservices-in-docker-ebb0b5da1e00

A few examples of OpenJDK+OpenJ9 users

21

https://medium.com/@ParamSelvam/apache-openwhisk-java-actions-on-eclipse-openj9-runtime-b21f1239d404
https://www.eclipse.org/openj9/
https://hub.docker.com/r/buoyantio/linkerd/tags/
https://groups.google.com/forum/
https://medium.com/criciumadev/using-openj9-for-running-microservices-in-docker-ebb0b5da1e00

OpenJ9
Designed for the Cloud

22

§ In data centers:
–About 30% of VMs are comatose
–About 50% of VMs are idle (active < 5% of the time)
–Source: https://blog.anthesisgroup.com/zombie-servers-redux

§ OpenJ9 configuration option: -XX:+IdleTuningGcOnIdle
–Compacts the heap and disclaims empty memory pages
–Reduces sampling thread frequency: 55% fewer wake-ups than Hotspot
–JIT compiler reduces optimization level (can be recompiled later!)

Idle mode optimizations

23

https://blog.anthesisgroup.com/zombie-servers-redux

§ Cloud and data center
– Virtual machines with <= 1VCPU are not uncommon
– “Hostile” environment for JVM: JIT compilation thread(s) must compete
– Mismanaged? Slow ramp-up and potential for response time jitter

§ OpenJ9 configuration option: -Xtune:virtualized
– More conservative JIT optimization to reduce CPU pressure from JIT

– With –Xshareclasses, use cached JIT code (AOT) more aggressively

– Saves 20-30% compilation effort for ideally small throughput expense

– Also some footprint reduction

Ramping up in a CPU constrained environment

24

Ramping-up with only one physical CPU core
Enterprise workload: OpenLiberty with DayTrader3

25

0 200 400 600 800 1000 1200 1400 1600

Th
ro

ug
hp

ut
 (t

ra
ns

ac
tio

ns
/s

ec
)

Time (sec)

(all runs with -Xmx1G)

OpenJDK9 with HotSpot

OpenJDK9 with OpenJ9

OpenJDK9 with OpenJ9 w/AOT -Xtune:virtualized

Sounds amazing!

How to try it out?

26

A1.
Build it yourself from source J

See: https://www.eclipse.org/openj9/oj9_build.html for details
(it’s actually pretty easy: 4 major steps)

How to get OpenJDK with OpenJ9

27

https://www.eclipse.org/openj9/oj9_build.html

28

A2.
Download your platform binary from AdoptOpenJDK

Start at https://adoptopenjdk.net
Select an “OpenJDKx with OpenJ9” then press “Latest release”

(Currently x can be 8,9,10)

How to get OpenJDK with OpenJ9

29

https://adoptopenjdk.net/

30

31

32

33

Means JCK compliant,
as tested by
AdoptOpenJDK
community!

A3.
Pull a docker image from DockerHub

(built by AdoptOpenJDK)

See https://hub.docker.com/search/?q=openj9

adoptopenjdk/openjdkx-openj9 (Currently x=8,9.10)

How to get OpenJDK with OpenJ9

34

https://hub.docker.com/search/?q=openj9

Multi-arch docker images make it super easy

35

You can also find tags for: Latest, release, and nightly (“-nightly”) builds, default and slim (“-slim”) variants
Alpine (“-alpine”) for x86_64, Ubuntu 16.04 for x86_64, ppc64le, and s390x

A4.
Use docker image as base for your own images

(built by AdoptOpenJDK)

See https://hub.docker.com/search/?q=openj9

adoptopenjdk/openjdkx-openj9 (Currently x=8,9.10)

How to get OpenJDK with OpenJ9

36

https://hub.docker.com/search/?q=openj9

Multi-arch docker images make it super easy

37

FROM adoptopenjdk/openjdk8-openj9:jdk8u181-b13_openj9-0.9.0

You can also find tags for: Latest, release, and nightly (“-nightly”) builds, default and slim (“-slim”) variants
Alpine (“-alpine”) for x86_64, Ubuntu 16.04 for x86_64, ppc64le, and s390x

You owe it to yourself to ask:

How are those binaries built?

How are they tested?

38

1. Infrastructure as Code - To host, build, test and deploy variants
of OpenJDK (aka Java)! This infrastructure as code is designed to
be usable by any person or organisation wishing to build a
derivative build farm or parts of one.

2. Professionally built OpenJDK binaries - A place for end users to
download professionally built and tested OpenJDK binaries.

