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❑ Rollouts:
Is this rollout safe? How do I roll  
back? Can I test a change  
without swapping traffic?

❑ Protocol Standards:
How do I make a prediction?  
GRPC? HTTP? Kafka?

❑ Cost:
Is the model over or under scaled?  
Are resources being used efficiently?

❑ Monitoring:
Are the endpoints healthy? What is  
the performance profile and request  
trace?

Trained  
Model

Deployed  
Model

Prepared

data

Untrained  
Model

❑ Frameworks:
How do I serve on Tensorflow?  
XGBoost? Scikit Learn? Pytorch?  
Custom Code?

❑ Features:
How do I explain the predictions?
What about detecting outliers and
skew? Bias detection? Adversarial
Detection?

❑ How do I wire up custom pre and  
post processing

Production Model Serving? How hard could it be?
❑ How do I handle batch  

predictions?

❑ How do I leverage standardized  
Data Plane protocol so that I can  
move my model across MLServing  
platforms?



● Seldon Core was pioneering Graph Inferencing.
● IBM and Bloomberg were exploring serverless ML lambdas. IBM gave a talk on  

the ML Serving with Knative at last KubeCon in Seattle
● Google had built a common Tensorflow HTTP API for models.
● Microsoft Kubernetizing their Azure ML Stack

Experts fragmented across industry



● Kubeflow created the conditions for collaboration.
● A promise of open code and open community.
● Shared responsibilities and expertise across multiple companies.
● Diverse requirements from different customer segments

Putting the pieces together



Introducing KFServing



KFServing

● Founded by Google, Seldon, IBM, Bloomberg and Microsoft

● Part of the Kubeflow project

● Focus on 80% use cases - single model rollout and update

● Kfserving 1.0 goals:

○ Serverless ML Inference

○ Canary rollouts

○ Model Explanations

○ Optional Pre/Post processing



KFServing Stack



Knative provides a set of building blocks that enable declarative, container-based, serverless workloads  
on Kubernetes. Knative Serving provides primitives for serving platforms such as:
• Event triggered functions on Kubernetes
• Scale to and from zero
• Queue based autoscaling for GPUs and TPUs. KNative autoscaling by default provides inflight requests per pod
• Traditional CPU autoscaling if desired. Traditional scaling hard for disparate devices (GPU, CPU, TPU)

KNative

IBM is
2nd largestcontributor



Connect: Traffic Control, Discovery,  
Load Balancing, Resiliency

Observe: Metrics, Logging, Tracing

Secure: Encryption (TLS),  
Authentication, and Authorization of  
service-to-service communication

Control: Policy Enforcement

An open service mesh platform to connect, observe, secure, and control microservices.  
Founded by Google, IBM and Lyft. IBM is the 2nd largest contributor

Istio



Manages the hosting aspects of your models

• InferenceService - manages the lifecycle of  
models

• Configuration - manages history of model  
deployments. Two configurations for default and  
canary.

• Revision - A snapshot of your model version

• Route - Endpoint and network traffic management

Route Default  
Configuration

Revision 1

Revision M90
%

KFService

Canary  
Configuration

Revision 1

Revision N10
%

KFServing: Default and  
Canary Configurations



Model Servers

- TensorFlow

- Nvidia TRTIS

- PyTorch

- XGBoost

- SKLearn

- ONNX

Components:

• - Predictor, Explainer, Transformer  
(pre-processor, post-processor)

Storage
- AWS/S3

- GCS

- Azure Blob

- PVC

Supported Frameworks, Components and  
Storage Subsystems



The InferenceService architecture consists of a static graph of components which coordinate  
requests for a single model. Advanced features such as Ensembling, A/B testing, and Multi-Arm-
Bandits should compose InferenceServices together.

Inference Service Control Plane



KFServing Deployment View



- Today’s popular model servers, such as TFServing, ONNX, Seldon, TRTIS, all  

communicate using similar but non-interoperable HTTP/gRPC protocol

- KFServing v1 data plane protocol uses TFServing compatible HTTP API and  

introduces explain verb to standardize between model servers, punt on v2 for gRPC  

and performance optimization.

