
Hello, my name is Ed Snible and I will present on WebAssembly for Istio today.

Thank you Iris for hosting this event.

Also thanks to Mohammad Banikazemi for an earlier version of this presentation.

1

What will we be talking about today?

Istio, starting with 1.5, allows users to define custom code that runs when
microservices
send or receive traffic.

We will learn about the technology WebAssembly, or “Wasm”, behind this ability.

I will show you how to write and deploy Wasm extension plugins on your cluster
using Istio,
and introduce you to a tool for creating and sharing your own WebAssembly
Extensions.

2

To level-set everyone, here is the Istio architecture. Users write microservices. Istio
attaches a proxy sidecar to them that manages and allows the microservices to
participate in the mesh. Istio applies configuration and rules which are enforced by
the sidecar.

Envoy is an edge proxy from Lyft. Envoy runs in a container in user pods. I will talk
about extending Envoy with WebAssembly today. Everything we talk about today
runs inside this component.

3

What is WebAssembly for Proxies, and why is it different and better than what we
have had before?
After all, Istio has had EnvoyFilter since version 1.0.

In the past, you had to create your extensions in C++ and statically link them to
Envoy. Users needing custom extensions couldn’t use
pre-build Envoy binaries from Lyft or the Istio project.

Although you could use Lua, it is several years old and unsupported.

WebAssembly gives us more languages and more power.

4

WebAssembly was designed to allow code to run inside web browsers in languages
other than JavaScript. WebAssembly is a binary format. WebAssembly was designed
to run in a web browser virtual machine.

A browser VM is not the same as an operating system VM. A browser VM is a
sandbox similar to the Java Virtual Machine.

Instead of directly executing code like early versions of JavaScript, WebAssembly
executes binary code. It isn’t a new high-level language.

Today, we won’t be talking about running WebAssembly on the
browser. WebAssembly can now run server-side, on proxies.

5

What features and languages will be available?

We have C++, AssemblyScript, and Rust (which I have not used).

I am most familiar with AssemblyScript. I will be show an AssemblyScript demo today.
It’s very much like JavaScript. It’s NOT assembly language for WebAssembly. It is
more like JavaScript for WebAssembly.

Other languages compile into WASM, such as a version of Go, but as of yet there is no
Envoy SDK for Go. You are on your own if you want to use a language other than the
ones here.

There is an Application Binary Interface Spec you would use to do that. We are not
going to talk about that today.

All of these languages only provide a simple single-threaded model when run on a
proxy.
You will not have the full power of the language. You also have limited library
support.

6

Envoy runs inside the box labeled “proxy”. I will talk about extending Envoy with
WebAssembly today. Everything we talk about today runs inside this component.

7

There is now a WebAssembly engine inside this proxy. Let’s zoom into the proxy and
see how it works.

8

The box here, this whole screen, represents a single sidecar from the previous
slide. The internal architecture is that
there is a listener, and filters on inbound web traffic.

9

Listeners and filters also exist also before outbound services. More realistically, there
will be dozens or hundreds of listeners, one from each inbound or outbound traffic
route for your service.

10

A more realistic picture shows that Envoy is listening on TCP port 9080.

When requests come in from the outside world, Envoy gives many filters a chance to
block or modify traffic.

The first two filters are in generic filters. The six lower filters are HTTP specific. (For a
TCP connection, you get something slightly different)
Envoy passes traffic through each filter in turn. Control flow can be blocked but
usually reaches the end of the filter chain. Envoy then invokes the endpoint, in this
case the ProductPage microservice app.

11

When ProductPage calls externally, the outbound side, it also through a set of filters.
Configuring these filters gives Istio the ability to modify behavior without touching
the Application’s code at all.

12

This entire talk is going to be about adding a new piece onto this chain.
What I’m showing here is a very simple piece called “add header”. It is the piece used
in the tutorial from Solo.io.

Let's learn how to add a single new filter to your sidecar within an Istio environment.

13

Let us recall how Envoy is configured.

In a static deployment of Envoy, without Istio, there would be an Envoy configuration
text file. Developers modify that file to define behavior before building their Docker
image.

Istio allows users to to reconfigure Envoy dynamically without touching the sidecar at
all.

The sidecar receives pushes from the Istio control plane.

To add an Istio filter to pods, users add a custom resource called an EnvoyFilter to
their cluster. When Pilot becomes aware of the new filter instance it pushes to all
pods a new configuration.

The type of filter chain modification Istio does is controlled by EnvoyFilter resources
like this one.

This example applies to the Details pod. It inserts this configuration — including
configuration — to Details version 1.

This EnvoyFilter Istio resource only defines attaching the filter to Envoy’s filter chain.

14

The compiled WASM binary code is declared to be in this location. Another
mechanism, such as mounting storage, is needed to get the code to that location.

14

Once the code is present on Envoy and part of the filter chain, as new web requests
arrive, that data goes through the regular C++ extension and eventually
reach the green native WASM controller.

The extension will callout and execute, within this light blue WASM runtime sandbox,
any WASM filters registered on the Envoy filter chain configuration.

15

Here is another view of how this works. Custom WebAssembly code is represented
by this yellow box.
Envoy itself calls the code for lifecycle events like starting or configuring the plugin, or
when headers or request bodies are to be processed.

Wasm code gets a chance to handle events, call functions in Envoy, and return a
pass/fail to let Envoy know if it should continue processing the chain.