3. A Community of builders - A place where those who build and
test OpenJDK come together to share common code and
practices.

Source: https://github.com/AdoptOpenJDK/TSC

The AdoptOpenJDK Build Farm is three things:

39

http://openjdk.java.net/
https://github.com/AdoptOpenJDK/TSC

AdoptOpenJDK is an Open Build Farm

40 Source: https://github.com/AdoptOpenJDK/TSC/blob/master/images/Adopt_Build_Farm_Repo_Relationships.png

https://github.com/AdoptOpenJDK/TSC/blob/master/images/Adopt_Build_Farm_Repo_Relationships.png

AdoptOpenJDK is an Open Build Farm

41 Source: https://github.com/AdoptOpenJDK/TSC/blob/master/images/Adopt_Build_Farm_Repo_Relationships.png

Vendor neutral technical
steering committee

https://github.com/AdoptOpenJDK/TSC/blob/master/images/Adopt_Build_Farm_Repo_Relationships.png

AdoptOpenJDK is an Open Build Farm

42 Source: https://github.com/AdoptOpenJDK/TSC/blob/master/images/Adopt_Build_Farm_Repo_Relationships.png

How
infrastructure
is managed

https://github.com/AdoptOpenJDK/TSC/blob/master/images/Adopt_Build_Farm_Repo_Relationships.png

AdoptOpenJDK is an Open Build Farm

43 Source: https://github.com/AdoptOpenJDK/TSC/blob/master/images/Adopt_Build_Farm_Repo_Relationships.png

How to
build

OpenJDK
releases

for all
platforms

https://github.com/AdoptOpenJDK/TSC/blob/master/images/Adopt_Build_Farm_Repo_Relationships.png

AdoptOpenJDK is an Open Build Farm

44 Source: https://github.com/AdoptOpenJDK/TSC/blob/master/images/Adopt_Build_Farm_Repo_Relationships.png

How to test
OpenJDK
releases
to ensure

high quality

https://github.com/AdoptOpenJDK/TSC/blob/master/images/Adopt_Build_Farm_Repo_Relationships.png

AdoptOpenJDK is an Open Build Farm

45 Source: https://github.com/AdoptOpenJDK/TSC/blob/master/images/Adopt_Build_Farm_Repo_Relationships.png

Certify
OpenJDK
builds for

all releases
storing

archived
results

https://github.com/AdoptOpenJDK/TSC/blob/master/images/Adopt_Build_Farm_Repo_Relationships.png

AdoptOpenJDK Open Source Build Farm

46 Source: https://github.com/AdoptOpenJDK/TSC/blob/master/images/Adopt_Build_Farm_Repo_Relationships.png

Implements
web site

and
Express.js
REST API

https://github.com/AdoptOpenJDK/TSC/blob/master/images/Adopt_Build_Farm_Repo_Relationships.png

Want additional / different testing? Help to add it!

Want another platform? Update the scripts!

AdoptOpenJDK is 100% open source

and community driven!

https://adoptopenjdk.net/getinvolved.html

Get involved at AdoptOpenJDK !

47

https://adoptopenjdk.net/getinvolved.html

Who is participating ?
Here are some of the over 200 contributors!

48

The Java Ecosystem
and OpenJ9’s place in it

49

IBM J9
JVM

Open source projects at
Eclipse Foundation
Since 2016/2017

Closed source development
at IBM

1997 – 2016/2017

OMR

Eclipse OpenJ9 origin is IBM J9 JVM
which produced two open source projects!

OpenJ9
consumes
OMR

March
2016

Sep
2017

§ Eclipse OMR is an open source project with reusable, reliable
components (GC, JIT, etc.) for building all kinds of language runtimes

Eclipse OMR : OpenJ9 : OpenJDK

51

OpenJDK

OpenJDKWebAssembly

Swift JIT

Rosie Pattern Lang

Smalltalk

Lua 5.3

CRuby

Base9

Javascript

Kaleidoscope

Ravi 0.24

CPython

BF

OpenJDK with OpenJ9

OpenJDK with Hotspot

Language and runtime porting projects

OpenJ9 and OMR very active projects

52

§ Under governance of the Eclipse Foundation
§ Source code in git on GitHub: https://github.com/eclipse/openj9

§ Issues and Features tracked at our GitHub project

§ All changes are handled via Pull Requests:
–Open CI testing performed before merge via “Jenkins” bot
–Cross platform, cross JDK test results reported directly in PR