KFServing Data Plane Unification



API Verb Path Payload

List Models GET /v1/models [model_names]

Readiness GET /v1/models/<model_name>

Predict POST /v1/models/<model_name>:predict Request: {instances:[]}  
Response: {predictions:[]}

Explain POST /v1/models<model_name>:explain Request: {instances:[]}  
Response: {predictions:[],  
explanations:[]}

KFServing Data Plane v1 protocol



apiVersion: "serving.kubeflow.org/v1alpha1"  
kind: "InferenceService"
metadata:
name: "sklearn-iris"  

spec:
default:

sklearn:
modelUri: "gs://kfserving-samples/models/sklearn/iris"

apiVersion: "serving.kubeflow.org/v1alpha1"  
kind: "InferenceService"
metadata:
name: "flowers-sample"  

spec:
default:

tensorflow:
modelUri: "gs://kfserving-samples/models/tensorflow/flowers"

apiVersion: "serving.kubeflow.org/v1alpha1"  
kind: "InferenceService"
metadata:
name: ”pytorch-iris"  

spec:
default:

pytorch:
modelUri: "gs://kfserving-samples/models/pytorch/iris"

KFServing Examples



apiVersion: "serving.kubeflow.org/v1alpha1"  
kind: "KFService"
metadata:
name: "my-model"  

spec:
default:

# 90% of traffic is sent to this model  
tensorflow:
modelUri: "gs://mybucket/mymodel-2"  

canaryTrafficPercent: 10
canary:

# 10% of traffic is sent to this model  
tensorflow:
modelUri: "gs://mybucket/mymodel-3"

apiVersion: "serving.kubeflow.org/v1alpha1"  
kind: "KFService"
metadata:
name: "my-model"

spec:
default:

tensorflow:
modelUri: "gs://mybucket/mymodel-2"

# Defaults to zero, so can also be omitted or explicitly set to zero.  
canaryTrafficPercent: 0
canary:

# Canary is created but no traffic is directly forwarded.
tensorflow:
modelUri: "gs://mybucket/mymodel-3"

Canary

Pinned

Canary/Pinned Examples



● Flexible, high performance serving system for TensorFlow
● https://www.tensorflow.org/tfx/guide/serving
● Stable and Google has been using it since 2016
● Saved model format and graphdef
● Written in C++, support both REST and gRPC
● KFServing allows you to easily spin off an Inference Service with TFServing to  

serve your tensorflow model on CPU or GPU with serverless features like canary  
rollout, autoscaling.

TensorFlow Serving(TFServing)

http://www.tensorflow.org/tfx/guide/serving


Inference Service with Transformer and TFServing

apiVersion: serving.kubeflow.org/v1alpha2  
kind: InferenceService
metadata:
name: bert-serving

spec:
default  
transformer:
custom:  

container:
image: bert-transformer:v1  

predictor:
tensorflow:
storageUri: s3://examples/bert  
runtimeVersion: 1.14.0-gpu  
resources:
limits:  

nvidia.com/gpu: 1

Pre/Post Processing

Tensorflow Model  
Server

class BertTransformer(kfserving.KFModel):  

def init (self, name):

super(). init (name)

self.bert_tokenizer = 

BertTokenizer(vocab_file)  def preprocess(self, 

inputs: Dict) -> Dict:

encoded_features = bert_tokenizer.encode_plus(  

text=text_a, text_pair=text_b)

return {“input_ids”:

encoded_features[“input_ids”],  “input_mask”:

encoded_features[“attention_mask”],

“segment_ids”:

encoded_features[“segment_ids”],  “label_ids”:

1}

def postprocess(self, inputs: Dict) -> Dict:  

return inputs



● NVIDIA’s highly-optimized model runtime on GPUs
● https://docs.nvidia.com/deeplearning/sdk/tensorrt-inference-server-guide/docs
● Supports model repository, versioning
● Dynamic batching
● Concurrent model execution
● Supports TensorFlow, PyTorch, ONNX models
● Written in C++, support both REST and gRPC
● TensorRT Optimizer can further bring down the BERT inference latency

