Additional Training Information
Customization of additional metrics, parameters, and tags against run_id in the current experiment after saving the model.
Note
You can only use these api once the model is saved either in Stuio using Watson Machine Learning or as external models in Catalog.
Once the model is available, set the model using
model=facts_client.assets.get_model()
and you can usemodel.get_experiment()
so all experiment management utilities APIs will be available to use.
Attention
Supported only for predictive models, not for prompt template asset
Experiment management utilities
- class NotebookExperimentUtilities
Bases:
object
Model notebook experiment utilities. Running client.assets.model() makes all methods in NotebookExperimentUtilities object available to use.
- get_info()
Get experiment info. Supported for CPD version >=4.6.4
A way to use me is:
>>> exp=model.get_experiment() >>> exp.get_info()
- get_run(run_id: str = None) NotebookExperimentRunsUtilities
Get run object available in notebook experiment. Supported for CPD version >=4.6.4
A way to use me is:
>>> run=exp.get_run() # returns latest run object available >>> run=exp.get_run(run_id=run_id) # you can get specific run object
- get_all_runs()
Get all runs available in notebook experiment. Supported for CPD version >=4.6.4
A way to use me is:
>>> exp.get_all_runs()
- get_experiment(self, experiment_name: str = None) NotebookExperimentUtilities
Get notebook experiment. Supported for CPD version >=4.6.4
A way to use me is:
>>> exp=model.get_experiment() # returns experiment >>> exp=model.get_experiment(experiment_name="test") # In case notebook experiment not available, you can initiate a new one and run to add details.
Runs Management Utilities
Set Operations
- set_custom_metric(self, metric_id: str, value: float) None
Set model training metric against run_id
- Parameters:
metric_id (str) – Metric key name
value (float) – Metric value
- Raises:
ClientError – Raises client error for exceptions
- Returns:
None
A way to use me is:
>>> run.set_custom_metric(metric_key=<key>,value=<value>)
- set_custom_param(self, param_id: str, value: str) None
Set model training param against the run_id
- Parameters:
param_id (str) – Param key name
value (str) – Param value
- Raises:
ClientError – Raises client error for exceptions
- Returns:
None
A way to use me is:
>>> run.set_custom_param(param_id=<key>,value=<value>)
- set_custom_tag(self, tag_id: str, value: str) None
Set model training tag against the run_id
- Parameters:
tag_id (str) – Tag key name
value (str) – Tag value
- Raises:
ClientError – Raises client error for exceptions
- Returns:
None
A way to use me is:
>>> run.set_custom_tag(tag_id=<key>,value=<value>)
- set_custom_metrics(self, metrics_dict: Dict[str, Any], debug: bool = False) None
Set model training metrics against the run_id.
- Parameters:
metrics_dict (dict) – Metric key, value pairs.
debug (bool, optional) – Whether to display additional details for debugging purposes. Default is False.
- Raises:
ClientError – Raises client error for exceptions.
- Returns:
None
A way to use me is:
>>> run.set_custom_metrics(metrics_dict={"training_score": 0.955, "training_mse": 0.911})
- set_custom_params(self, params_dict: Dict[str, Any], debug: bool = False) None
Set model training params against the run_id.
- Parameters:
params_dict (dict) – Params key, value pairs.
debug (bool, optional) – Whether to display additional details for debugging purposes. Default is False.
- Raises:
ClientError – Raises client error for exceptions.
- Returns:
None
A way to use me is:
>>> run.set_custom_params(params_dict={"num_class": 3, "early_stopping_rounds": 10})
- set_custom_tags(self, tags_dict: Dict[str, Any], debug: bool = False) None
Set model training tags against the run_id.
- Parameters:
tags_dict (dict) – Tags key, value pairs.
debug (bool, optional) – Whether to display additional details for debugging purposes. Default is False.
- Raises:
ClientError – Raises client error for exceptions.
- Returns:
None
A way to use me is:
>>> run.set_custom_tags(tags_dict={"tag1": <value>, "tag2": <value>})
- set_custom_run_facts(self, metrics: Dict[str, Any] = None, params: Dict[str, Any] = None, tags: Dict[str, Any] = None, overwrite: bool = False, debug: bool = False)
Set custom run facts for an experiment.
- Parameters:
metrics (dict, optional) – A dictionary containing metrics.
params (dict, optional) – A dictionary containing parameters.
tags (dict, optional) – A dictionary containing tags.
overwrite (bool, optional) – Whether to overwrite existing facts for a selected run. Default is False.
debug (bool, optional) – Whether to display additional details for debugging purposes. Default is False.
A way to use me is:
>>> metrics = {"training_score": 0.955, "training_mse": 0.911} params = {"batch_size": 32, "learning_rate": 0.001} tags = {"experiment_type": "CNN", "dataset": "MNIST"} >>> run.set_custom_run_facts(metrics_dict=metrics, params_dict=params, tags_dict=tags, overwrite=False, debug=True)
Remove Operations
- remove_custom_metric(self, metric_id: str) None
Remove metric by id against the run_id
- Parameters:
metric_id (str) – Metric id to remove.
A way you might use me is:
>>> run.remove_custom_metric(metric_id=<metric_id>)
- remove_custom_param(self, param_id: str) None
Remove param by id against the run_id
- Parameters:
param_id (str) – Param id to remove.
A way you might use me is:
>>> run.remove_custom_param(param_id=<param_id>)
- remove_custom_tag(self, tag_id: str) None
Remove tag by id against the run_id
- Parameters:
tag_id (str) – Tag id to remove.
A way you might use me is:
>>> run.remove_custom_tag(tag_id=<tag_id>)
- remove_custom_metrics(self, metric_ids: List[str]) None
Remove multiple metrics.
- Parameters:
metric_ids (list of str) – List of metric ids to remove from run.
A way you might use me is:
>>> model.remove_custom_metrics(metric_ids=["id1", "id2"])
- remove_custom_params(self, param_ids: List[str], debug: bool = False) None
Remove multiple params against the run_id.
- Parameters:
param_ids (list of str) – List of param ids to remove from run.
debug (bool, optional) – Whether to display additional details for debugging purposes. Default is False.
A way you might use me is:
>>> run.remove_custom_params(param_ids=["id1", "id2"])
- remove_custom_tags(self, tag_ids: List[str], debug: bool = False) None
Remove multiple tags against the run_id.
- Parameters:
tag_ids (list of str) – List of tag ids to remove from run.
debug (bool, optional) – Whether to display additional details for debugging purposes. Default is False.
A way you might use me is:
>>> run.remove_custom_tags(tag_ids=["id1", "id2"])
- remove_custom_run_facts(self, metric_ids: List[str] = None, param_ids: List[str] = None, tag_ids: List[str] = None, debug: bool = False) None
Remove multiple custom run facts (metrics,params or tags) from the run.
- Parameters:
tag_ids – List of tag IDs to remove.
param_ids – List of parameter IDs to remove.
metric_ids – List of metric IDs to remove.
optional) (debug (bool,) – Used to display additional details for debugging purpose. Default is False.
At least one of tag_ids, param_ids, or metric_ids must be provided.
Example usage:
>>> run.remove_custom_run_facts(metric_ids=["metric1"], param_ids=["param1"],tag_ids=["tag1", "tag2"])