§ Community communicates via:
–Request slack invite: https://www.eclipse.org/openj9/oj9_joinslack.html
–Hangout Wednesdays 11am EST: see #planning channel for details

OpenJ9: 100% Open Source JVM Project
but not associated with OpenJDK

53

https://github.com/eclipse/openj9
https://www.eclipse.org/openj9/oj9_joinslack.html

§ Eclipse considers OpenJ9 to be in “incubator” phase:
– ”After the project has been created, the purpose of the incubation phase

is to establish a fully-functioning open-source project.”
– Source: http://www.eclipse.org/projects/dev_process/development_process.php#6_2_3_Incubation

§ When we graduate from incubation, we can do our 1.0 release

§ 0.x release does not reflect on quality of OpenJ9 JVM…
– Simply that we are not yet a fully fledged Eclipse project
– Vendor neutrality (all committers are from IBM) currently holds us back
– We welcome all kinds of contributors to the project

§ Proof of JVM Quality: IBM chooses an OpenJ9 nightly build with
which to ship updates to the SDK for Java 8

What’s with the 0.8, 0.9, 0.10 releases?

54

http://www.eclipse.org/projects/dev_process/development_process.php

§ OpenJDK is GPLv2 with Classpath Exception

§ Eclipse OpenJ9 is AL2 or EPLv2
–EPLv2 has secondary license compatibility for OpenJDK’s license

§ OpenJDK + OpenJ9 can be used anywhere OpenJDK can be used

§ OpenJ9’s license is more flexible than OpenJDK’s license so that
OpenJ9 (and OMR) can participate in other language ecosystems

License

55

A JVM-only project has another advantage

JVM features need not be

linked to a specific JDK release
(OpenJ9 releases deliver even to JDK8!)

56

OpenJDK features now come every 6 months

57

Sep
2017

Mar
2018

Sep
2018

Mar
2019

Java 9
Jigsaw
Collection factories
AOT
Linux AArch64
Linux S390X
…

Java 10
Local Var Type

Inference
Parallel full G1GC
App CDS
Container awareness
…

Java 11
Dynamic Consts
Nest based access

control
Epsilon No-op GC
ZGC low latency GC
…

Java 12
<tbd>

OpenJDK features now come every 6 months
Language / JCL / spec changes

58

Sep

2017

Mar

2018

Sep

2018

Mar

2019

Java 9
Jigsaw
Collection factories
AOT
Linux AArch64

Linux S390X

…

Java 10
Local Var Type

Inference
Parallel full G1GC

App CDS

Container awareness
…

Java 11
Dynamic Consts
Nest based access

control
Epsilon No-op GC

ZGC low latency GC

…

Java 12
<tbd>

OpenJDK features now come every 6 months
JVM technology / platform changes

59

Sep
2017

Mar
2018

Sep
2018

Mar
2019

Java 9
Jigsaw
Collection factories
AOT
Linux AArch64
Linux S390X
…

Java 10
Local Var Type

Inference
Parallel full G1GC
App CDS
Container awareness
…

Java 11
Dynamic Consts
Nest based access

control
Epsilon No-op GC
ZGC low latency GC
…

Java 12
<tbd>

§ Transitioning to 6 releases / year based on OpenJDK releases
– 2 feature releases tracking new OpenJDK releases (JDK 9,10,11,12,…)
– 4 update releases tracking OpenJDK quarterly update releases

§ BUT: each OpenJ9 release can be built into any supported JDK
– OpenJ9 0.8 (Mar 2018) builds into JDK8, JDK9
– OpenJ9 0.9 (Aug 2018) builds into JDK8, JDK10
– OpenJ9 0.10 (Sep 2018) feature release to build in JDK8, JDK10, JDK11
– OpenJ9 0.11 (Oct 2018) will build into JDK8, JDK11

OpenJ9 has frequent releases too

60 Red JDK = Long Term Support Release

61

Release OpenJ9 Feature JDK8 JDK9 JDK10 JDK11

0.8.0 Mar
2018

JDK8 certified by AdoptOpenJDK ✓
JDK9 feature complete (since Sep 2017) ✓
Linux 64-bit on X86, ppc64le, s390x,
Windows 64-bit platform support ✓ ✓

0.9.0 Aug
2018

JDK10 feature complete ✓
Windows 32-bit builds ✓ ✓
Large heap builds for Linux x86-64 ✓ ✓
New GC policy “no-gc” ✓ ✓
Idle tuning features ✓ ✓
Container awareness ✓ ✓