NVIDIA Triton Inference Server



Inference Service with Triton Inference Service

nvidia.com/gpu: 1 Triton Inference Server

infer_ctx = InferContext(url, protocol, model_name,  

model_version)

unique_ids = np.int32([1])  

segment_ids = features["segment_ids"]

input_ids = features["input_ids"]  

input_mask = features["input_mask"]

result = infer_ctx.run({ 'unique_ids' : (unique_ids,),

'segment_ids' : (segment_ids,),  

'input_ids' : (input_ids,),  

'input_mask' : (input_mask,) },

{ 'end_logits' :  

InferContext.ResultFormat.RAW,

'start_logits' :  

InferContext.ResultFormat.RAW }, batch_size)

apiVersion: serving.kubeflow.org/v1alpha2  
kind: InferenceService
metadata:
name: bert-serving

spec: Pre/Post Processing
default
transformer:  

custom:
container:
image: bert-transformer:v1  
env:

name: STORAGE_URI
value: s3://examples/bert_transformer  

predictor:
tensorrt:
storageUri: s3://examples/bert  
runtimeVersion: r20.02  
resources:
limits:



PyTorch Model Server

● PyTorch model server maintained by KFServing
● https://github.com/kubeflow/kfserving/tree/master/python/pytorchserver
● Implemented in Python with Tornado server
● Loads model state dict and model class python file
● GPU Inference is supported in KFServing 0.3 release

● Alternatively you can export PyTorch model in ONNX format and serve on  
TensorRT Inference Server or ONNX Runtime Server.



ONNX Runtime Server

● ONNX Runtime is a performance-focused inference  
engine for ONNX models

● https://github.com/microsoft/onnxruntime
● Supports Tensorflow, Pytorch models which can be converted to ONNX
● Written in C++, support both REST and gRPC
● ONNX Runtime optimized BERT transformer network to further bring down the  

latency
https://github.com/onnx/tutorials/blob/master/tutorials/Inference-TensorFlow-
Bert-Model-for-High-Performance-in-ONNX-Runtime.ipynb



Inference Service with PyTorch/ONNX Runtime

nvidia.com/gpu: 1 Pytorch Model Server

apiVersion: serving.kubeflow.org/v1alpha2  
kind: InferenceService
metadata:
name: bert-serving-onnx

spec:
default  
transformer:
custom:  

container:
image: bert-transformer:v1  
env:

name: STORAGE_URI
value: s3://examples/bert_transformer  

predictor:
onnx:
storageUri: s3://examples/bert  
runtimeVersion: 0.5.1

apiVersion: serving.kubeflow.org/v1alpha2  
kind: InferenceService
metadata:
name: bert-serving

spec: Pre/Post Processing
default
transformer:  

custom:
container:
image: bert-transformer:v1  
env:

name: STORAGE_URI
value: s3://examples/bert_transformer  

predictor:
pytorch:
storageUri: s3://examples/bert  
runtimeVersion: v0.3.0-gpu  
resources:
limits:

ONNX Runtime Server

Pre/Post Processing



GPU Autoscaling - KNative solution

Ingress
Activator
(buffersrequests)

Autoscaler

Queue  
Proxy

Model  
server

when scale == 0 or handling
burst capacity

when scale > 0

metrics

scale

metrics

● Scale based on # in-flight requests against expected concurrency
● Simple solution for heterogeneous ML inference autoscaling

0...N Replicas

API
Requests
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KFServing: Default, Canary and`Autoscaler



But the Data Scientist Sees...

● A pointer to a Serialized Model File
● 9 lines of YAML
● A live model at an HTTP endpoint

= http

● Scale to Zero
● GPU Autoscaling
● Safe Rollouts
● Optimized Serving Containers
● Network Policy and Auth
● HTTP APIs (gRPC soon)
● Tracing
● Metrics

apiVersion: "serving.kubeflow.org/v1alpha2"
kind: "InferenceService"
metadata:
name: "flowers-sample"
spec:
default:
predictor:
tensorflow:
storageUri: "gs://kfserving-samples/models/tensorflow/flowers"

Production users include: Bloomberg



Summary

● With KFServing user can easily deploy the service for inference on GPU with
performant industry leading model servers as well as benefiting from all the
serverless features.

