
Istio Test Framework
& Prow CICD Pipeline
Email: llcao@cn.ibm.com
Github ID: morvencao

When you raise a PR to
istio repo, there are
quite a few tests
running, how are they
triggered under the
hood?

Overall process for triggering prow jobs and getting test results

Overall process for triggering specific test and getting test result

Overall process for review & approve & merge PR

So what’s
Prow?

Prow is CICD Kubernetes-based CI/CD system, it provides:

v Job execution for testing, batch processing, artifact publishing

Ø GitHub events are used to trigger post-PR-merge (postsubmit) jobs and on-
PR-update (presubmit) jobs

Ø Support for multiple job execution platforms

v Pluggable GitHub bot automation that implements /foo style commands

v GitHub merge automation(Tide) with batch testing logic

v Front end for viewing jobs, merge queue status, and more

v Automatic GitHub org/repo administration configured in source control

v …

Prow’s Interactions Sequence with PR

Prow
Deployment
Architecture

Prow Job Type

Three types of prow jobs:
v Presubmits run against code in PRs

v Postsubmits run after merging code

v Periodics run on a periodic basis

Add Prow
Job - 0

Add new prow job for your
test suite
v Add script that run your test

suite in istio/istio repo
under prow folder

v Add configuration for new
prow job in istio/test-infra
repo in prow/config/jobs
folder

v Configure the entrypoint in
the new prow job repo in
prow/config/jobs

Add Prow
Job – 1
Prow Job Spec
Example

Add Prow
Job – 2
Prow Job entrypoint
& make target for
kube env

We have known
how tests are
triggered, but how
to write tests?

Istio Tests
Pyramid

v Unit Tests*
v Integration Tests*
v E2E Tests
v Release Tests

Unit Tests

q Unit tests should be fully hermetic
q All packages and any significant files require unit tests
q Unit tests are written using the standard Go testing package
q The preferred method of testing multiple scenarios or input is table driven testing
q Concurrent unit test runs must pass
q Unit tests coverage requirements
q Run unit tests:

make [|pilot|mixer|operator|…|-]test

or for a single test:

go test ./pilot/pkg/networking/core/v1alpha3/ -v –race

Unit Test Example

Example from istio/istio/pilot/pkg/kube/inject

Original Function:

Unit Test Function:

Istio Integration Test Framework

Background:
v Hard to write tests case for cloud-based micro-services

v Running tests quickly and reliably is another challenge

v Supporting multiple cloud platform makes thing harder

Istio Integration Test Framework

Objects for the Istio Integration Test Framework:
v Writing Tests

Ø Platform Agnostic: The API abstracts away the details of the underlying platform
Ø Reusable Tests: Suites of tests can be written which will run against any platform that

supports Istio

v Running Tests
Ø Standard Tools: Built on Go's testing infrastructure and run with standard

commands (e.g. go test)
Ø Easy: Few or no flags are required to run tests out of the box
Ø Fast: With the ability to run processes natively on the host machine, running tests

are orders of magnitude faster
Ø Reliable: Running tests natively are inherently more reliable than in-cluster

Writing
Tests- 00

Getting Started

1. Create a new go package in
istio/test/integrations for your test
suites

2. Within that package, create go file
and call framework.NewSuite() in
TestMain

The call to framework.NewSuite() does
the following:

v Starts the platform-specific
environment. By default, the native
environment is used. To run on
Kubernetes, set the flag: --
istio.test.env=kube

v Run all tests in the current package.
This is the standard Go behavior for
TestMain

Writing
Tests- 01

Add Tests

3. Define test the same package

Every test will follow the pattern in the example above:
- Get the test context. The framework.TestContext is a wrapper around the underlying
testing.T and implements the same interface. Test code should generally not interact with
the testing.T directly.
- Get and use components. Each component (e.g. Pilot, Mixer, Apps) defines its own API.

Writing
Tests- 02

Suite-level Checks

4. Support suite-level checks

In the TestMain, you can also restrict the test to particular environment, apply labels, or do
test-wide setup, such as deploying Istio.

Writing
Tests- 03

Sub-Tests

5. Istio test framework supports nested tests with ctx.NewSubTest(), similar to golang t.Run()

Note: calling subtest.Run() delegates to t.Run() in order to create a child testing.T

Writing
Tests- 04

Parallel Tests

5. Run test in parallel where possible:

Many tests can take a while to start up for a variety of reasons, such as waiting for
pods to start or waiting for a particular piece of configuration to propagate throughout
the system. It may be desirable to run these sorts of tests in parallel in some cases.

Note: Parallel tests rely on Go's t.Parallel() and will, therefore, have the same
behavior.

Writing
Tests- 05

Sub-tests and
Parallel Tests

6. Sub-tests and parallel tests

A parallel test will run in parallel with siblings that share the same parent test.
The parent test function will exit before the parallel children are executed.

Writing
Tests- 06

Using Components

7. Components are utilities that provide abstractions for Istio resources

Components are maintained in components package, which defines various Istio
components such as galley, pilot, and namespaces.

Each component defines their own API which simplifies their use from test code,
abstracting away the environment-specific details

Writing
Components
- 00

Getting Started

1. Create a new go package in
pkg/test/framework/components

2. Within that package, define your
component’s API

NOTE: A common pattern is to provide
two versions of many methods: one
that returns an error as well as an
OrFail version that fails the test upon
encountering an error. This provides
options to the calling test and helps to
simplify the calling logic.

Writing
Components
- 01

Implement
Component - 00

3. Implement your component, both a native and Kubernetes version

Each implementation of the component must implement resource.Resource, which
just exposes a unique identifier for your component instances used for resource
tracking by the framework. To get the ID, the component must call
ctx.TrackResource during construction.

Writing
Components
- 02

Implement
Component - 01

4. Provide an environment-agnostic constructor for your component:

Writing
Components
- 03

Implement
Component - 02

5. Using your component in test case

NOTE: When a component is created, the framework tracks its lifecycle. When the
test exits, any components that were created during the test are automatically closed.

Running Tests - 00

v Running Istio tests
Istio Test Framework is built on top of Golang’s testing infrastructure, therefore, to run tests
under /tests/integration/mysuite can be simply done by

go run ./tests/integration/mysuite/...

v Test Parellelism and Kubernetes
Ø Istio only supports one instance in each cluster
ØMultiple Istio instance in one K8s cluster may conflicts

• Run one suite per command (e.g. go test ./tests/integration/mysuite/...)
• Disable parallelism with -p 1 (e.g. go test -p 1 ./...). A major disadvantage to doing this is that it will

also disable parallelism within the suite, even when explicitly specified via RunParallel

Running Tests - 01

vTest Selection
When no flags are specified, the test framework will run all applicable tests. It is possible to
filter in/out specific tests using 2 mechanisms:
ØThe standard -run <regexp> flag, as exposed by Go's own test framework
Ø --istio.test.select <filter-expr> flag to select/skip framework-aware tests that use labels

Then we can explicitly select execution of such tests using label based selection:
go test ./... --istio.test.select +customsetup
go test ./... --istio.test.select –customsetup
go test ./... --istio.test.select +customsetup,-postsubmit

Runnng Tests with Flags

Istio Test support platform Flags
vNative --istio.test.env=native

vKubernetes --istio.test.env=kube

Diagnosing Failures

vWorking Directory

vEnabling CI Mode
go test pilot/... --istio.test.ci

vPreserving State (No Cleanup)
go test pilot/... --istio.test.nocleanup

vAdditional Logging
go test ./... --log_output_level=mcp:debug

Thanks!