Suppose the code needs to alter the HTTP request. Custom code in the yellow has
access to the headers and
can make changes to the request headers before the application sees it, Alternately, it
may manipulate the response headers after the app container has set them.

The code could request an HTTP call to check with an authorization server. If the
authorization server rejects, the WASM code would
return a value to Envoy to fail this call, and block the request from reaching
subsequent filters; effectively blocking the traffic.

16

You could compile your C++ or AssemblyScript plugin yourself, put it into Kubernetes
storage and mount that storage upon the istio-proxy container.

What I’ll be showing on this talk is tooling from Solo.io, called wasme.
This tooling helps you do these activities in an easier way.

Wasme includes a command to create project boilerplate, setting up the things
needed for a plugin either in C++ or AssemblyScript.
Wasme also sets up Envoy function library definitions.

Wasme provides a build Command that executes the C++ or AssemblyScript compiler.

Wasme provides the ability to push and share your extension with others. Currently
there is no way to push private extensions.

Wasme provides the ability to deploy the plugin to a cluster.

If you are only interested in using other people’s plugins then you only need the last
step.

The first steps are about creating plugins. This is what I will show next.

17

In this demo, I will create a plugin called new-filter.

After installing wasme, I do wasme init new-filter
Two questions appear and I answer them interactively.

init creates the following files, including
- A typescript implementation of a filter
- The list of packages I need to run that filter.

18

Whether in C++ or AssemblyScript, the SDK gives developers an
object-oriented view of an Envoy filter "context".

The hook points available to plugins are events like configure, start, timer-ticks
header handling, request data handling, and processing an HTTP request flowing
through the filters.

Your job is to subclass these and provide your own implementation of how to handle
the events of related to the functionality your filter provides.

Plugin code must register statically by calling registerRootContext(). This call hooks
your filter into the filter chain. Because your code extended RootContext or Context
it is compatible with Envoy’s expectations.

19

Here is example code for an HTTP filter. This code was written by wasme init, but I
added logging.

The developer defines onResponseHeaders() ensuring this Wasm plugin will be called
with HTTP response headers. The code adds a header. The header name, “hello”, will
be compiled into the binary code. The header value, “world”, will come from an Istio
EnvoyFilter resource.

The developer performs wasme build and an AssemblyScript project is compiled into
a binary.
The developer tags the build as webassemblyhub.io/snible/add-header:v0.1

The developer next pushes it to the WebAssembly hub. This step pushes compiled
code from a laptop to solo.io’s hub site. We will look at that process later.

Next, a Kubernetes user deploys the filter upon a cluster, customizing it with the
value “world” we will inject into the headers.

20

To interactively test it, I use kubectl exec to force productpage do a curl on details and
we can see the new header “hello: world” is present.

In the real world changes wouldn’t be tested this way, but this is good enough to
learn and develop small Wasm extensions.

21

This diagram shows the process code of compiling code and the flow from a
development machine to an istio-proxy sidecar.

After compiling the code, developers do a wasme push to copy the compiled code to
a cloud server.

Next operators perform a deploy. The first time operators deploy, wasme creates a
new namespace in the cluster, called also wasme, and creates a Kubernetes operator
there, implemented as a daemonset. (A daemonset is a Kubernetes concept of a
deployment with one pod per node.)

For example, on my cluster I have two nodes. Those are the nodes seen with kubectl
get nodes or
ibmcloud kubernetes-service workers

This daemonset causes there to be a local file, on every worker node, that contains a
cached copy
of what has been deployed on the WebAssembly hub.

wasme deploy first pulls the code and puts it in this cache, where it will be available
to every pod running upon that node.

22

Next wasme modifies Deployment pod template by adding annotations so the sidecar
sees that node cache as a directory on the sidecar.

Wasme creates EnvoyFilters to apply the file in the cache to a sidecar’s filter chain.

22

Some common problems you may encounter when developing plugins.

When I started building, I had many problems with the webassembly URI and tags.

Later, when I tried to use new Envoy Wasm features, I ran into problems with
Assemblyscript SDK versions.

Problems with building are easy to detect.

If you have problems with your compiled plugins not working these can be easy to
miss.

Use istioctl proxy-status to make sure the sidecars aren’t rejecting the configuration
created by Wasme.

Common problems leading to stale proxies include redeploying Deployments.
Wasme modifies the Deployment, but not the Istio injector, and the annotations that
mount the cache can get lost.

Also, references to functions that are not defined by the Envoy version you are using
can also cause rejects.

23

If the proxy is in sync, but isn’t working, add logging to your code. Search Envoy’s logs
for lines with “wasm log” to see the logs produced by Wasm extensions.

23

Wasm support shipped with Istio 1.5. You can read the announcement here.

To learn more about WebAssembly, there is a lot of material on the Internet covering
WebAssembly for browsers.

To learn about Wawm for Proxies and get more involved there are some fundamental
Github projects to examine.

The biggest piece comes from Envoy itself - a special version called envoy-wasm
which includes a sample C++ wasm filter.

The istio-proxy project includes code for Istio's stats and metadata exchange filters,
the pieces of Istio that control telemetry.

The SDKs for C++ and Rust come from the proxy-wasm project, and also the
specification for how plugins interact with Envoy.

The AssemblyScript SDK and wasme tooling that I showed come from Solo.io.

There are also public Slack channels for Envoy-Wasm and the WebAssemblyHub.

24

Any questions?

25