● Autoscale the inference workload based on your QPS, much better resource
utilization.

● gRPC can provide better performance over REST which allows multiplexing and  
protobuf is a efficient and packed format than JSON.

● Transformer can work seamlessly with different model servers thanks to  
KFServing’s data plane standardization.

● GPUs benefit a lot from batching the requests.



Model Serving is accomplished. Can the  
predictions be trusted?

Trained  
Model

Deployed  
Model

Prepared 
Data

Untrained  
Model

Can the model explain  
its predictions?

Are there concept drifts?

Is there an outlier?

Is the model vulnerable  
to adversarial attacks?



Production ML Architecture

InferenceService

logger Broker

Trigger

Outlier  
Detection

Alerting

API

Serving

Model

Explainer

Adversarial  
Detection

Concept  
Drift



Payload Logging



Payload Logging

Why:
● Capture payloads for analysis and future retraining of the model
● Perform offline processing of the requests and responses

KfServing Implementation (alpha):

● Add to any InferenceService Endpoint: Predictor, Explainer, Transformer
● Log Requests, Responses or Both from the Endpoint
● Simple specify a URL to send the payloads
● URL will receive CloudEvents

POST /event HTTP/1.0  
Host: example.com
Content-Type: application/json  
ce-specversion: 1.0
ce-type: repo.newItem
ce-source: http://bigco.com/repo
ce-id: 610b6dd4-c85d-417b-b58f-3771e532

<payload>

http://bigco.com/repo


Payload Logging

apiVersion: "serving.kubeflow.org/v1alpha2"  
kind: "InferenceService"
metadata:
name: "sklearn-iris"  
spec:
default:  

predictor:  
minReplicas: 1
logger:

url: http://message-dumper.default/ 
mode: all

sklearn:
storageUri: "gs://kfserving-samples/models/sklearn/iris"  
resources:

requests:
cpu: 0.1

http://message-dumper.default/


Payload Logging Architecture Examples

InferenceService

Model
logger

Broker

Trigger

Outlier  
Detector Alerting

API

Http kafka  
Bridge Kafka Cluster

Serving



Machine Learning Explanations



KfServing Explanations

apiVersion: "serving.kubeflow.org/v1alpha2"  
kind: "InferenceService"
metadata:
name: "income"  
spec:
default:

predictor:
sklearn:

storageUri: "gs://seldon-models/sklearn/income/model"  
explainer:
alibi:

type: AnchorTabular
storageUri: "gs://seldon-models/sklearn/income/  

explainer"

apiVersion: "serving.kubeflow.org/v1alpha2"  
kind: "InferenceService"
metadata:
name: "moviesentiment"  
spec:
default:

predictor:
sklearn:

storageUri: "gs://seldon-models/sklearn/moviesentiment"
explainer:  

alibi:
type: AnchorText



https://github.com/SeldonIO/alibi

State of the art implementations:

Seldon Alibi:Explain

Janis KlaiseGiovanni Vacanti Alexandru CocaArnaud Van Looveren

• Anchors
• Counterfactuals
• Contrastive explanations
• Trust scores
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AIX360 toolkit is an open-source library to help explain AI and  
machine learning models and their predictions. This includes three  
classes of algorithms: local post-hoc, global post-hoc, and directly  
interpretable explainers for models that use image, text, and  
structured/tabular data.

The AI Explainability360 Python package includes a comprehensive  
set of explainers, both at global and local level.
Toolbox
Local post-hoc  
Global post-hoc  
Directly interpretable

http://aix360.mybluemix.net

AI Explainability 360
↳ (AIX360)
https://github.com/IBM/AIX360

Explanations: Resources

AIX360

http://aix360.mybluemix.net/


AIX360 Explainability in KFServing



ML Inference Analysis



Don’t trust predictions on instances outside of training distribution!

• Outlier Detection

• Adversarial Detection

• Concept Drift

ML Inference Analysis



Don’t trust predictions on instances outside of training distribution!

→ Outlier Detection
Detector types:

- stateful online vs. pretrained offline
- feature vs. instance level detectors

Data types:
- tabular, images & time series  
Outlier types:

- global, contextual & collective outliers

Outlier Detection



Don’t trust predictions on instances outside of training distribution!
→ Adversarial Detection

- Outliers w.r.t. the model prediction

- Detect small input changes with a big impact on predictions!