0.10.0 Sep
2018 *

JDK11 feature complete ✓
Improved JNI performance ✓ ✓ ✓
Increase default shared cache size ✓ ✓ ✓
Improve option support for Hotspot migration ✓ ✓ ✓

Green box = Java language/spec work

Eclipse OpenJ9

is the only 100% open source JVM
that re-invests in the JVM platform

independently of JDK releases

62

IBM offers commercial support for

OpenJDK with OpenJ9 if you want it

https://www.ibm.com/ca-en/marketplace/support-for-runtimes

A quick word about commercial support

63

https://www.ibm.com/ca-en/marketplace/support-for-runtimes

1. OpenJDK with OpenJ9 is the best OpenJDK solution for your
Java workloads

2. AdoptOpenJDK is the best place to get your OpenJDK (with
OpenJ9!) binaries

3. Eclipse OpenJ9 is the best open source JVM project in the
open Java ecosystem

§Try it out! And you can start to believe it too!

I believe that

64

§ Easy to get and integrate into your deployments
–Download high quality, certified builds from AdoptOpenJDK!

§ ~30% faster server start-up
§ ~50% less physical memory use

§ “Designed for Cloud” configuration options:
– Idle mode tuning for your less active JVMs
– Faster ramp-up in CPU constrained environments

§ New JVM features (e.g. container support) with JDK8 and up!

Try out OpenJDK with OpenJ9!

65

§ Eclipse OpenJ9 https://www.eclipse.org/openj9
– Source code (OpenJ9) https://github.com/eclipse/openj9
– Source code (OMR) https://github.com/eclipse/omr
– Slack invite https://www.eclipse.org/openj9/oj9_joinslack.html

§ AdoptOpenJDK https://adoptopenjdk.net/
– Slack invite https://adoptopenjdk.net/slack.html
– Source code https://github.com/adoptopenjdk

§ My contact info:
– Mark Stoodley mstoodle@ca.ibm.com, @mstoodle

Handy Links

66

https://www.eclipse.org/openj9
https://github.com/eclipse/openj9
https://github.com/eclipse/omr
https://www.eclipse.org/openj9/oj9_joinslack.html
https://adoptopenjdk.net/
https://adoptopenjdk.net/slack.html
https://github.com/adoptopenjdk
mailto:mstoodle@ca.ibm.com
https://twitter.com/mstoodle

Backup

67

Cloud configuration (–XX:+IdleTuningGcOnIdle)
Enterprise workload: OpenLiberty with AcmeAir

68
Benchmark: https://github.com/blueperf/acmeair
More details: https://developer.ibm.com/javasdk/2017/09/25/still-paying-unused-memory-java-app-idle

https://github.com/blueperf/acmeair
https://developer.ibm.com/javasdk/2017/09/25/still-paying-unused-memory-java-app-idle

Designed for the cloud:

CPU and wakeups of Idle JVMs

OpenJDK9 with HotSpot – 0.168% CPU

Summary: 84.7 wakeups/second, 0.0 GPU

ops/seconds, 0.0 VFS ops/sec and 0.3% CPU use.

Usage Events/s Category Description
0.9 ms/s 44.2 Process /sdks/OpenJDK9-

x64_Linux_20172509/jdk-9+181/bin/java

119.5 µs/s 20.0 Process [xfsaild/dm-1]

138.6 µs/s 7.4 Timer tick_sched_timer

10.5 µs/s 1.6 Process [rcu_sched]

190.4 µs/s 1.5 Timer hrtimer_wakeup

OpenJDK9 with OpenJ9 – 0.111% CPU

Summary: 38.5 wakeups/second, 0.1 GPU

ops/seconds, 0.0 VFS ops/sec and 0.2% CPU use

Usage Events/s Category Description
681.2 µs/s 19.2 Process /sdks/OpenJDK9-

OPENJ9_x64_Linux_20172509/jdk-9+181/bin/java

58.3 µs/s 5.2 Timer tick_sched_timer

21.9 µs/s 3.6 Process [rcu_sched]

39.3 µs/s 2.0 Timer hrtimer_wakeup

157.1 µs/s 1.0 kWork ixgbe_service_task

§ Analyze behavior of idle OpenLiberty server with powertop tool

69

§ OpenJ9 triggers ~55% fewer wakeups than HotSpot