Adversarial Detection



Production data distribution != training distribution?
→ Concept Drift! Retrain!

Need to track the right distributions:
- feature vs. instance level

- continuous vs. discrete

- online vs. offline training data

- track streaming number of outliers

Concept Drift



Outlier Detection on CIFAR10

InferenceService

CIFAR10 Model
logger Broker

Trigger

CIFAR10
Outlier Detector

Message  
Dumper

API

Serving



Adversarial Detection Demos

KFServing MNIST Model with  
Alibi:Detect VAE Adversarial Detector
https://github.com/SeldonIO/alibi-detect/tree/master/integrations/

samples/kfserving/ad-mnist

KFServing Traffic Signs Model with  
Alibi:Detect VAE Adversarial Detector



•
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Adversarial Robustness 360 ↳ (ART)

ART is a library dedicated to adversarial machine learning. Its  
purpose is to allow rapid crafting and analysis of attack, defense  
and detection methods for machine learning models. Applicable  
domains include finance, self driving vehicles etc.

The Adversarial Robustness Toolbox provides an implementation  
for many state-of-the-art methods for attacking and defending  
classifiers.
Toolbox: Attacks, defenses, andmetrics
Evasion attacks  
Defense methods  
Detection methods  
Robustness metrics

https://art-demo.mybluemix.net/

https://github.com/IBM/adversarial-robustness-toolbox ART



DEMO



KFServing – Existing Features
q Crowd sourced capabilities – Contributions by AWS, Bloomberg, Google, Seldon, IBM, NVidia and others.
q Support for multiple runtimes pre-integrated (TFServing, Nvdia Triton (GPU optimization), ONNX Runtime, SKLearn,  

PyTorch, XGBoost, Custom models.

q Serverless ML Inference and Autoscaling: Scale to zero (with no incoming traffic) and Request queue based autoscaling

q Canary and Pinned rollouts: Control traffic percentage and direction, pinned rollouts
q Pluggable pre-processor/post-processor via Transformer: Gives capabilities to plug in pre-processing/post-processing  

implementation, control routing and placement (e.g. pre-processor on CPU, predictor on GPU)

q Pluggable analysis algorithms: Explainability, Drift Detection, Anomaly Detection, Adversarial Detection (contributed by  

Seldon) enabled by Payload Logging (built using CloudEvents standardized eventing protocol)

q Batch Predictions: Batch prediction support for ML frameworks (TensorFlow, PyTorch, ...)
q Integration with existing monitoring stack around Knative/Istio ecosystem: Kiali (Service placements, traffic and graphs),  

Jaeger (request tracing), Grafana/Prometheus plug-ins for Knative)

q Multiple clients: kubectl, Python SDK, Kubeflow Pipelines SDK

q Standardized Data Plane V2 protocol for prediction/explainability et all: Already implemented by Nvidia Triton



q MMS: Multi-Model-Serving for serving multiple models per custom KFService instance

q More Data Plane v2 API Compliant Servers: SKLearn, XGBoost, PyTorch…

q Multi-Model-Graphs and Pipelines: Support chaining multiple models together in a Pipelines

q PyTorch support via AWS TorchServe

q gRPC Support for all Model Servers

q Support for multi-armed-bandits

q Integration with IBM AIX360 for Explainability, AIF360 for Bias detection and ART for Adversarial detection

KFServing – Upcoming Features



Open Source Projects

● ML Inference
○ KFServing
○ Seldon Core

https://github.com/kubeflow/kfserving

https://github.com/SeldonIO/seldon-core

● Model Explanations
○ Seldon Alibi

○ IBM AI Explainability 360

https://github.com/seldonio/alibi 

https://github.com/IBM/AIX360

● Outlier and Adversarial Detection and Concept Drift
○ Seldon Alibi-detect

https://github.com/seldonio/alibi-detect

● Adversarial Attack, Detection and Defense
○ IBM Adversarial Robustness 360

https://github.com/IBM/adversarial-robustness-toolbox


